Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Unraveling interfacial compatibility of ultrahigh nickel cathode and chloride

solid electrolyte for stable all-solid-state lithium battery

Feng Li¹, Ye-Chao Wu^{2, 3}, Xiao-Bin Cheng², Yihong Tan⁴, Jin-Da Luo², Ruijun Pan³, Tao Ma⁵, Lei-Lei Lu¹, Xiaolei Wen⁶, Zheng Liang⁴*, Hong-Bin Yao^{1, 2}*

¹Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China ²Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China ³Hefei Gotion High-tech Power Energy Co., Ltd. Hefei, Anhui 230012, China ⁴Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China ⁵Engineering Research Center of High-frequency Soft Magnetic Materials and Ceramic Powder Materials of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, Hefei, 238024, China ⁶Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui 230026, China

F.L., Y.-C.W., X.C., and Y.T. contributed equally to this work.

* Corresponding authors' email: yhb@ustc.edu.cn, liangzheng06@sjtu.edu.cn

Experimental Section

Synthesis of Li₂TaCl₇ SEs. The Li₂TaCl₇ were obtained by ball milling LiCl (anhydrous, Aladdin) and TaCl₅ (anhydrous, Aladdin). The ratio of LiCl and TaCl₅ powders was set as 2:1 and mixed and then loaded into tungsten carbide pots and ball-milled at 450 rpm for 180 h. The mass ratio of tungsten carbide ball mill beads to the precursors is 55:1. The obtained fine solid electrolyte powders were collected and stored in the glovebox for further application and characterization. All of the preparation processes were conducted in an argon-filled glove box with H₂O and O₂ concentrations less than 0.1 ppm.

Characterizations. The obtained solid electrolyte powders were cold-pressed into 10 mm diameter pellets by a hydraulic press (YLJ-15T-LD, Hefei Kejing Materials Technology Co., Ltd.) at 370 MPa for 3 minutes for alternating current (AC) impedance measurement. The ionic conductivity and activation energy were obtained by impedance in the temperature range from 25 to 60 °C with an applied frequency of 1 Hz to 7 MHz and a constant voltage of 20 mV using a Bio-Logic VMP3. Powder X-ray diffraction patterns were obtained by the Philips X'Pert PRO SUPER X-ray diffractometer using Cu K α radiation (λ =1.54178 Å). The exposed morphologies of ASSLB composite cathodes with different cycled states in depth were captured with the application of Ga⁺ with a 30 kV focused ion beam (FIB, ORION Nanofab, Zeiss). Prior to the measurement, the cathodes were dismantled from the ASSLBs and stuck on the sample tables carefully in an argon-filled glovebox with H₂O and O₂ concentrations less than 0.1 ppm.

Electrochemical measurements of ASSLBs. Single-crystal LiNi_{0.92}Co_{0.05}Mn_{0.03}O₂ (S-NCM92, provided by Hefei Gotion High-tech Power Energy Co., Ltd.) was firstly mixed with Li₂TaCl₇ and polytetrafluoroethylene (PTFE) (Guangdong Canrd New Energy Technology Co., Ltd.) with a mass ratio of 75:22:3 and then mixed by a miniature vibration mixer (MSK-SFM-12 M, Hefei Kejing Materials Technology Co., Ltd) for 60 min as cathode composite powders. 100 mg of Li₂TaCl₇ powder was first placed into a polyetheretherketone (PEEK) model (10 mm diameter) and pressed at 1.5 tons for 1 min to form a SE layer. The composite cathode powder with a range of areal capacity of 1-5 mAh cm⁻² was then spread over the surface of the Li₂TaCl₇ and pressed at 2.5 tons for another 3 min. 40 mg of Li₆PS₅Cl powder was dispersed evenly on the other surface of the Li₂TaCl₇ layer and then pressed at 3 tons for 3 min. Then, a piece of In foil (0.1 mm thickness, 10 mm diameter, 3A Materials) was attached to the surface of Li₆PS₅Cl. A Li foil (6 mm diameter, China Energy Lithium Co., Ltd.) with a weight ratio of Li: In=1:50 was subsequently attached to the In foil. Subsequently, the ASSLB was pressed at 1 ton for

another 1 min and then placed into a custom-made stainless-steel casing (Ningbo Zhengli New Energy Technology Co., Ltd.) with a constantly applied pressure of 100 MPa for 24 hours to form the Li-In alloy. The ASSLB was placed into a custom-made stainless-steel casing for galvanostatic cycling. Galvanostatic cycling (current density: 0.191, 1, and 3 mA cm⁻²) of the ASSLBs was conducted at 30 °C with a constantly applied pressure of 100 MPa. The voltage range of the cycling was 2.8-4.1 V, 2.8-4.3 V, 2.8-4.6 V, and 2.8-4.8 V versus Li⁺/Li using a LAND-CT2001A and Neware-CT-4008T battery cycler. For the aging of ASSLBs, galvanostatic charging was conducted at a current density of 0.191 mA cm⁻², followed by constant voltage charging and aging at the designated cut-off voltage for a specified duration. All of the preparation processes were conducted in an argon-filled glove box with H₂O and O₂ concentrations less than 0.1 ppm.

Time-of-flight secondary ion mass spectrometry (ToF-SIMS). For the time-of-flight secondary-ion mass spectrometry (ToF-SIMS) studies, ION-ToF-SIMS 5-100 was used with the pressure of the analysis chamber below 1.1×10^{-9} mbar. The imaging with delay extraction mode with pulsed 30 keV Bi³⁺ (0.48 pA pulsed current) ion beam and a cycle time of 100 µs was applied for analysis. To minimize the effect of mass interference, the spectrometry (bunched) mode was used for surface analysis to enable a high signal intensity and a high mass resolution. The analysis area was set to 100 × 100 µm² and rasterized with 128 × 128 pixels, and every patch was analyzed with 1 frame and 1 shot per pixel and frame. The primary ion current was ca. 0.48 pA, and the stop condition was set to a primary ion dose of 10^{12} ions cm². To quantitatively compare the specific signal intensity, we collected 10 mass spectra at different areas on each cathode.

Supplementary Figures

Fig. S1 Characterization of the Li₂TaCl₇. a, PXRD patterns of Li₂TaCl₇. The representative diffraction peaks patterns can be indexed with LiCl (ICSD no. 26909). **b**, SEM images for the surface of cold-pressed Li₂TaCl₇ pellet. **c**, Nyquist plots of the EIS measurement results of Li₂TaCl₇ with nonreversible electrodes in the temperature range from 25 to 60 °C. **d**, Arrhenius plot of ionic conductivities of the Li₂TaCl₇. The ionic conductivity of Li₂TaCl₇ at room temperature is around 7.07 mS/cm.

Fig. S2 Characterizations of the S-NMC92. a, PXRD pattern of S-NMC92 powders. **b**, SEM images of S-NMC92 powders.

Fig. S3 a-c, Representative corresponding normalized dQ/dV curves of ASSLBs cycled with cut-off charging voltages of 4.3, 4.6, and 4.8 V, respectively.

Fig. S4 Evolution of internal resistance of ASSLBs during the cycling process. a-c, Nyquist plots of the EIS measurement results of ASSLBs under pristine, 200th, and 400th cycle state.

Fig. S5 a-l, Nyquist plots of the EIS measurement results of ASSLBs during the aging process with a constant voltage of 4.3 V.

Fig. S6 a-l, Nyquist plots of the EIS measurement results of ASSLBs during the aging process with a constant voltage of 4.6 V.

Fig. S7 a-l, Nyquist plots of the EIS measurement results of ASSLBs during the aging process with a constant voltage of 4.8 V.

Fig. S8 a, The equivalent circuit employed to fit the Nyquist plots of the EIS results of ASSLBs. **b-d**, Representative fitted results of Nyquist plots of the EIS results of ASSLBs with the cut-off voltage of 4.3, 4.6, and 4.8 V.

Fig. S9 a-c, The fitted resistance values of ASSLBs with constant current charged to 4.3, 4.6, and 4.8 V. **d-f**, The fitted resistance values of ASSLBs with constant voltage charged to 4.3, 4.6, and 4.8 V.

Fig. S10 a-b, Schematic illustration of the fabricated ASSLBs and the Focused ion beam technique used to expose the inside cathode. c, SEM image of the exposed surface of the pristine cathode. d-f, SEM images of the exposed surface of the cathode cycled with the charging voltage of 4.3 V at the 50th, 200th, and 400th cycle. g-i, SEM images of the exposed surface of the cathode cycled with the charging voltage of 4.6 V at the 50th, 200th, and 400th cycle. j-l, SEM images of the exposed surface of the cathode cycled with the charging voltage of 4.8 V at the 50th, 200th, and 400th cycle. The physical contact loss was marked by yellow arrows. Scale bar: 1 µm.

Fig. S11 ToF-SIMS exemplary secondary ion images of negatively charged fragments of the composite cathodes with the OCV and aged state at 4.3, 4.6, and 4.8 V.

Fig. S12 ToF-SIMS mass spectra of negatively charged fragments. a-d, Evolution of the mass spectra of $TaCl_x^-(a)$, $TaClO^-(b)$, $TaO_x^-(c)$, and $ClO^-(d)$ fragments of the composite cathodes with the OCV and aged states at 4.3, 4.6, and 4.8 V, respectively.

Fig. S13 a-b, Boxplots of the normalized intensity of TaO_x^- (a) and ClO⁻ (b) fragments of the composite cathodes with the OCV and aged states at 4.3, 4.6, and 4.8 V, respectively.

Fig. S14 ToF-SIMS exemplary secondary ion images of negatively charged fragments of the composite cathodes with the pristine and cycled state at 4.3, 4.6, and 4.8 V.

Fig. S15 ToF-SIMS mass spectra of negatively charged fragments. a-d, Evolution of the mass spectra of $TaCl_x^-$ (a), $TaClO^-$ (b), TaO_x^- (c), and ClO^- (d) fragments of the composite cathodes with the pristine and cycled states at 4.3, 4.6, and 4.8 V, respectively.

Fig. S16 a-b, Boxplots of the normalized intensity of TaO_x^- (a) and ClO⁻ (b) fragments of the composite cathodes with the OCV and cycled states at 4.3, 4.6, and 4.8 V, respectively.

Fig. S17 Scheme diagram of the degradation pathways of Li₂TaCl₇-LiNi_{0.92}Co_{0.05}Mn_{0.03}O₂.

Note S1. When operated at low cut-off voltages, stable cycling can be achieved due to the good oxidation stability of Li₂TaCl₇ and reversible lithiation and de-lithiation processes of S-NCM92, particularly at cut-off voltages of 4.3 V and notably at 4.1 V. However, when operated at higher cut-off voltages of 4.6 and 4.8 V, oxidation reactions in Li₂TaCl₇ occur, leading to the decomposition of the amorphous matrix. This decomposition disrupts the Li-ions conduction network, significantly increasing the resistance of migration of Li-ions and polarization of ASSLBs. Meanwhile, the lattice oxygen liberated from the charged S-NCM92 predominantly interacts with the TaCl₆⁻ sublattice within Li₂TaCl₇, leading to the formation of Ta-Cl-O and Ta-O species. These reactions generate side-products that obstruct Li-ion migration, significantly increasing interface resistance and adversely affecting the ASSLBs' capacity and lifespan.

Fig. S18 a, Electrochemical curves of ASSLBs first charged to 4.1 V and then aged and held for 240 h.b-n, Nyquist plots of the EIS results of ASSLBs during the aging process with a constant voltage of 4.1 V.

Fig. S19 Interface stability of ASSLBs as a function of aging time with a charging voltage of 4.1 V revealed by in-situ EIS. Evolution of fitted electrolyte resistance, cathode-electrolyte interface resistance, and anode-electrolyte interface resistance plotted as a function of aging time.

Fig. S20 a-b, Comparison of electrochemical performance of top-notch chloride SE-based ASSLBs, including areal capacity (a) and lifespan (b).

Supplementary Tables

Table S1. Comparison of electrochemical performance, including discharge capacity and lifespan, of chlorides-based ASSLB with designed areal capacity over 3 mAh cm⁻² operated with different cut-off voltages, as exhibited in **Figure S20**.

Chlorides	Cathodes	Cut-off voltage (V)	Loading (g cm ⁻²)	Current (mA cm ⁻²)	Capacity (mAh g ⁻¹)	Cycles (no.)	Retention (%)	References
Li ₂ In _{0.33} Sc _{0.67} Cl ₄	LCO	4.5	52.46	1.2	80	500	100 (50 °C)	Nat. Energy 2022, 7(1): 83-93
	NCM85	4.3	21.59	0.49	172	80	108	
Li ₃ InCl ₆	NCM622	4.2	11.9	0.17	125	70	60	ACS Energy Lett. 2022, 7, 2979–2987
		4.3			130		35	
		4.4			160		46	
		4.5			175		34	
Li2TaCl7	NCM92	4.3	24.3	1	187.1	110	70	Our work
			25.2	3	144.1	220	72	
		4.1	23.6	1	150.2	200/300	91/80	
			22.2	3	112.1	600	82	