Eco-friendly volatile additive enabling efficient large-area organic photovoltaic module processed with non-halogenated solvent

Ziyan Jia, ‡^{a,b} Jiannan Pan, ‡^a Xu Chen, ^a Yaohui Li, ^a Tianyu Liu, ^a Hanbo Zhu, ^a Jizhong Yao, ^c Buyi Yan ^c and Yang (Michael) Yang *^{a,b}

a State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China

b Intelligent Optics & Photonics Research Center, Jiaxing Research Institute of Zhejiang University, Jiaxing, Zhejiang 314041, China

c Hangzhou Microquanta Semiconductor Co. LTD., Hangzhou, Zhejiang 310027, China

‡ These authors contributed equally: Ziyan Jia, Jiannan Pan.

E-mail: yangyang15@zju.edu.cn

Figure S1. The shape and appearance of MT.

Figure S2. The optimized geometry structures of a) PM6, b) BO-4Cl, and c) MT.

Figure S3. The non-covalent interaction (NCI) graphs by IGM approach for two types of combinations between BO-4Cl and MT from the front view (a, b), bottom view (c, d) and the back view (e, f), respectively.

Figure S4. The DSC thermogram of MT under N_2 at a scan rate of 5°C min⁻¹.

Figure S5. The UV-vis spectrum of MT film.

Figure S6. The average PCEs of the devices processed by diverse additives.

Figure S7. The images of the water and the diiodomethane droplet contact angles on the surfaces of PM6, PM6/MT, BO-4Cl, BO-4Cl/MT, and MT films.

Figure S8. The AFM images (2 $\mu m \times 2 \ \mu m)$ and R_q values of a) PM6, b) PM6/MT, c) BO-4Cl, and d) BO-4Cl/MT films.

Figure S9. The AFM images (2 μ m × 2 μ m) and R_q values of a) PM6:BO-4Cl and b) PM6:BO-4Cl/MT films without thermal annealing (TA).

Figure S10. Independent certification results of the large-area module (19.31 cm²) based on the PM6:BO-4Cl device from Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, confirming a high PCE of 14.95% (Certificate No. 23TR032901).

Figure S11. The shelf stability of the encapsulated large-area module processed with o-XY.

Figure S12. Statistics of the photovoltaic parameters from 12 large-area modules.

Table S1. The calculated results of the binding energy between BO-4Cl and MT.

Condition	E (Hartree)	E (kcal/mol)	
E _{BO-4Cl}	-7901.331	\	
E_{MT}	-467.481	\	
E _{type1}	-8368.840	\	
E _{type2}	-8368.842	\	
ΔE_{type1}	-0.028	-17.650	
ΔE_{type2}	-0.030	-18.788	

Condition	V _{OC} (V)	J _{SC} (mA cm ⁻²)	FF (%)	PCE _{max} (%)	PCE _{avg} ^a (%)
PM6:BO-4Cl	0.853	27.55	76.95	18.09	17.71 ± 0.28
PM6:BO-4Cl/DIO	0.835	28.06	78.62	18.42	17.98±0.29
PM6:BO-4Cl/MT-33	0.853	28.19	77.17	18.56	18.17±0.26
PM6:BO-4Cl/MT-67	0.853	28.35	77.76	18.81	18.52±0.19
PM6:BO-4Cl/MT-100	0.844	28.55	77.92	18.78	18.45±0.21

Table S2. Detailed photovoltaic parameters of devices under different conditions.

^a Average data were obtained from 16 independent devices.

Table S3. Summary of representative high-performance binary OPVs (PCE > 17%) based on PM6 processed by non-halogenated solvents.

Active layer	Solvent	V _{OC} (V)	J _{SC} (mA cm ⁻²)	FF (%)	PCE (%)	Ref.
PM6:L8-BO	o-XY	0.867	25.37	77.23	17.07	1
PM6:BTP-eC9	o-XY	0.84	26.8	76.3	17.2	2
PM6:BO-4Cl	Tol	0.854	26.1	77.7	17.33	3
PM6: BTP-eC9	o-XY:CS ₂	0.85	26.2	78.9	17.6	4
PM6:BO-4Cl	o-XY	0.84	26.7	79.0	17.7	5
PM6:Y6-BO	o-XY	0.832	27.3	78.4	17.8	6
PM6:BO-4Cl	o-XY	0.847	26.86	79.63	18.12	7
PM6:EV-i	o-XY	0.897	26.60	76.56	18.27	8
PM6:L8-Ph	o-XY	0.870	26.40	80.11	18.40	9
PM6:BTP-eC9	o-XY	0.847	27.22	80.31	18.52	7
PM6:BO-4Cl	o-XY	0.853	28.35	77.76	18.81	This Work

Table S4. The photovoltaic parameters calculated from $J_{\text{ph}}\text{-}V_{\text{eff}}$ curves.

Condition	J _{sat} (mA cm ⁻²)	J _{ph} ^a (mA cm ⁻²)	J _{ph} ^b (mA cm ⁻²)	P _{diss} (%)	P_{coll} (%)
PM6:BO-4Cl	27.94	27.26	25.01	97.57	89.51
PM6:BO-4Cl/MT	28.83	28.38	26.02	98.44	90.25

 $^a\,J_{ph}$ under short circuit conditions.

 $^{b}\,J_{ph}$ under maximal power output conditions.

Condition	$\mu_h (10^{-4} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1})$	$\mu_e (10^{-4} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1})$	μ_h/μ_e
PM6:BO-4Cl	5.19	13.30	0.39
PM6:BO-4Cl/MT	5.88	14.20	0.41

Table S5. The hole and electron mobilities of devices.

Table S6. The calculated surface tensions of the films based on the OWRK model.

Film	γ (mN m ⁻¹)
PM6	33.12
PM6/MT	29.86
BO-4Cl	38.35
BO-4Cl/MT	43.42
MT	45.85

Table S7. The interaction parameters of the films based on the Flory-Huggins model.

Film	χ
PM6:BO-4Cl	0.192
PM6:MT	1.033
BO-4Cl:MT	0.335
PM6:(BO-4Cl/MT)	0.696
BO-4Cl:(PM6/MT)	0.531

Table S8. Data for GIWAXS measurements.

Condition	Blend	Location (Å ⁻¹)	d-spacing (Å)	FWHM (Å ⁻¹)	CCL (Å)
Q _{xy}	PM6:BO-4Cl	0.272	23.100	0.148	38.209
(100)	PM6:BO-4Cl/MT	0.271	23.185	0.079	71.581
Qz	PM6:BO-4Cl	1.725	3.642	0.267	21.179
(010)	PM6:BO-4Cl/MT	1.732	3.628	0.224	25.245

Active layer ^a		Salvant	Voc	J _{SC}	FF	PCE _{max}	PCE _{avg} ^b
		Solvent	(V)	(mA cm ⁻²)	(%)	(%)	(%)
	PM6:L8-BO	o-XY	0.875	25.50	77.63	17.32	17.06±0.17
	PM6:L8-BO/MT	o-XY	0.875	26.23	78.52	18.02	17.68±0.21
	PM6:L8-BO	CF	0.901	24.65	73.15	16.25	16.01 ± 0.14
	PM6:L8-BO/MT	CF	0.899	25.29	74.81	17.01	16.69±0.19
	PM6:BO-4Cl	CF	0.868	26.37	74.36	17.02	16.65±0.24
	PM6:BO-4Cl/MT	CF	0.869	27.09	75.35	17.74	17.35±0.27
	D18:L8-BO	CF	0.917	25.13	74.47	17.16	16.87±0.15
	D18:L8-BO/MT	CF	0.919	25.36	75.97	17.71	17.38±0.22

Table S9. The universal study about MT in other binary systems.

^a PM6:L8-BO: 22 mg mL⁻¹ in o-XY, 17 mg mL⁻¹ in CF; PM6:BO-4Cl: 16 mg mL⁻¹ in CF; D18:L8-BO: 11 mg mL⁻¹

 1 in CF.

^b Average data were obtained from 16 independent devices.

Table S10. Summary of the photovoltaic parameters for recently reported large-area organic

 photovoltaic devices processed by non-halogenated solvents.

Active layer	Solvent	Area (cm ²)	PCE (%)	Ref.
PTQ10:PYF-T-o	o-XY	1	11.24	10
PBSF-D12:IT-4F	Tol	1	11.9	11
PM6:BTP-eC9	o-XY	1	15.5	12
PM6:PYTCl-A	Tol	1.21	14.7	13
PTB7-Th:PC71BM	2-mMA	16	7.5	14
PM6:PY-82:PY-DT	o-XY	16.5	13.84	15
PM6:DTY6	o-XY	18	14.4	16
PM6:BTP-eC9	o-XY	25	11.29	12
PM6:CH7	o-XY	25.2	14.42	17
PM6:Y6	o-XY	28.82	12.64	18
PBDB-T-2F(3/4):Y6-HU	THF	31.50	6.26	19
PM6:Y6-HU	o-XY	31.50	12.44	20
PV2300:PV-A3:PC ₆₁ BM	o-XY	32.6	10.3	21
PM6:Y6: BTO:PC71BM	p-XY	36	14.26	22
PTB7-Th:EH-IDTBR:T2-OEHRH	Tol	55.5	9.32	23
PF2:PC71BM	o-XY	66	6.1	24
PM6:L8-BO:BTP-S8:BTP-S2	Tol	72.25	12.78	25
PM6:BO-4Cl	o-XY	19.31	15.74	This Work

REFERENCES

Xue, J.; Zhao, H.; Lin, B.; Wang, Y.; Zhu, Q.; Lu, G.; Wu, B.; Bi, Z.; Zhou, X.; Zhao, C.; Lu,
 G.; Zhou, K.; Ma, W., Nonhalogenated Dual-Slot-Die Processing Enables High-Efficiency
 Organic Solar Cells. *Adv. Mater.* 2022, *34* (31), e2202659.

2. Li, H. J.; Liu, S. Q.; Wu, X. T.; Qi, Q. C.; Zhang, H. Y.; Meng, X. C.; Hu, X. T.; Ye, L.; Chen, Y. W., A general enlarging shear impulse approach to green printing large-area and efficient organic photovoltaics. *Energy Environ. Sci.* **2022**, *15* (5), 2130-2138.

3. Xu, X. P.; Yu, L. Y.; Yan, H.; Li, R. P.; Peng, Q., Highly efficient non-fullerene organic solar cells enabled by a delayed processing method using a non-halogenated solvent. *Energy Environ. Sci.* **2020**, *13* (11), 4381-4388.

4. Song, X.; Sun, P.; Sun, D.; Xu, Y.; Liu, Y.; Zhu, W., Investigation of tunable halogen-free solvent engineering on aggregation and miscibility towards high-performance organic solar cells. *Nano Energy* **2022**, *91*, 106678.

Wang, D.; Zhou, G. Q.; Li, Y. H.; Yan, K. R.; Zhan, L. L.; Zhu, H. M.; Lu, X. H.; Chen, H. Z.; Li, C. Z., High-Performance Organic Solar Cells from Non-Halogenated Solvents. *Adv. Funct. Mater.* 2022, *32* (4), 2107827.

6. Jing, J.; Dong, S.; Zhang, K.; Xie, B.; Zhang, J.; Song, Y.; Huang, F., In-situ self-organized anode interlayer enables organic solar cells with simultaneously simplified processing and greatly improved efficiency to 17.8%. *Nano Energy* **2022**, *93*, 106814.

Yang, C.; Jiang, M.; Wang, S.; Zhang, B.; Mao, P.; Woo, H. Y.; Zhang, F.; Wang, J. L.; An,
 Q., Hot-casting Strategy Empowers High-Boiling Solvent-Processed Organic Solar Cells with
 Over 18.5% Efficiency. *Adv. Mater.* 2023, e2305356.

Zhuo, H.; Li, X.; Zhang, J.; Qin, S.; Guo, J.; Zhou, R.; Jiang, X.; Wu, X.; Chen, Z.; Li, J.;
 Meng, L.; Li, Y., Giant Molecule Acceptor Enables Highly Efficient Organic Solar Cells
 Processed Using Non-halogenated Solvent. *Angew. Chem., Int. Ed.* 2023, *62* (26), e202303551.

Wu, X.; Jiang, X.; Li, X.; Zhang, J.; Ding, K.; Zhuo, H.; Guo, J.; Li, J.; Meng, L.; Ade, H.; Li,
 Y., Introducing a Phenyl End Group in the Inner Side Chains of A-DA'D-A Acceptors Enables
 High-Efficiency Organic Solar Cells Processed with Nonhalogenated Solvent. *Adv. Mater.* 2023, e2302946.

10. Shen, Y.-F.; Zhang, J.; Tian, C.; Qiu, D.; Wei, Z., Slot-die coated large-area flexible all-

polymer solar cells by non-halogenated solvent. Nano Res. 2023.

11. Wang, K.; Li, W.; Guo, X.; Zhu, Q.; Fan, Q.; Guo, Q.; Ma, W.; Zhang, M., Optimizing the Alkyl Side-Chain Design of a Wide Band-Gap Polymer Donor for Attaining Nonfullerene Organic Solar Cells with High Efficiency Using a Nonhalogenated Solvent. *Chem. Mater.* **2021**, *33* (15), 5981-5990.

12. Li, H. J.; Liu, S. Q.; Wu, X. T.; Qi, Q. C.; Zhang, H. Y.; Meng, X. C.; Hu, X. T.; Ye, L.; Chen, Y. W., A general enlarging shear impulse approach to green printing large-area and efficient organic photovoltaics. *Energy Environ. Sci.* **2022**, *15* (5), 2130-2138.

 Liu, J.; Deng, J.; Zhu, Y.; Geng, X.; Zhang, L.; Jeong, S. Y.; Zhou, D.; Woo, H. Y.; Chen, D.;
 Wu, F.; Chen, L., Regulation of Polymer Configurations Enables Green Solvent-Processed Large-Area Binary All-Polymer Solar Cells With Breakthrough Performance and High Efficiency Stretchability Factor. *Adv. Mater.* 2023, *35* (1), e2208008.

Zhang, K.; Chen, Z.; Armin, A.; Dong, S.; Xia, R.; Yip, H. L.; Shoaee, S.; Huang, F.; Cao, Y.,
 Efficient Large Area Organic Solar Cells Processed by Blade-Coating With Single-Component
 Green Solvent. *Sol. RRL* 2017, *2* (1), 1700169.

 Cai, Y.; Xie, C.; Li, Q.; Liu, C.; Gao, J.; Jee, M. H.; Qiao, J.; Li, Y.; Song, J.; Hao, X.; Woo,
 H. Y.; Tang, Z.; Zhou, Y.; Zhang, C.; Huang, H.; Sun, Y., Improved Molecular Ordering in a Ternary Blend Enables All-Polymer Solar Cells over 18% Efficiency. *Adv. Mater.* 2023, *35* (8), e2208165.

Dong, S.; Jia, T.; Zhang, K.; Jing, J.; Huang, F., Single-Component Non-halogen Solvent-Processed High-Performance Organic Solar Cell Module with Efficiency over 14%. *Joule* 2020, *4* (9), 2004-2016.

17. Zhang, S.; Chen, H.; Wang, P.; Li, S.; Li, Z.; Huang, Y.; Liu, J.; Yao, Z.; Li, C.; Wan, X.; Chen, Y., A Large Area Organic Solar Module with Non-Halogen Solvent Treatment, High Efficiency, and Decent Stability. *Sol. RRL* **2023**, *7* (7), 2300029.

18. Li, Y.; Wu, J.; Yi, X.; Liu, Z.; Liu, H.; Fu, Y.; Liu, J.; Xie, Z., Layer-by-layer blade-coated organic solar cells with non-halogenated solvents and non-halogenated additive via adjusting morphology and crystallization. *J. Mater. Chem. C* **2023**, *11* (39), 13263-13273.

19. Cho, H. W.; Jeong, S. Y.; Wu, Z.; Lim, H.; Park, W.-W.; Lee, W.; Suman Krishna, J. V.; Kwon, O.-H.; Kim, J. Y.; Woo, H. Y., A newly designed benzodithiophene building block: tuning

of the torsional barrier for non-halogenated and non-aromatic solvent-processible photovoltaic polymers. J. Mater. Chem. A 2023, 11 (13), 7053-7065.

20. Rasool, S.; Kim, J. W.; Cho, H. W.; Kim, Y. J.; Lee, D. C.; Park, C. B.; Lee, W.; Kwon, O. H.; Cho, S.; Kim, J. Y., Morphologically Controlled Efficient Air-Processed Organic Solar Cells from Halogen-Free Solvent System. *Adv. Energy Mater.* 2022, 13 (7), 2203452.

21. Liao, C.-Y.; Hsiao, Y.-T.; Tsai, K.-W.; Teng, N.-W.; Li, W.-L.; Wu, J.-L.; Kao, J.-C.; Lee, C.-C.; Yang, C.-M.; Tan, H.-S.; Chung, K.-H.; Chang, Y.-M., Photoactive Material for Highly Efficient and All Solution-Processed Organic Photovoltaic Modules: Study on the Efficiency, Stability, and Synthetic Complexity. *Sol. RRL* **2021**, 5 (3), 2000749.

22. Chen, H.; Zhang, R.; Chen, X.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W.; Xu, G.; Oh, J.; Kang, S.-H.; Chen, S.; Yang, C.; Brus, J.; Hou, J.; Gao, F.; Li, Y.; Li, Y., A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. *Nat. Energy* **2021**, *6* (11), 1045-1053.

23. Lee, T.; Oh, S.; Rasool, S.; Song, C. E.; Kim, D.; Lee, S. K.; Shin, W. S.; Lim, E., Non-halogenated solvent-processed ternary-blend solar cells via alkyl-side-chain engineering of a non-fullerene acceptor and their application in large-area devices. *J. Mater. Chem. A* **2020**, 8 (20), 10318-10330.

24. Ibraikulov, O. A.; Wang, J.; Kamatham, N.; Heinrich, B.; Méry, S.; Kohlstädt, M.; Würfel, U.; Ferry, S.; Leclerc, N.; Heiser, T.; Lévêque, P., ITO-Free Organic Photovoltaic Modules Based on Fluorinated Polymers Deposited from Non-Halogenated Solution: A Major Step Toward Large-Scale Module Production. *Sol. RRL* **2019**, 3 (12), 1900273.

25. Kong, X.; Zhan, L.; Li, S.; Yin, S.; Qiu, H.; Fu, Y.; Lu, X.; Chen, Z.; Zhu, H.; Fu, W.; Chen,
H., Spontaneous vertical phase distribution of multi-acceptors system enables high-efficiency organic photovoltaics in non-halogenated solvent and large-area module application. *Chem. Eng. J.*2023, 473, 145201.