Supplementary Information

The Ternary C@Al₆Cu₄ Cluster: Hexavalent Non-hybridized Carbon Atom and New Magic Number

Yassin A. Jeilani,^a Long Van Duong,^{b,c,*} Nguyen Minh Tam^d and Minh Tho Nguyen^{c,e}

^{a.} Department of Chemistry, University of Hail, Hail, Saudi Arabia

^{b.} Atomic Molecular and Optical Physics Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam

^{c.} Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam

^d Faculty of Basic Sciences, University of Phan Thiet, 225 Nguyen Thong, Phan Thiet City, Binh Thuan Province, Vietnam

^{e.} Laboratory of Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam

* Corresponding author: duongvanlong@vlu.edu.vn

Figure S1. The partial and total densties-of-states (DOS) and the overlap population density-of-states (OPDOS) of C@Al_6Ag_4

Figure S2. The partial and total densties-of-states (DOS) and the overlap population density-of-states (OPDOS) of C@Al₆Au₄.

Figure S3. The partial and total densties-of-states (DOS) and the overlap population density-of-states (OPDOS) of $C@Al_6Na_4$.