SUPPLEMENTARY INFORMATION

Zhixin Luo, ‡^a Jiayi Tang, ‡^a Zehua Wang, ‡^a Guangming Yang,^b Tianjiu Zhu,^{ac} Zezhou Lin,^{ad} San Ping Jiang^{ac} and Zongping Shao^{*a}

- a. WA School of Mines: Minerals, Energy & Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6102, Australia.
- b. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
- c. School of Chemical Engineering, The University of Queensland, QLD 4072, Australia.
- d. Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong 999077, China.
- e. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, China.

*Corresponding author. E-mail: zongping.shao@curtin.edu.au

‡ These authors contributed equally to this work.

Fig. S1. XRD patterns of (a) the selected electrodes and electrolytes powders, and (b) the powders collected after the 2 h treatment under 600 °C in humified Air (40 vol.%).

Fig. S2. SEM images of the cross-section area of the typical (a) BZCY electrolyte membrane and (b) SDC electrolyte membrane for symmetrical cells. The electrolyte membranes are densified with the average thickness of 0.90 mm for the same bath of BZCY pellets, and 0.85 mm for the same batch of SDC pellets.

Fig. S3. SEM images of the representatives (a) BCCY-BZCY, (b) LSM-BZCY, (c) BCFZY-BZCY, (d) PBSCF-BZCY, (e) BCCY-SDC, (f) LSM-SDC, (g) BCFZY-SDC, and (h) PBSCF-SDC electrolyte-electrode interfaces of pristine symmetric cells.

Fig. S4. The EDS mapping images of the interface of BCCY electrode on BZCY

electrolyte after EIS test.

Fig. S5. The EDS mapping images of the interface of LSM electrode on BZCY electrolyte after EIS test.

Fig. S6. The EDS mapping images of the interface of BCFZY electrode on BZCY electrolyte after EIS test.

Fig. S7. The EDS mapping images of the interface of PBSCF electrode on BZCY electrolyte after EIS test.

Fig. S8. Devices involved for H_2O -TPD during the experiment to study water content in the materials.

Fig. S9. Surficial SEM images of sintered (a) BCCY, (b) LSM, (c) BCFZY and (d) PBSCF before running the TOF-SIMS sputtering. Surficial SEM images of sintered (e) BCCY, (f) LSM, (g) BCFZY and (h) PBSCF after sputtering.

Fig. S10. BCCY|BZCY| Ni-BZCY (a) single cell I-V curve (b) single cell EIS measurement. LSM|BZCY| Ni-BZCY (c) single cell I-V curve (d) single cell EIS measurement. BCFZY|BZCY| Ni-BZCY (e) single cell I-V curve (f) single cell EIS

measurement. PBSCF|BZCY| Ni-BZCY single cell (g) single cell I-V curve (h) single cell EIS measurement.

Fig. S11. Electrode particle sizes. (a) The SEM mapping images of the four calcinated electrode powder, (b) The calculated average particle sizes and size distribution of four electrode powders.

Fig. S12. The nitrogen adsorption-desorption isotherms at STP of four electrode powders and corresponding BET surface areas.

Table S1. Comparison of the different electrode ASRs measured based on BZCY/BZCYYb electrolyte symmetric cells in the temperature range of 550 to 650 $^{\circ}$ C in this work with the estimated values reported in the literature.

Cathoda	Flaatrolyta	Atmosphere	Temperature	ASR	Ref.	
Cathode	Electrolyte	& humidity	(°C)	$(\Omega \ cm^2)$		
			650	0.145		
	BZCY172	Air, 3% H ₂ O	600	0.325	This work	
			550	0.868		
			650	0.17		
BaCo _{0.7} (Ce _{0.8} Y _{0.2}) _{0.3} O _{3-δ}		Dry Air	600	0.51		
	B7CVVb1711		550	1.53	1	
			650	0.06		
		Air, 5% H ₂ O	600	0.11		
			550	0.20		
			650	2.244		
	BZCY172	Air, 3% H ₂ O	600	6.888	This work	
La Sr MnO			550	20.950		
			650	1.84		
	BZCY172	Ambient air	600	5.33	2	
			550	16.88		
			650	0.251		
	BZCY172	Air, 3% H ₂ O	600	0.480	This work	
BaCoo Feo 7ro Vo Oo o			550	1.283		
$\begin{bmatrix} \text{Dac} O_{0.4} \Gamma c_{0.4} \Sigma I_{0.1} I_{0.1} O_{3-\delta} \end{bmatrix}$		Air 10%	650	0.142		
	BZCY172	Н.О	600	0.274	3	
		1120	550	0.693		
PrBa _{0.5} Sr _{0.5} Co _{1.5} Fe _{0.5} O _{5+δ}			650	0.353		
	BZCY172	Air, 3% H ₂ O	600	1.080	This work	
			550	3.729		
			650	0.35		
	BZCYYb1711	Air, 3% H ₂ O	600	1.04	4	
			550	2.34		

Table S2. Comparison of the different electrode ASRs measured based on SDC/GDC electrolyte symmetric cells in the temperature range of 550 to 650 °C in this work with the estimated values reported in the literature.

Cathoda	Electrolyte	Atmosphere	Temperature	Temperature ASR	
Cathouc		& humidity	(°C)	$(\Omega \text{ cm}^2)$	Kei.
			650	0.223	
	SDC	Air, 3% H ₂ O	600	0.664	This work
$\mathbf{P}_{\mathbf{a}}(\mathbf{C}_{\mathbf{a}},\mathbf{V}_{\mathbf{a}})=\mathbf{O}$			550	1.936	
$DaCO_{0.7}(CC_{0.8} I_{0.2})_{0.3} O_{3-\delta}$			650	0.018	
	SDC	Ambient air	600	0.034	1
			550	0.076	
			650	38.341	
	SDC	Air, 3% H ₂ O	600	97.561	This work
Lo Sr MrO			550	270.998	
$La_{0.8}SI_{0.2}WIIO_3$			650	4.103	
	GDC	Ambient air	600	8.312	5
			550	15.94	
			650	0.022	
	SDC	Air, 3% H ₂ O	600	0.052	This work
$P_{0}C_{0}$ F_{0} 7π V O			550	0.164	
$DaCO_{0.41}c_{0.42}I_{0.1}I_{0.1}O_{3-\delta}$			600	0.29	
	GDC	Ambient air	550	0.6	6
			500	1.24	
			650	0.034	
DrDa Sr. Co. Eo. O	SDC	Air, 3% H ₂ O	600	0.083	This work
			550	0.222	
$115a_{0.5}51_{0.5}550_{1.5}150_{0.5}50_{5+\delta}$			650	0.058	
	GDC	Ambient air	600	0.104	7
			550	0.235	

Sample	Theoretical atomic ratio	Tested atomic ratio		
SDC	0.2 : 0.80	0.197 : 0.803		
	(Sm : Ce)	(Sm : Ce)		
BZCY	1.00: 0.10: 0.70: 0.20	1.00: 0.098: 0.708: 0.194		
	(Ba : Z r: Ce : Y)	(Ba : Zr : Ce : Y)		

Table S3. ICP-OES results of the synthesized SDC and BZCY electrolytes.

Single cell configuration		Atmosphere		Electrolyte Conductivity (mS cm-1)						
Anode	Electrolyte	Cathode	Anode	Cathode	650 (°C)	600 (°C)	550 (°C)	500 (°C)	Ref	
BCCY	BZCY172 [~900 μm]	BCCY	3% H ₂ O, 20 mL min ⁻¹ Air	3% H ₂ O, 20 mL min ⁻¹ Air	42.29	33.19	25.11	18.08		
BCCY	SDC [~850 µm]	BCCY	3% H ₂ O, 20 mL min ⁻¹ Air	3% H ₂ O, 20 mL min ⁻¹ Air	58.91	37.30	21.81	11.45	This	
NiO-BZCY172	BZCY172 [25 μm]	BCCY	3% H ₂ O, 100 mL min ⁻¹ H ₂	Ambient Air	8.09	7.06	5.97	4.91	work	
NiO-BZCY442	BZCY442 [16 μm]	BCCY	80 mL min ⁻¹ H ₂	Ambient Air	4.03	3.29	2.93	/		
NiO-BZCY1711	BZCY1711 [16 μm]	BCCY	80 mL min ⁻¹ H ₂	Ambient Air	10.39	8.05	6.44	/	1	
LSM	BZCY172 [~900 μm]	LSM	3% H ₂ O, 20 mL min ⁻¹ Air	3% H ₂ O, 20 mL min ⁻¹ Air	56.04	37.38	21.97	11.61		
LSM	SDC [~850 µm]	LSM	3% H ₂ O, 20 mL min ⁻¹ Air	3% H ₂ O, 20 mL min ⁻¹ Air	36.64	28.92	22.22	15.60	This	
NiO-BZCY172	BZCY172 [25 μm]	LSM	3% H ₂ O, 100 mL min ⁻¹ H ₂	Ambient Air	7.62	6.46	5.37	4.15	WOIK	
NiO-BZCY172	BZCY172 [12.5 μm]	LSM	3% H ₂ O, 30 mL min ⁻¹ H ₂	Ambient Air	5.06	4.07	3.06	/	2	
BCFZY	BZCY172 [~900 μm]	BCFZY	3% H ₂ O, 20 mL min ⁻¹ Air	3% H ₂ O, 20 mL min ⁻¹ Air	60.24	37.79	21.64	11.18		
BCFZY	SDC [~850 µm]	BCFZY	3% H ₂ O, 20 mL min ⁻¹ Air	3% H_2O , 20 mL min ⁻¹ Air	41,78	32.85	25.06	17.49	This	
NiO-BZCY172	BZCY172 [23 μm]	BCFZY	3% H ₂ O, 100 mL min ⁻¹ H ₂	Ambient Air	7.92	6.84	5.85	4.74	work	
NiO-BZCYYb1711	BZCY1711 [25 μm]	BCFZY	Dry 20 mL min ⁻¹ H ₂	Dry Air, 100 mL min ⁻¹	/	6.25	5.81	4.69	8	
Ni-BZCYYbPd	BZCYYbPd [17 μm]	BCFZY	Dry 80 mL min ⁻¹ H ₂	Ambient Air	5.31	4.72	3.86	/	9	
PBSCF	BZCY172 [~900 μm]	PBSCF	3% H ₂ O, 20 mL min ⁻¹ Air	3% H ₂ O, 20 mL min ⁻¹ Air	60.33	38.01	22.16	11.72	This work	

Table S4. Electrochemical characterization of the representative cells in this work compared with corresponding cells reported in the literatures.

PBSCF	SDC [~850 µm]	PBSCF	3% H ₂ O, 20 mL min ⁻¹ Air	3% H ₂ O, 20 mL min ⁻¹ Air	39.68	30.80	23.25	16.88	
NiO-BZCY172	BZCY172 [22 μm]	PBSCF	3% H ₂ O, 100 mL min ⁻¹ H ₂	Ambient Air	7.85	6.69	5.59	4.43	
NiO-BZCY1711	BZCY1711 [7 μm]	PBSCF	3% H ₂ O, 30 mL min ⁻¹ H ₂	Ambient Air	5.71	5.33	4.21	/	4
NiO-BZCYYb2611	BZCYYb2611 [7.6 μm]	PBSCF	3% H ₂ O, 150 mL min ⁻¹ H ₂	Dry Air, 200 mL min ⁻¹	/	4.29	3.80	2.19	10

Estimated value from EIS plots in reported single cell electrochemical characterization. BZCY172: BaZr_{0.1}Ce_{0.7}Y_{0.2}O_{3- δ}; BZCYYb1711: BaZr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3- δ}; BZCYYv4411: BaZr_{0.4}Ce_{0.4}Y_{0.1}Yb_{0.1}O_{3- δ}; BZCY442: BaZr_{0.4}Ce_{0.4}Y_{0.2}O_{3- δ}; BZCYYb2611: BaZr_{0.2}Ce_{0.6}Y_{0.1}Yb_{0.1}O_{3- δ}.

Reference

- Y. Song, Y. Chen, W. Wang, C. Zhou, Y. Zhong, G. Yang, W. Zhou, M. Liu and Z. Shao, *Joule*, 2019, 3, 2842-2853.
- J. Hou, Q. Wang, J. Li, Y. Lu, L. Wang, X. -Z. Fu and J. -L. Luo, *J. Power Sources*, 2020, 466, 228240.
- R. Ren, Z. Wang, C. Xu, W. Sun, J. Qiao, D. W. Rooney and K. Sun, *J. Mater. Chem.* A, 2019, 7, 18365-18372.
- H. Zhang, K. Xu, F. He, Y. Zhou, K. Sasaki, B. Zhao, Y. Choi, M. Liu and Y. Chen, *Adv. Energy Mater.*, 2022, 12, 2200761.
- N. Li, L. Sun, Q. Li, T. Xia, L. Huo and H. Zhao, *J. Eur. Ceram. Soc.*, 2023, 43, 5279-5287.
- C. Duan, D. Hook, Y. Chen, J. Tong and R. O'Hayre, *Energy Environ. Mater.*, 2017, 10, 176-182.
- 7. S. Park, S. Choi, J. Shin and G. Kim, RSC Adv., 2014, 4, 1775-1781.
- C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori and R. O' Hayre, *Science*, 2015, 349, 1321-1326.
- F. He, Q. Gao, Z. Liu, M. Yang, R. Ran, G. Yang, W. Wang, W. Zhou and Z. Shao, *Adv. Energy Mater.*, 2021, 11, 2003916.
- 10. E. H. Kang, H. R. Choi, J. S. Park, K. H. Kim, D. H. Kim, K. Bae, F. B. Prinz and J. H. Shim, *J. Power Sources*, 2020, **465**, 228254.