Supporting Information

High-stable Mn-based cathode with low crystalline Li₂MnO₃ and spinel functional units for lithium-ion batteries

Shiqi Liu^{‡a,b,f}, Yinzhong Wang^{‡a,b,e}, Dongdong Xiao^{‡c}, Haifeng Li^{a,b}, Tianhao Wu^{a,b}, Boya Wang^{a,b}, Guangxing Hu^{a,b}, Lingqiao Wu^{a,b}, Yulong Wang^{a,b}, Guoqing Wang^{a,b,e}, Nian Zhang^d and Haijun Yu^{a,b,f,*}

^aInstitute of Advanced Battery Materials and Devices, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China. E-mail: hj-yu@bjut.edu.cn

^bKey Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China.

^cBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

^dState Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China. ^eBeijing Create Energy & Benefit Future Co., Ltd., Beijing 100176, China.

^fInstitute of Matter Science, Beijing University of Technology, Beijing 100124, China.

‡These authors contributed equally to this work.

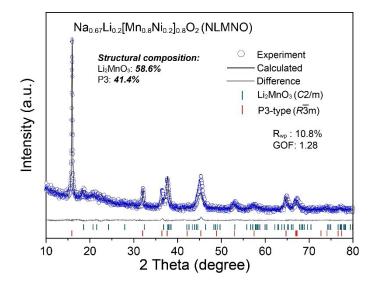
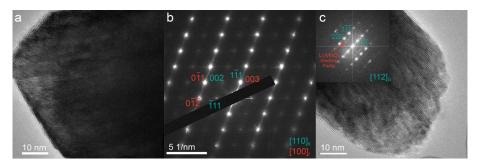



Figure S1. XRD refinement of NLMNO.

Figure S2. TEM images and corresponding SAED and FFT patterns of PHS-LLMNO within different particles.

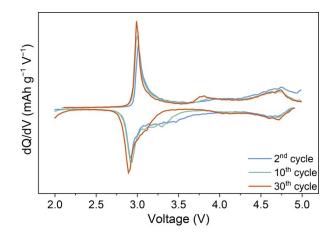


Figure S3. The dQ/dV curves of PHS-LLMNO in different cycles at 10 mA g^{-1} .

Figure S4. Charge/discharge profiles of PHS-LLMNO in different cycles at 200 mA g^{-1} .

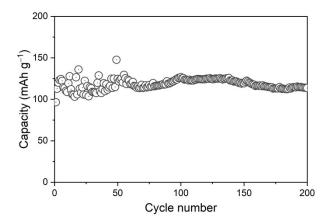
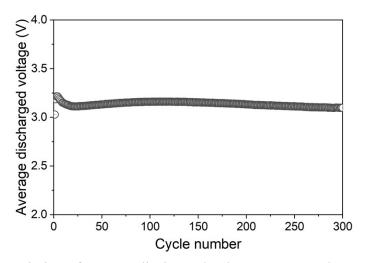



Figure S5. The capacity retention of PHS-LLMNO with the high mass loading of active material of 6.5 mg cm⁻² at 600 mA g⁻¹.

Figure S6. The variation of average discharged voltage versus cycle number at 300 mA g^{-1} .

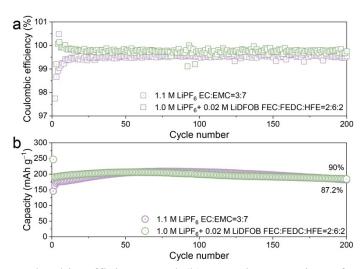
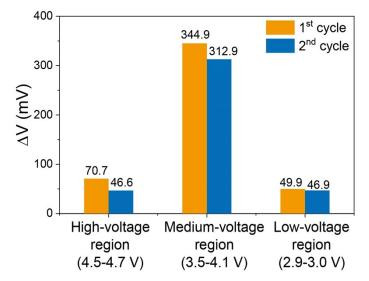



Figure S7. (a) Coulombic efficiency and (b) capacity retention of PHS-LLMNO in different electrolytes at 200 mA g^{-1} .

Figure S8. The calculated overpotentionals at selected voltage regions upon the discharge processes of the initial two cycles under GITT measurement.

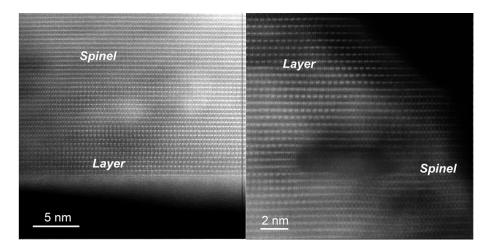


Figure S9. HAADF-STEM images of PHS-LLMNO in different particles and areas.

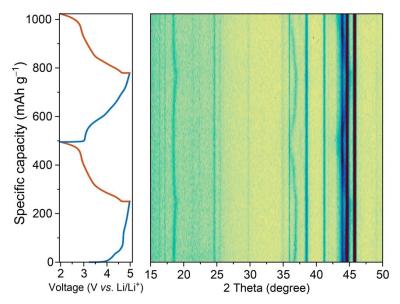
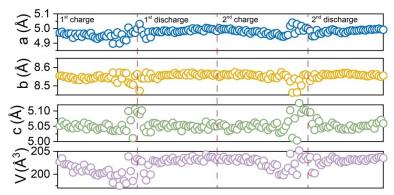



Figure S10. The *in situ* XRD 2D contour image and corresponding charge/discharge profiles of PHS-LLMNO.

Figure S11. Variation of cell parameters a, b, c and V in the initial two cycles of PHS-LLMNO, respectively.

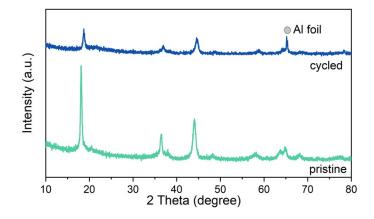
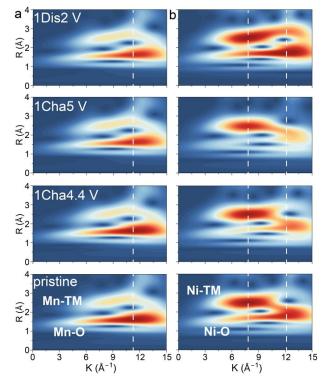
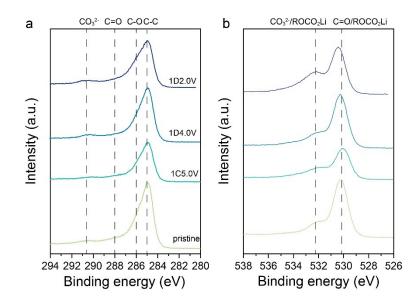




Figure S12. XRD pattern of PHS-LLMNO cathode before and after cycling.

Figure S13. Wavelet transforms of (a) Mn *K*-edge and (b) Ni *K*-edge EXAFS spectra in PHS-LLMNO at different electrochemical states.

Figure S14. The ex situ XPS (a) C1s and (b) F1s spectra of PHS-LLMNO at the pristine, charged to 5.0 V, discharged to 4.0 V and discharged to 2.0 V, respectively.

Table S1. Stoichiometry from Inductively coupled plasma (ICP) results of PHS-LLMNO.

Elements	content (mg/L)	molar ratio
Li	11.9	0.80
Mn	75.1	0.64
Ni	20.3	0.16

Table S2. XRD refinement results of PHS-LLMNO based on two-phase model of monoclinic C2/m space group of Li₂MnO₃ and cubic $P4_332$ space group of LiMn_{1.5}Ni_{0.5}O₄.

Site	Wyckoff position	x	У	Ζ
Mn1	4g	0	0.172(3)	0
Li1	4g	0	0.172(3)	0
Li2	2b	0	0.5	0
Mn2	2b	0	0.5	0
Li3	2c	0	0	0.5
Li4	4h	0	0.69120	0.5
01	4i	0.240(1)	0	0.246(1)
O2	8j	0.249(6)	0.336(5)	0.221(5)
hase Li ₂ Mı	nO ₃ , a=4.953(5) Å; b=8.589(9) Å; c=5.067(2) Å; β =	$109.640(1)^{\circ}V = 203.06(8)$	Å ³ , fraction: 69.16(3)
Site	Wyckoff position	x	у	Z
Li	8c	0.00373	0.00373	0.00373
Mn	12b	0.12118	0.12882	0.62500
Ni	4b	0.12500	0.87500	0.37500
1 11		0.105(5)	0.004(8)	0.002(7)
01	24e	0.195(5)	0.004(8)	0.002(7)