Supplementary information:

Interfacially-localized high-concentration electrolytes for high-

performance rechargeable aqueous lithium-ion batteries

Guohong Shen¹, Shinji Kondou², Gakuto Wada¹, Hiroki Nakagaki¹, Masayoshi Watanabe³, Kaoru Dokko^{1,3}, Kazuhide Ueno^{1,3, *}

¹ Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

² Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

³Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

E-mail: ueno-kazuhide-rc@ynu.ac.jp

Figure S1. (a) XRD pattern of prepared LTP at a scan speed of 5° min⁻¹ and (b) TGA of prepared LTP under a N₂ atmosphere, and heating rate of 5 °C min⁻¹.

Figure S2. Digital photographs of the $LiNFBS-11H_2O$ and $LiNFBS-12H_2O$ electrolytes (molar ratio). The red-dotted circular area represent gel-like substance.

Figure S3. FTIR of electrolytes containing (a) LiNFBS- xH_2O (x = 12-30, molar ratio) and (b) LiNFBS- $yMg(TFSI)_2-12H_2O$ (y=0.05-0.35, molar ratio).

Table	e S1. Physical	and chen	nical properti	es of electrol	lytes containing	g LiNFBS-(12	2-25)
$H_2O($	Molar ratio).						

Electrolytes	η	σ	Molar	ρ
(Molar ratio, 30 °C)	(mPa s)	(mS cm ⁻¹)	Concentration	(g cm ⁻³)
			(mol L ⁻¹)	
LiNFBS:12 H ₂ O	19.2	58.7	2.70 M	1.41
LiNFBS:15 H ₂ O	14.2	62.3	2.36 M	1.36
LiNFBS:20 H ₂ O	8.7	63.9	1.95 M	1.30
LiNFBS:25 H ₂ O	5.4	56.4	1.66 M	1.26

Table S2. Physical and chemical properties of electrolytes containing LiNFBS-(0.05-0.35Mg(TFSI)₂)-12H₂O (Molar ratio).

Electrolytes	η	σ	Molar	ρ
(Molar ratio, 30 °C)	(mPa s)	(mS cm ⁻¹)	Concentration	(g cm ⁻³)
			(mol L ⁻¹)	
LiNFBS:12H ₂ O	19.2	58.7	2.70 M	1.41
LiNFBS:0.05Mg(TFSI)2:12H2O	18.5	55.4	2.60 M:0.13 M	1.43
LiNFBS:0.10Mg(TFSI)2:12H2O	17.9	50.5	2.50 M:0.25 M	1.45
LiNFBS:0.15Mg(TFSI)2:12H2O	17.7	48.0	2.42 M:0.36 M	1.48
LiNFBS:0.20Mg(TFSI)2:12H2O	17.8	47.6	2.34 M:0.46 M	1.49
LiNFBS:0.25Mg(TFSI)2:12H2O	17.9	40.7	2.26 M:0.56 M	1.51
LiNFBS:0.30Mg(TFSI)2:12H2O	18.6	37.4	2.19 M:0.66 M	1.53
LiNFBS:0.35Mg(TFSI)2:12H2O	19.2	34.0	2.13 M:0.74M	1.54

Table S3. Surface tension of solution containing 0.74 M Mg(TFSI)₂.

Sample	Surface tension		
(Molar concentration)	γ (mN m ⁻¹)		
0.74 M Mg(TFSI) ₂	45.3		

Figure S4. Cyclic voltammogram (CV) of LTP/LMO full cells containing LiNFBS-0.35Mg(TFSI)_2-12H_2O at a scan rate of 0.1 mV s^{-1} .

Figure S5. LSV curves of Al working electrode from OCV to -1.2 V vs. Ag/AgCl using different electrolytes containing: (a) LiNFBS- $0.35Mg(TFSI)_2-12H_2O$, (b) LiNFBS-12H₂O, (c) LiTFSI- $0.35Mg(TFSI)_2-12$ H₂O, (d) LiNO₃- $0.35Mg(TFSI)_2-12H_2O$, and (e) LiOTf- $0.35Mg(TFSI)_2-12H_2O$.

Figure S6. Magnification of SEM images of Al electrode surface after potentiostatic polarization for 20 h at -1.2 V vs. Ag/AgCl using different electrolytes: (a) pristine Al foil; (b) LiNFBS-0.35 Mg(TFSI)₂-12H₂O; (c) LiNFBS-12H₂O; (d) LiTFSI-0.35Mg(TFSI)₂-12H₂O; (e) LiNO₃-0.35Mg(TFSI)₂-12H₂O; (f) LiOTf-0.35Mg(TFSI)₂-12H₂O.

Figure S7. Digital photographs of Al working electrode at -1.2 V vs. Ag/AgCl for 20 h using the electrolytes composed of LiNO₃-0.35Mg(TFSI)₂-12H₂O (Molar ratio).

Figure S8. Electrochemical Impedance Spectroscopy (EIS) of Al electrode before and after potentiostatic polarization for 2 h at -1.2 V vs. Ag/AgCl using different electrolytes: (a) LiNFBS-0.35 Mg(TFSI)₂-12H₂O; (b) LiNFBS-12H₂O; (c) LiTFSI-0.35Mg(TFSI)₂-12H₂O; (d) LiNO₃-0.35Mg(TFSI)₂-12H₂O; (e) LiOTf-0.35Mg(TFSI)₂-12H₂O.

Figure S9. Li 1s XPS Spectra of Al working electrode after chronoamperometry (CA) for 20 h at -1.2 V vs Ag/AgCl using electrolytes containing: (a) LiNFBS-0.35Mg(TFSI)₂-12H₂O, (b) LiTFSI-0.35Mg(TFSI)₂-12H₂O, (c) LiNO₃-0.35Mg(TFSI)₂-12H₂O, and (d) LiOTf-0.35Mg(TFSI)₂-12H₂O.

Figure S10. XPS Spectra of Al electrode after polarization for 20 h at -1.2 V vs Ag/AgCl and LiNFBS-12H₂O: (a) Mg 2p, (b) F 1s, (c) O 1s, (d) C 1s spectra in LiTFSI-

 $0.35Mg(TFSI)_2-12H_2O$ and (e) Li 1s, (f) F 1s, (g) O 1s, (h) C 1s in LiNO₃- $0.35Mg(TFSI)_2-12H_2O$, and (i) Li 1s, (j) F 1s, (k) O 1s, (l) C 1s in LiOTf- $0.35Mg(TFSI)_2-12H_2O$.

Figure S11. Coulombic efficiency of LTP/LMO full cells using electrolytes LiNFBS-0.35Mg(TFSI)₂-12H₂O, LiNO₃-0.35Mg(TFSI)₂-12H₂O, LiTFSI-0.35Mg(TFSI)₂-12H₂O, LiOTf-0.35Mg(TFSI)₂-12H₂O, and 1 M Li₂SO₄ at different current density from 0.2 to 40 C.

Figure S12. Charge-discharge curves of LTP/LMO full batteries using electrolytes composed of: (a) LiNFBS-0.35Mg(TFSI)₂-12H₂O, (b) LiNO₃-0.35Mg(TFSI)₂-12H₂O, (c) LiTFSI-0.35Mg(TFSI)₂-12H₂O, (d) LiOTf-0.35Mg(TFSI)₂-12H₂O, and (e) 1 M

 Li_2SO_4 at a current rate of 2 C.

Figure S13. Charge-discharge curves of LTP/LMO full cell using LiNFBS-0.35Mg(TFSI)₂-12H₂O at a current rate of 5 C.

Figure S14. Long cycling performance of the cell containing LiNFBS-0.35Mg(TFSI)₂-12H₂O at current density of 0.2 C.

Electrolytes/Electrode	ESW	Current	Capacity	References
		Density	Retention	
25 mol L $^{-1}$ CH_3COONH_4+5 mol L $^{-1}$	3.9 V	0.1 A g ⁻¹	70 %	Ref.65
CH ₃ COONa (MnO ₂ /CNTs NTP/C)			(500 cycles)	
$BSiS-DOL_{0.5}$	4.7 V	5 C	50%	Ref.66
(LMO LTO)			(2000 cycles)	
1.85 m LiTFSI-H ₂ O-IDE	4.3 V	2 C	72%	Ref.67
(LMO LTO)			(450 cycles)	
LiNFBS:0.35Mg(TFSI) ₂ :12H ₂ O	3.3 V	5 C	86 %	This work
(LMO LTP)			(750 cycles)	

Table S4. Performance	Comparison	of Different	Electrolyte Systems.
-----------------------	------------	--------------	----------------------