Supporting information for

Rational design of anti-freezing electrolyte concentrations via freeze concentration process

Liwei Jiang¹, Yuan-Chao Hu², Fei Ai¹, Zhuojian Liang¹, Yi-Chun Lu^{1*}

1 Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR,

China

2 Songshan Lake Materials Laboratory, Dongguan 523808, China

*Address correspondence to <u>yichunlu@mae.cuhk.edu.hk</u>

This file includes:

Experimental and Computational Methods Figs. S1 to S13 Tables S1 to S14 References 1-23

Methods

Material fabrication. The LiMn₂O₄ cathode and PTCDI anode are purchased from MTI and Alfa Aesar corporations, respectively. The NaCoHCF cathode was prepared by a simple precipitation approach according to the literature¹. The cathode (anode) composite electrodes were fabricated by compressing cathode (anode), carbon black, and polytetrafluorothylene (PTFE) at weight ratio of 7:2:1 (6:3:1). The Ti mesh is used as the eletrolde current collector. The 3.85 m NaClO₄ + 5.92 m NaCF₃COO electrolyte is obtained by dissolving 3.85 mmol NaClO₄ and 5.92 mmol NaCF₃COO into 1 g H₂O. The H₃₆EG₆₄-0.5 m NaClO₄ electrolyte is obtained by dissolving 0.5 mmol NaClO₄ into 0.36 g H₂O and 0.64 g ethylene glycol (EG).

Syringe-filtration method in FCE approach. In the syringe-filtration method, the dilute solution of single-solute (such as the H2O-LiCl or H2O-NaClO4) system is usually kept in the chamber at T_t for several hours or longer time before the FCE is filtered (Fig. S2a, ESI[†]). For the multiple-solute H₂O-NaClO₄-NaCF₃COO and LiPFF₆-EC-DEC system, the dilute solution is first frozen in liquid nitrogen (Fig. S2b, ESI[†]) to eliminate the supercooling during hydrate precipitation, followed by the same procedure as in above single-solute system. The equilibrium of FCEs in H₂O-LiCl, H₂O-NaClO₄, H₂O-NaClO₄-NaCF₃COO, and LiPF₆-EC-DEC systems can be reached after keeping dilute solution at T_t for 2 hours, 3 hours, 6 hours, and 24 hours, respectively, because the refractive index of obtained FCE does not change even after keeping the dilute solution at T_t for longer time. Here, the dilute solution is the one that has a concentration less than eutectic-point concentration X_e and will precipitate ice or hydrate at T_t . In the single-solute system, the electrolyte refractive index usually increases as the concentration increases. Therefore, one can identify the preselected solution as a dilute solution when the refractive index of FCE obtained at $T_{\rm t}$ is higher than that of preselected solution. The FCE concentrations in H2O-LiCl and H2O-NaClO₄ systems were determined by the refractive index method² (**Figs. S2c-d, ESI**⁺). The FCE concentrations in H₂O-NaClO₄-NaCF₃COO system were determined by the inductively coupled plasma atomic emission spectrometry³ (to determine the concentration of Na⁺) and ion chromatography (to determine the concentration of ClO₄⁻) ^{4, 5}. The FCE concentration in LiPF₆-EC-DEC system was determined by ICP test (for Li⁺) and organic elemental analyzer vario EL cube (for carbon mass ratio).

Electrochemical measurements. The three-electrode cell consists of cathode (anode) composite working electrode, active carbon counter electrode, and Ag/AgCl-7.18 m LiCl (0.205 V vs. standard hydrogen electrode), with the mass ratio of counter electrode to working electrode being around 8-10. Swagelok-type cells were used to assemble the Li-based full cell, with Ti foil used to protect against halogen corrosion. Coin cells were used to assemble the Na-based full cell. The mass loadings of cathode and anode in Libased Swagelok-type cells are 6.3 mg cm^{-2} and 7.2 mg cm^{-2} respectively. The mass loadings of cathode and anode in Na-based coin cells are 5.4 mg cm⁻² and 7.6 mg cm⁻² respectively. The amount of electrolyte in Li-based Swagelok-type cell and Na-based coin cell was 0.2 mL. The mass loading of cathode and anode in Li-based pouch cell are 13.3 mg cm⁻² and 15.2 mg cm⁻² respectively. The mass loading of cathode and anode in Na-based pouch cell are 11.4 mg cm^{-2} and 14.6 mg cm^{-2} respectively. The amount of electrolyte in Li-based and Na-based pouch cells were 1.0 mL. The chargedischarge tests of cells were performed on the Landt battery test systems (CT3001A, Wuhan Land Electronic Co., Ltd.) and Neware battery test systems (CT-4008-5V50mA-164, Neware technology limited). The full cell specific capacities are showed based on cathode mass and all the current rates are calculated based on a theoretical capacity of 120 mAh g⁻¹ in both Li- and Na-based cells. The mass ratio of cathode/anode is 1/0.9 for both Li-based and Na-based full cells. The energy densities of full cells are calculated based on total active material mass of cathode and anode. For low-temperature tests, the cell performance was measured in a ShangHai BoYi B-T-107D oven.

Characterization. The refractive index was measured by the Abbe refractometer (WAY-2WAJ) with high accuracy (± 0.0002). The ionic conductivities of the electrolytes were measured by electrochemical impedance spectroscopy (EIS) using BioLogic. The chemical formula (Na_{1.4}Co[Fe(CN)₆]_{0.84}· 2.5H₂O) of NaCoHCF cathode was determined by inductively coupled plasma atomic emission spectrometry. The Raman spectra for electrolytes were conducted on HORIBA HR evolution microscope using a 532 nm excitation laser. The Raman spectra of H₂O-NaClO₄ system at –34.1 °C and H₂O-NaClO₄-NaCF₃COO system at –50 °C were tested after experiencing a cooling process from 25 °C to –150 °C. DSC tests were carried out in DSC200F3 with cooling and heating rates of 10 K min⁻¹ from 25 °C to –150 °C. The linear sweep voltammetry (LSV) is tested at scan rate of 10 mV s⁻¹ using BioLogic.

AIMD simulations. The AIMD simulations were carried out by using the Vienna ab initio simulation package (VASP)⁶. The projector augmented-wave (PAW) potentials⁷ generated with Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA)⁸were used. The van der Waals (vdW) interaction was taken into account by using the rev-vdWDF2 functional⁹. The plane wave cut-off energy was set to 400 eV and the Γ point was used for the Brillouin zone sampling. The AIMD simulations were performed in a canonical ensemble (NVT)^{10, 11} by using a Nose-Hoover thermostat at 300 K (H₂O, 7.18 m LiCl, 9.07 m NaClO₄, 3.85 m NaClO₄ + 5.92 m NaCF₃COO), with a time step of 1 fs. All the AIMD simulations were run for 60-100 ps to yield the data for analysis. The H₂O AIMD model contains 165 atoms (55 H₂O) within 11.8 Å x 11.8 Å x 11.8 Å cubic supercell. The 7.18 m LiC electrolyte AIMD model contains 181 atoms (8 LiCl and 55 H₂O) within 12.5 Å x 12.5 Å x 12.5 Å cubic supercell. The 9.07 m NaClO₄ electrolyte AIMD model contains 96 atoms (4 NaClO₄ and 24 H₂O) within 10.5 Å x 10.5 Å x 10.5 Å cubic supercell. The 3.85 m NaClO₄ + 5.92 m NaCF₃COO electrolyte AIMD model contains 117 atoms (2 NaClO₄, 3 NaCF₃COO, and 27 H₂O) within 11.5 Å x 11.5 Å x 11.5 Å cubic supercell. The initial structures of liquid electrolyte models were constructed using the Packmol software¹².

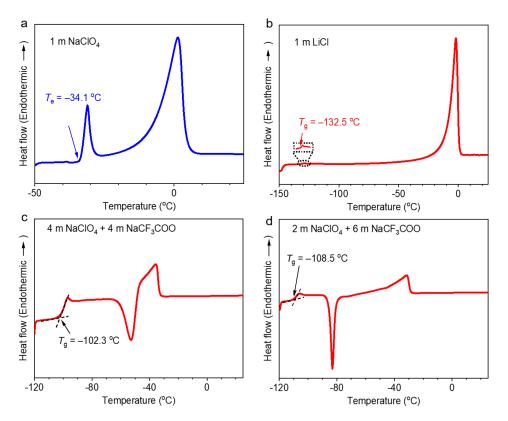


Fig. S1. Determine the liquid-to-solid low-temperature limits of H₂O-solute systems by DSC heating curves of dilute solutions. (a) The DSC heating curve of 1 m NaClO₄ electrolyte in H₂O-NaClO₄ system. The eutectic heat-flow peak on the DSC curve demonstrates that the thermodynamic liquid-to-solid low-temperature limit T_e of the H₂O-NaClO₄ system is -34.1 °C. T_e is usually determined by the onset temperature of T_e peak¹³. (b) The DSC heating curve of 1 m LiCl electrolyte in H₂O-LiCl system. The DSC curve shows the glass-transition step (see the enlarged picture in the dotted rectangle) rather than the eutectic heat-flow peak, demonstrating that the DSC test can only determine the kinetic liquid-to-solid low-temperature limit T_g (-132.5 °C) rather than the T_e value of H₂O-LiCl system. T_g is usually determined by the onset temperature of T_g peak¹⁴. (c-d) The DSC heating curves of 4 m NaClO₄ + 4 m NaCF₃COO (T_g = – 102.3 °C) (c) and 2 m NaClO₄ + 6 m NaCF₃COO (T_g = –108.5 °C) (d) electrolytes in H₂O-NaClO₄-NaCF₃COO system.

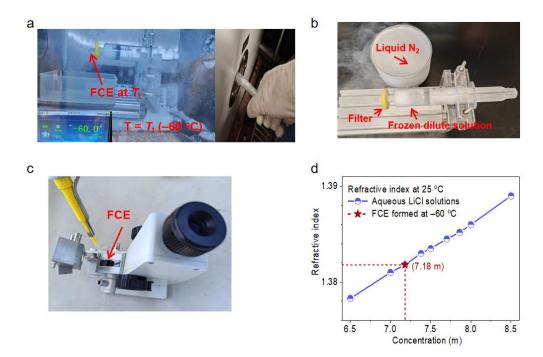


Fig. S2. The syringe-filtration method for the FCE approach. (a) keep the dilute solution in the chamber at T_t (e.g. -60 °C) to reach chemical equilibrium before filtering the FCE by manually squeezing the syringe. (b) Illustration of a dilute solution of H₂O-NaClO₄-NaCF₃COO system being frozen in liquid N₂. (c) Measure the refractive index of FCE with the Abbe refractometer. (d) Determine the concentration of FCE obtained at -60 °C by the refractive index method.

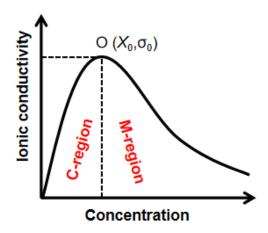


Fig. S3. Typical concentration-conductivity curve in an H₂O-solute system. The point O (X_0 , σ_0) is the maximum conductivity point. The concentration-conductivity curve can be divided into two regions^{15, 16}: concentration-controlled region (C-region) below concentration X_0 and mobility-controlled region (M-region) above concentration X_0 . The FCE obtained at ultralow T_t usually locate at the M-region and therefore has the lowest electrolyte concentration (therefore the lowest cost) and the highest ionic conductivity without being frozen at T_t .

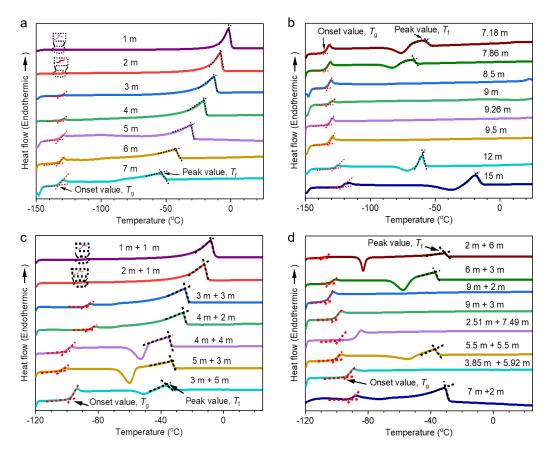


Fig. S4. The DSC heating curves of aqueous solutions in H₂O-LiCl and H₂O-NaClO₄-NaCF₃COO systems at heating rate of 10 K min⁻¹. a-b, 1 m to 15 m LiCl. c-d, Various electrolyte concentrations. The "1 m + 1 m" represents the "1 m NaClO₄ + 1 m NaCF₃COO". See all the T_g and T_f values in Tables S2 and S8.

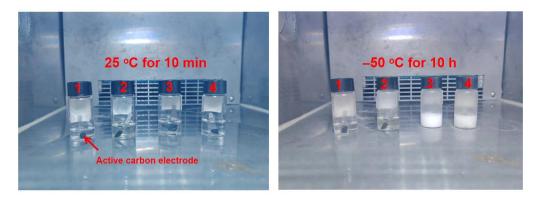


Fig. S5. The photographs of various electrolytes in H₂O-NaClO₄-NaCF₃COO system at 25 °C (10 min) and -50 °C (10 h). The active carbon electrodes are used to inhibit supercooling phenomenon and promote electrolyte crystallization. No. 1: 3.85 m NaClO₄ + 5.92 m NaCF₃COO, No. 2: 7.49 m NaClO₄ + 2.51 m NaCF₃COO, No. 3: 9 m NaClO₄ + 2 m NaCF₃COO, No. 4: 9 m NaClO₄ + 3 m NaCF₃COO.

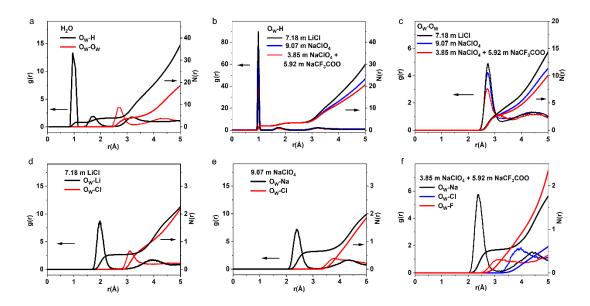


Fig. S6. The radial distribution function g(r) and coordination number N(r) for pure H₂O, 7.18 m LiCl, 9.07 m NaClO₄, 3.85 m NaClO₄ + 5.92 m NaCF₃COO AIMD models. (a) Ow-H and Ow-Ow in pure H₂O. (b) Ow-H in the designed FCEs. (c) Ow-Ow in the designed FCEs. (d) Ow-Li and Ow-Cl in 7.18 m LiCl. (e) Ow-Na and Ow-Cl in 9.07 m NaClO₄. (f) Ow-Na, Ow-Cl, and Ow-F in 3.85 m NaClO₄ + 5.92 m NaCF₃COO. Ow: oxygen atom in H₂O.

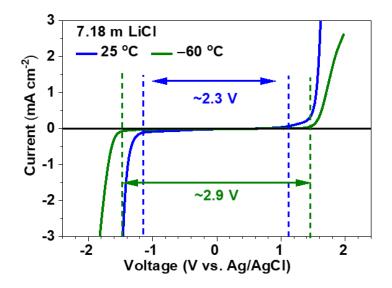


Fig. S7. The linear sweep voltammetry (Scan rate: 10 mV s⁻¹) of 7.18 m LiCl electrolyte at 25 °C and -60 °C.

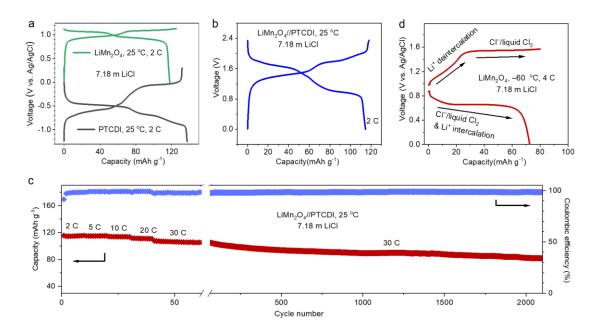


Fig. S8. Performances of Li-based electrodes and cells in 7.18 m LiCl electrolyte. (a-b), Typical charge-discharge curves of LiMn₂O₄ cathode (a), PTCDI anode (a), and LiMn₂O₄//PTCDI full cell (b) at 25 °C. (c) Rate capability and cycling stability of LiMn₂O₄//PTCDI full cell at 25 °C. (d) Typical charge-discharge curve of LiMn₂O₄ cathode at -60 °C. The reversible capacity at -60 °C is contributed by Li⁺- (de)intercalation mechanism and Cl⁻/liquid Cl₂ redox mechanism.

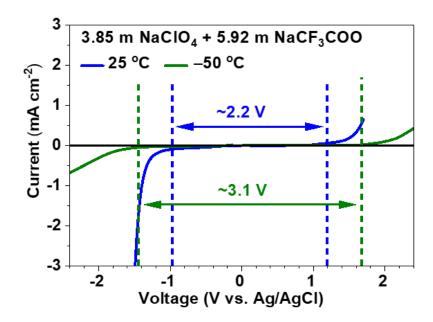
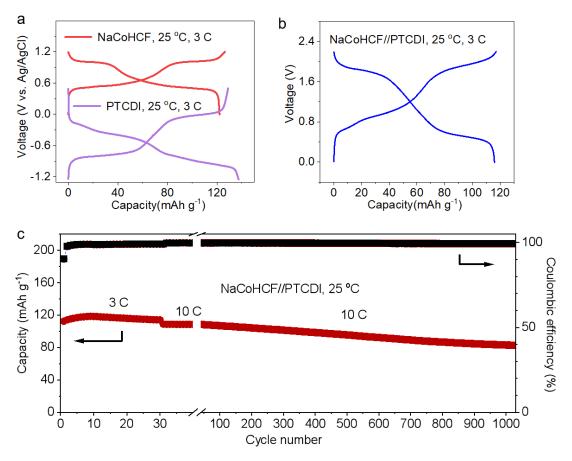
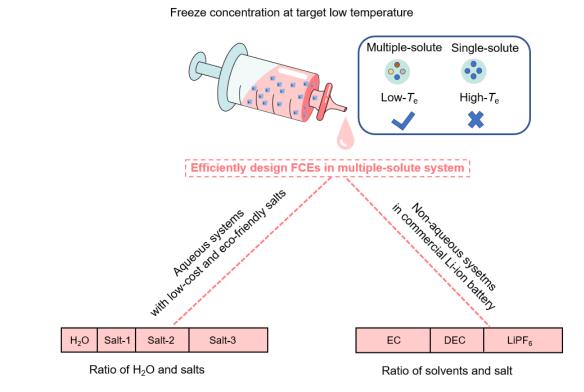




Fig. S9. The linear sweep voltammetry (Scan rate: 10 mV s⁻¹) of 3.85 m NaClO₄ + 5.92 m NaCF₃COO electrolyte at 25 °C and -50 °C.

Fig. S10. Performances of Na-based electrodes and cells in 3.85 m NaClO₄ + **5.92 m NaCF**₃**COO electrolyte. (a-b)** Typical charge-discharge curves of NaCoHCF cathode (a), PTCDI anode (a), and NaCoHCF//PTCDI full cell (b) at 25 °C. (c) Rate capability and cycling stability of NaCoHCF//PTCDI full cell at 25 °C.

Fig. S11. Future applications of the FCE approach in designing anti-freezing electrolytes. EC: ethylene carbonate. DEC: dimethyl carbonate.

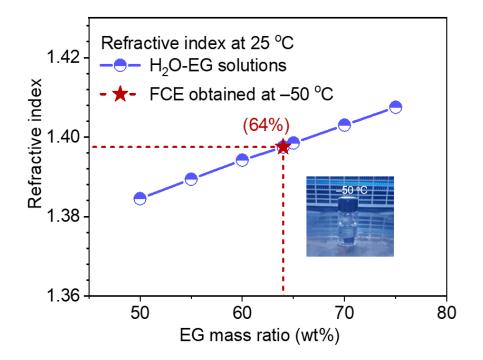


Fig. S12. Design anti-freezing electrolyte in H₂O-EG-NaClO₄ system using FCE approach when T_t is -50 °C. Here, we firstly determined the lowest EG amount (64 wt%) needed to keep unfrozen state in H₂O-EG system, and then prepared the H₃₆EG₆₄-0.5 m NaClO₄ electrolyte. The electrolyte can maintain unfrozen state at -50 °C, as shown in the inset photograph (The active carbon electrode is used to inhibit supercooling phenomenon and promote electrolyte crystallization).

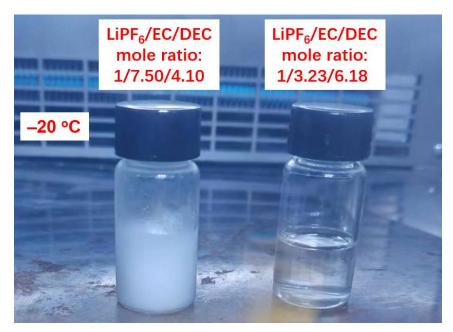


Fig. S13. The picture of dilute solution (left) and determined FCE (right) after keeping at -20 °C for 24 h (firstly being frozen in liquid N₂). The dilute solution is the typical commercial formula, 1M LiPF₆ in EC-DEC (1:1, vol) (mole ratio of LiPF₆/EC/DEC is 1/7.50/4.10). The FCE component mole ratio LiPF₆/EC/DEC is determined as 1/3.23/6.18 (Table S14, ESI[†]).

Symbols	Definition
$T_{ m f}$	Freezing point
Te	Eutectic temperature
T_{t}	The target low temperature
$T_{ m g}$	Glass-transition temperature
TD	Freezing point of dilute solution
Xe	Eutectic-point concentration
XD	Concentration of dilute solution
XF	Concentration of FCE
$X_{\text{salt-1}}, X_{\text{salt-2}},$	Concentration percentages of FCE concentration
and $X_{\rm H_2O}$	in ternary systems

Table S1. The definition of the symbols in the main text.

Table S2. The T_g and T_f values of aqueous solutions in H₂O-LiCl system based on the DSC data in Figs. S4a-b and the design efficiency in conventional approach. The "*" means that the T_f values of these electrolytes cannot be determined by DSC curves owing to the lack of melting peaks, but their T_f are lower than -60 °C according to the reported H₂O-LiCl phase diagram¹⁷.

	-		.	0 110 1	~ .
Preselected	$T_{ m g}$	$T_{ m f}$	Preselected	Qualifying	Design
concentration	determined	determined	numbers	numbers	efficiency
	by DSC	by DSC	numbers	numbers	efficiency
1 m	−132.5 °C	−1.5 °C			
2 m	−132.5 °C	−8.1 °C			
3 m	−132.5 °C	−12.8 °C			
5 111	-132.5 C	-12.0 C			
4 m	−132.5 °C	-20.4 °C			
5 m	−132.6 °C	−30.5 °C			
	122.4.00	42.5.00			
6 m	−132.4 °C	–42.5 °C			
7 m	−132.5 °C	−53.3 °C			
/ 111	132.5 0	55.5 C			
7.18 m	−135.3 °C	–56.8 °C	15	5	33.3%
7.86 m	−134.5 °C	–66.5 °C			
8.5 m*	−133.4 °C	\			
0.5 111	-155.4 C	١			
9 m*	−132.9 °C	\			
9.26 m*	−132.5 °C	\			
0.5 m*	122.1.90	١			
9.5 m*	−132.1 °C	١			
12 m	−128.5 °C	−58.9 °C			
15 m	−121.3 °C	−18.9 °C			

Preselected concentration	Refractive index of FCE at 25 °C	FCE concentration	Qualifying / Preselected numbers	Design efficiency
3 m	1.3818	7.18 m		
4 m	1.3818	7.18 m		
5 m	1.3818	7.18 m	4/4	100%
6 m	1.3818	7.18 m		

Table S3. The anti-freezing electrolyte design using FCE approach when T_t is set as -60 °C in H₂O-LiCl system and the design efficiency in FCE approach.

Concentration	Ionic conductivity at -60 °C (mS cm ⁻¹)
5 m	3.44
6 m	4.27
6.75 m	5.08
7.18 m	6.09
7.86 m	5.87
8.5 m	5.56
9.26 m	5.12
10 m	4.81

Table S4. The ionic conductivities of various aqueous LiCl electrolytes at -60 °C.

Table S5. The eutectic-point concentration X_e of H₂O-NaClO₄ system identified via FCE approach ($T_t = -34.1$ °C).

Preselected concentration	Refractive index of FCE at 25 °C	Xe
4 m	1.3745	9.07 m
5 m	1.3745	9.07 m
6 m	1.3745	9.07 m

Table S6. The eutectic-point concentration X_e for various H₂O-solute system determined by FCE approach. All the T_e values of H₂O-solute systems are determined by DSC tests.

System	Targeted temperature (<i>T</i> e)	Refractive index of FCE at 25 °C	Xe
H ₂ O-NaCF ₃ SO ₃	–20.5 °C	1.3470	4.54 m
H ₂ O-KCF ₃ SO ₃	–20.5 °C	1.3530	8.30 m
H ₂ O-LiBF ₄	–28.5 °C	1.3206	4.53 m
H ₂ O-KCl	−12.2 °C	1.3610	3.42 m
H ₂ O-LiTFSI	-42.5 °C	1.3584	5.41 m
H ₂ O-NaCl	–21.1 °C	1.3705	5.11 m

Table S7. The anti-freezing electrolyte design using FCE approach when T_t is set as -50 °C in H₂O-NaClO₄-NaCF₃COO system and the design efficiency in FCE approach.

Preselected concentration (NaClO ₄ + NaCF ₃ COO)	Refractive index of FCE at 25 °C	FCE concentration	Qualifying / Preselected numbers	Design efficiency
4 m +		3.85 m +		
4 m	1.3615	5.92 m	2/2	100%
2 m +		2. 51m +	2, 2	10070
6 m	1.3593	7.49 m		

Table S8. The T_g and T_f values of aqueous solutions in H₂O-NaClO₄-NaCF₃COO system based on the DSC data in Figs. S4c-d and the design efficiency in conventional approach. The "*" means that the T_f values of these electrolytes cannot be determined by DSC curves owing to the lack of melting peaks. According to our crystallization acceleration test in Fig. S5, the two electrolytes (9 m + 2 m, 9 m + 3 m) freeze at -50 °C, whereas another two electrolytes (3.85 m + 5.92 m, 2.51 m + 7.49 m) do not freeze at -50 °C.

Preselected concentration NaClO ₄ + NaCF ₃ COO	T _g determined by DSC	<i>T</i> f determined by DSC	Qualifying /Preselected numbers	Design efficiency
1 m + 1 m	–91.4 °C	−8.1 °C		
2 m + 1 m	−93.6 °C	−12.3 °C		
3 m + 3 m	-88.6 °C	–24.3 °C		
4 m + 2 m	-85.3 °C	–25.6 °C		
4 m + 4 m	–100.6 °C	−34.7 °C		
5 m + 3 m	-104.1 °C	−32.9 °C		
3 m + 5 m	–97.5 °C	−36.2 °C		
2 m + 6 m	–108.5 °C	-30.8 °C		
6 m + 3 m	-104.4 °C	−37.1 °C	2/15	13.3%
9 m + 2 m*	−106.2 °C	\		
9 m + 3 m*	−101.5 °C	\		
7 m + 2 m*	−99.1 °C	-30.8 °C		
5.5 m + 5.5 m	-101.4 °C	−36.9 °C		
3.85 m + 5.92 m*	−93.7 °C	\		
2.51 m + 7.49 m*	-88.2 °C	\		

Electrolytes	Ionic conductivity at 25 °C (mS cm ⁻¹)	Ionic conductivity at –50 °C
(NaClO ₄ + NaCF ₃ COO)		(mS cm ⁻¹)
3.85 m + 5.92 m	96.9	0.31
2.51 m + 7.49 m	86.7	0.24

Table S9. The ionic conductivities of FCEs ($T_t = -50$ °C) in H₂O-NaClO₄-NaCF₃COO systems.

T 1 / /	Coordination species and numbers (cutoff radius: 4 Å)						
Liquid structures	O _W -H	O _W -O _W	O _W -Li	O _W -Cl	O _w -Na	O _W -F	
H ₂ O	19.7	7.4	\	\	\	\	
7.18 m LiCl	15.9	6.6	1.16	1.07	\	\	
9.07 m NaClO ₄	13.1	5.3	\	0.88	0.58	\	
3.85 m NaClO ₄ + 5.92 m NaCF ₃ COO	12.0	4.7	\	0.19	0.73	0.91	

Table S10. The coordination species and numbers within cutoff radius of 4 Å based on AIMD results.

Systems	Electrolyte	Ionic Conductivity	OLTL, Energy density, lifespan
LiMn ₂ O ₄ //PTCDI	7.18 m LiCl	$6.09 \text{ mS cm}^{-1}, -$	−60 °C,
(This work)		60 °C	$80 \text{ Wh } \text{kg}^{-1}$,
			>2000 cycles
LiMn2O4//Mo6S8	5 m LiTFSI-CO ₂	$\sim 1.5 \text{ mS cm}^{-1}, -$	-40 °C,
(Literature) ¹⁸		40 °C	$\sim 80 \text{ Wh kg}^{-1}$,
			2000
			cycles
LiMn ₂ O ₄ //CuSe		5.00 mS cm^{-1} ,	−78 °C,
(Literature) ¹⁹	7.86 m LiCl	−78 °C,	$109 \text{ Wh } \text{kg}^{-1}$,
			100 cycles
LiMn2O4//LiTi5O12	H ₂ O-DOL-	$0.1 \text{ mS cm}^{-1}, -$	−50 °C,
(Literature) ²⁰	LiTFSI	50 °C,	/,
	(BSiS-DOL _{0.5})		100 cycles

Table S11. Compared Li-based FCE to reported electrolytes in terms of ionic conductivity, battery operating low-temperature limit (OLTL), energy density at 25 °C, and lifespan.

Table S12. Compared Na-based FCE to reported electrolytes in terms of other
cation, co-solvent, battery operating low-temperature limit (OLTL), energy
density at 25 °C, and lifespan.

Systems	Electrolyte	Other cation or Co-solvent	OLTL, Energy density, lifespan
NaCoHCF//PTCDI	3.85 m NaClO ₄	No	−50 °C,
(This work)	+ 5.92 m		$62 \text{ Wh kg}^{-1},$
	NaCF ₃ COO		>1000 cycles
Na3(VOPO4)2F//NaTi2(PO4)3	25 m NaFSI	No	−10 °C,
(Literature) ²¹	+		$64 \text{ Wh Kg}^{-1},$
	10 m NaFTFSI		500 cycles
NaCoHCF//AC	1 m NaClO ₄	Yes	−30 °C,
(Literature) ²²	+	(Ca^{2+})	28 Wh kg^{-1} ,
	3.86 m CaCl ₂		1000 cycles
AC//NaTi2(PO4)3	H2O0.7DMSO0.3-2	Yes	−50 °C,
(Literature) ²³	m NaClO ₄	(DMSO)	36 Wh kg^{-1} ,
			100 cycles

Table S13. The anti-freezing electrolyte design using FCE approach when T_t is set as -50 °C in H₂O-EG-NaClO₄ system.

Preselected concentration (mass ratio)	FCE concentration (mass ratio)	Prepared electrolyte concentration	
H ₂ O-EG	H ₂ O-EG	H ₃₆ EG ₆₄ -0.5 m NaClO ₄	
(60:40)	(36:64)		

Table S14. The anti-freezing electrolyte design using FCE approach when T_t is set as -20 °C in LiPF₆-EC-DEC system.

Preselected concentration	FCE concentration
(mole ratio)	(mole ratio)
LiPF ₆ -EC-DEC	LiPF ₆ -EC-DMC
(1:7.50:4.10)	(1:3.23:6.18)

References:

- 1. X. Wu, M. Sun, S. Guo, J. Qian, Y. Liu, Y. Cao, X. Ai and H. Yang, *ChemNanoMat.*, 2015, **1**, 188-193.
- 2. C.-Y. Tan and Y.-X. Huang, J. Chem. Eng. Data, 2015, 60, 2827-2833.
- 3. D. Butcher, *Instrum. Sci. Technol.*, 2010, **38**, 458-469.
- 4. R. Michalski, Crit. Rev. Anal. Chem., 2006, 36, 107-127.
- A. Buzid, J. Boertjes, E. S. Gilchrist, J. D. Glennon and J. H. T. Luong, *Anal. Methods*, 2023, 15, 3382-3392.
- 6. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169.
- 7. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
- 8. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- 9. M. Dion, H. Rydberg, E. Schroder, D. C. Langreth and B. I. Lundqvist, *Phys. Rev. Lett.*, 2004, **92**, 246401.
- 10. S. Nosé, J. Chem. Phys., 1984, 81, 511-519.
- 11. W. G. Hoover, *Phys. Rev. A*, 1985, **31**, 1695.
- 12. L. Martínez, R. Andrade, E. G. Birgin and J. M. Martínez, *J. Comput. Chem.*, 2009, **30**, 2157-2164.
- 13. M. Ding, K. Xu and T. Jow, J. Therm. Anal. Calorim., 2000, 62, 177-186.
- 14. Q. Wang, L. Zhao, C. Li and Z. Cao, *Sci. Rep.*, 2016, 6, 26831.
- L. Jiang, L. Liu, J. Yue, Q. Zhang, A. Zhou, O. Borodin, L. Suo, H. Li, L. Chen,
 K. Xu and Y. S. Hu, *Adv. Mater.*, 2020, **32**, 1904427.
- 16. V. V. Shcherbakov, Russ. J. Electrochem., 2009, 45, 1292-1295.
- C. Monnin, M. Dubois, N. Papaiconomou and J.-P. Simonin, J. Chem. Eng. Data, 2002, 47, 1331-1336.
- J. Yue, J. Zhang, Y. Tong, M. Chen, L. Liu, L. Jiang, T. Lv, Y. S. Hu, H. Li, X. Huang, L. Gu, G. Feng, K. Xu, L. Suo and L. Chen, *Nat. Chem.*, 2021, 13, 1061-1069.
- L. Tang, Y. Xu, W. Zhang, Y. Sui, A. Scida, S. R. Tachibana, M. Garaga, S. K. Sandstrom, N. C. Chiu, K. C. Stylianou, S. G. Greenbaum, P. A. Greaney, C. Fang and X. Ji, *Angew. Chem. Int. Ed.*, 2023, 62, e202307212.
- Z. Ma, J. Chen, J. Vatamanu, O. Borodin, D. Bedrov, X. Zhou, W. Zhang, W. Li,
 K. Xu and L. Xing, *Energy Storage Mater.*, 2022, 45, 903-910.
- 21. D. Reber, R.-S. Kühnel and C. Battaglia, ACS Mater. Lett., 2019, 1, 44-51.

- 22. K. Zhu, Z. Li, Z. Sun, P. Liu, T. Jin, X. Chen, H. Li, W. Lu and L. Jiao, *Small*, 2022, **18**, 2107662.
- 23. Q. Nian, J. Wang, S. Liu, T. Sun, S. Zheng, Y. Zhang, Z. Tao and J. Chen, *Angew. Chem. Int. Ed.*, 2019, **58**, 16994-16999.