Supplementary Information

Characterizing highly oxygenated organic molecules in limonene secondary organic aerosol: roles of temperature and relative humidity

Yitong Zhai^{a*}, Vasilios G. Samaras^{b*}, S. Mani Sarathy^a

¹Clean Energy Research Platform, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

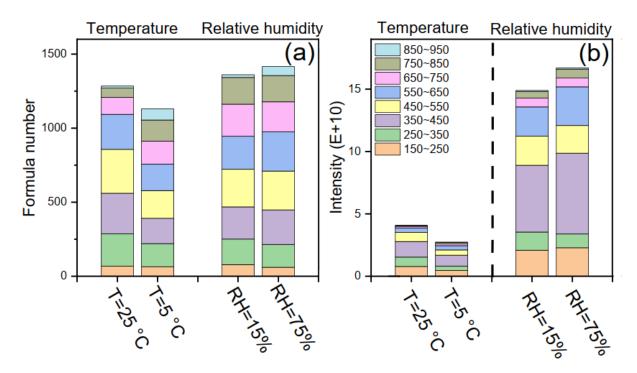
²Analytical Chemistry Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia

*Corresponding Author:

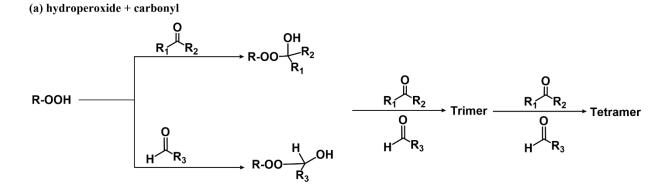
Yitong Zhai (Yitong.zhai@kaust.edu.sa)

Vasilios G. Samaras (vasileios.samaras@kaust.edu.sa)

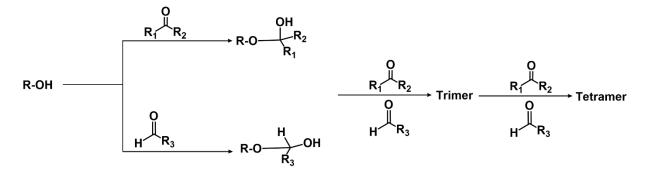
The SI includes: 2 figures and 2 tables.

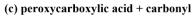

Table S1. The twenty most abundant HOM products from the ozonolysis of lomonene at $T = 25^{\circ}C$ and 5°C as well as RH = 15% and 75%. Note that all compounds are detected as clusters with Na⁺ adducts.

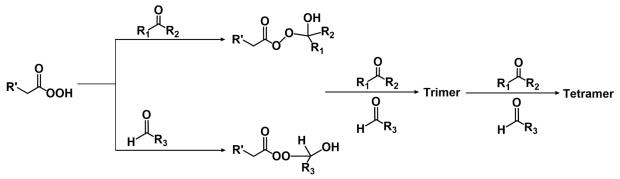
$T = 25^{\circ}C$		$T = 5^{\circ}C$		RH =	RH = 15%		RH = 75%	
Formula	m/z	Formula	m/z	Formula	m/z	Formula	m/z	
$C_{20}H_{34}O_8$	425.2146	$C_{20}H_{34}O_8$	425.2146	$C_{19}H_{30}O_{9}$	425.1781	$C_{19}H_{32}O_{9}$	427.1937	
$C_{10}H_{16}O_6$	255.0839	C ₂₀ H ₃₄ O ₉	441.2095	$C_{19}H_{32}O_8$	411.1988	$C_{19}H_{32}O_8$	411.1988	
$C_{19}H_{32}O_8$	411.1989	$C_{19}H_{32}O_8$	411.1989	$C_{19}H_{30}O_8$	409.1832	$C_{20}H_{34}O_8$	425.2145	
$C_{19}H_{30}O_8$	409.1833	$C_{19}H_{30}O_8$	409.1833	$C_{19}H_{32}O_{9}$	427.1937	C19H30O9	425.1781	
C ₂₀ H ₃₄ O ₉	441.2095	$C_{10}H_{16}O_6$	255.0839	$C_{19}H_{30}O_{10}$	441.1730	C18H30O9	413.1781	
$C_{19}H_{30}O_{9}$	425.1782	$C_{20}H_{34}O_7$	409.2196	$C_{10}H_{16}O_{6}$	255.0838	$C_{20}H_{34}O_9$	441.2094	
$C_{20}H_{32}O_9$	439.1938	$C_{19}H_{30}O_9$	425.1782	$C_{19}H_{32}O_7$	395.2039	$C_{19}H_{30}O_8$	409.1832	
$C_{19}H_{32}O_7$	395.2040	$C_{19}H_{32}O_9$	427.1938	$C_{19}H_{30}O_7$	393.1883	$C_{19}H_{32}O_{10}$	443.1886	
$C_{20}H_{34}O_{10}$	457.2044	C ₂₀ H ₃₂ O ₉	439.1938	$C_{19}H_{32}O_{10}$	443.1886	$C_{19}H_{30}O_{10}$	441.1730	
$C_{10}H_{18}O_6$	257.0995	$C_{19}H_{32}O_7$	395.204	$C_{18}H_{30}O_8$	397.1831	$C_{19}H_{32}O_7$	395.2039	
$C_{20}H_{32}O_8$	423.1989	$C_{20}H_{32}O_8$	423.1989	$C_{18}H_{28}O_{9}$	411.1624	C ₂₀ H ₃₄ O ₇	409.2196	
$C_{20}H_{32}O_{10}$	455.1887	$C_{20}H_{34}O_{10}$	457.2044	$C_{18}H_{28}O_8$	395.1674	C19H32O9	439.1938	
$C_{20}H_{34}O_7$	409.2196	$C_{20}H_{32}O_{10}$	455.1887	$C_{19}H_{30}O_{11}$	457.1679	$C_{18}H_{30}O_8$	397.1833	
$C_{19}H_{32}O_{10}$	443.1887	$C_{19}H_{30}O_7$	393.1884	$C_{18}H_{30}O_{9}$	413.1781	$C_{20}H_{32}O_{10}$	455.1888	
$C_{19}H_{30}O_7$	393.1884	$C_{20}H_{32}O_7$	407.2040	$C_{18}H_{28}O_{10}$	427.1573	$C_{18}H_{28}O_{9}$	411.1624	
$C_{19}H_{30}O_{10}$	441.1731	$C_{19}H_{30}O_{10}$	441.1731	$C_{18}H_{30}O_7$	381.1883	$C_{18}H_{30}O_{10}$	429.1730	
$C_{18}H_{30}O_{8}$	397.1833	$C_{19}H_{32}O_{10}$	443.1887	$C_{18}H_{30}O_{10}$	429.1730	$\mathrm{C}_{10}H_{16}\mathrm{O}_{6}$	255.0839	
$C_{18}H_{30}O_{9}$	413.1782	$C_{20}H_{34}O_{11}$	473.1993	$C_{18}H_{28}O_7$	379.1726	$C_{20}H_{34}O_{10}$	457.2044	
$C_{20}H_{32}O_7$	407.204	$C_{18}H_{30}O_{8}$	397.1833	$C_{19}H_{30}O_6$	377.1933	$C_{18}H_{30}O_7$	381.1883	
$C_{20}H_{34}O_{11}$	473.1993	$C_{19}H_{30}O_{11}$	457.1680	$C_{19}H_{32}O_{11}$	459.1836	$C_{20}H_{32}O_{10}$	455.1887	


Table S2. Singlal intensity in each volatility class in the ozonolysis of lomonene at $T = 25$ °C and
5° C as well as RH = 15% and 75%. Note that "-" in the table means no monomer is classified into
ELOVC or ULVOC.

	SVOC	LVOC	ELVOC	ULVOC					
Temperature conditions									
$T = 5^{\circ}C$									
Monomer	1.03E10	1.58E09	-	-					
Dimer	4.20E09	7.02E10	2.66E10	9.33E08					
$T = 25^{\circ}C$									
Monomer	1.18E10	4.81E09	-	-					
Dimer	4.90E09	5.94E10	2.38E10	2.38E08					
RH conditions									
RH = 15%									
Monomer	4.06E10	9.47E08	-	-					
Dimer	6.90E09	4.28E11	1.67E11	1.17E09					
RH = 75%									
Monomer	Monomer 3.84E10 8.66E08		-	-					
Dimer	6.20E09	4.96E11	1.92E11	1.13E09					


Figure S1. The (a) formula number and (b) intensity molecular weight distributons ;imonene SOA at $T = 25^{\circ}C$ and $5^{\circ}C$ and RH = 15% and 75%.




Figure S2. Potential reaction pathways to form the larger molecules through (a) hydroperoxide + carbonyl channels, (b) alcohol + carbonyl, and (c) peroxycarboxylic acid + carbonyl channels.

(b) alcohol + carbonyl

