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S1. PROMOD ERCOT Region Simulations

To generate the simulations for these scenarios, the generating resource
list in the existing ERCOT simulation-ready dataset for Hitachi Energy’s
PROMOD IV was modified using the May 2021 Power Forecast Capacity
Expansion from IHSMarkit using the processes and procedures detailed by
Brewer and Labarbara [76], particularly those described in Section 3.2 of the
procedures covering Uncertain Additions, with modification to adjust the
starting point to match that detailed for 2031 in the December 2021 ERCOT
Capacity, Demand, and Reserves Report [7]. Since the THS forecast does
not include unit-specific details and required capacity reductions in specific
generating types, a capacity retirement schedule was developed that retired
unit capacity pro rata based on a combination of age and period escalated
operating costs. While PROMOD utilizes a monthly basis differential model
for natural gas pricing, given the proximity to Henry Hub and concentration
of natural gas-fired resources near major Texas load centers, the net effect
resulted in an average annualized system-wide natural gas-fired generation
fuel price of $4.30-MMcf~! ($4.42-MMBtu~'). Additionally, the energy and
peak demand projections from the IHS forecast were disaggregated to the four
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load zones represented in PROMOD IV using weighted percentages based on
recent non-pandemic year operating data.

Upon implementation and execution, following these processes, initial
production cost runs indicated a 450 MW system imbalance resulting in
expected unserved energy in the Houston transmission zone. In order to
resolve this, both a transmission and generation solution were examined.
In the transmission solution, the Houston-South bi-directional interface was
increased by 500 MW. This interface was selected for modification over the
Houston-North interface because it is currently smaller and has equal flow
limits (4,880 MW forward/reverse), while the Houston-North interface is
rated predominantly for flow into the Houston zone (1,960 MW forward /
6,582 MW reverse). For the generation solution, a single NGCC deployment
added through the uncertain addition process was shifted to the Houston
zone from the North zone, resolving the Houston zone expected unserved
energy, while also leaving sufficient generating capacity in the North zone.
Upon testing, the generation solution resulted in lower system prices; those
prices were chosen for evaluation in this paper.

S2. Market-Optimization Formulation

The following formulation details the MINLP used to solve for optimal
annual profit. Table [51] defines all symbols used in the mathematical formu-
lation:
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Table S1: Mathematical symbols used in the optimiza-

tion formulation

] Symbol ‘ Definition
Sets
A Set of all operating modes
B Set of operating modes excluding
“off?
T Set of all time points
Gm Feasible region of power and Hy
production for mode m
Parameters
prmax Maximum power output of the
system in MW
Hmax Maximum Hs output of the sys-
tem in kg-s~!
Mg, Upper big-M for mode m at time
tin $-hr!
M}, Lower big-M for mode m at time
tin $-hr!
ov Start-up cost in $
64 Shut-down cost in $
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Definition

Td Minimum down time in hr
T Minimum up time in hr
find Carbon tax in $-tonne~!
¢ LMP at time ¢ in $-MWh™!
e Reference LMP in $-MWh™!
vt Natural gas price at time ¢ in
$-MMBtu~!
9 Reference natural gas price in
$-MMBtu!
mh H, selling price in $-kg~*
Variables
Pt Hs generation for mode m at time
tin kg-hr=!
Dt Power generation for mode m at
time ¢ in MW
Vg Binary, 1 if system starts up at
time ¢, 0 otherwise
wy Binary, 1 if system shuts down at
time ¢, 0 otherwise
Yt Binary, 1 if mode m is active at
time t, 0 otherwise
Yon,t Binary, 1 if any mode m € B is
active at time ¢, 0 otherwise
Functions
feabon(p i hymy) | Carbon output in tonne-hr=?
1A (R ) Electricity cost in $-hr™?

fﬁxed(PmaX, Hmax)
fnfgel (pm,t7 hm,t)

S (Pt hant)
fproﬁt

m,t

fit
i

Fixed cost in $-hr—!

Fuel cost in $-hr!

Variable cost in $-hr—!

Profit in $-hr=! for mode m at
time ¢

Relaxed profit in $-hr~! for mode
m at time ¢

The problem is indexed over two sets: ¢ € 7T, all time points in the
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simulation horizon, and m € A, a set of all possible operating modes. The
set A changes based on what operating modes are available for a specific
technology (see Figure[l]). The objective (equation[S1a)) is to maximize profit.
The first term, fﬁffjﬁt, represents the relaxed profit of each mode m at each
timestep ¢t. The second term represents start-up costs, 6%, and shut-down
costs, 09, at each timestep, which are only accrued at timestep ¢t when binary
variables v; and w; are active (or have a value of 1), respectively.

The big-M constraints in equations and imply two things: (1)
when mode m is active, the relaxed profit, fPfit_ for that mode is less than
or equal to the profit, fﬁfft’ﬁt, and less than or equal to My ,, and (2) when
mode m is not active, the relaxed profit must be less than or equal to zero
and less than or equal to f};ﬁﬁt — M}, , (which will always be less than zero).
Since profit is maximized in the objective function, the profit will always be
at the upper bound, so with these constraints, the relaxed profit, fPefit will
either be equivalent to the profit, fPf* when mode m is active and zero
when mode m is not active.

Equation describes the net revenue of the system, fP™fit. The first
two terms represent revenue from power and Hy sales, respectively. Then,
all the cost equations are subtracted from the revenue including fuel cost,
variable cost, carbon tax, fixed cost, and electricity cost (only included for
models that produce Hy using grid electricity). fearbon is calculated by the
fuel usage of the system. Assuming full conversion of the natural gas, and
taking the carbon capture percentage into account, the carbon emissions can
be calculated. Fuel usage surrogates are reported in Eslick et al. (2023) [49].
Surrogates that were fit with a reference selling price (fiue! and felec) are
corrected for the actual natural gas price and LMP using the actual value
divided by the reference value. Since the fixed costs of a given system are the
same for all modes, the fixed cost term is removed during numerical solution
of the optimization problem.

M}, , must be at most the minimum profit for a mode with a given LMP,
and M, , must be at least the maximum profit for a mode at a given LMP.
Since it is time-consuming to run the max/min profit optimization for every
LMP, we run a range of LMPs and interpolate to get the max/min profit
estimate for each time point. To calculate Mfm, we subtract 20% from the
minimum profit, and to calculate My, ;, we add 20% to the maximum profit.

Equation allows only one mode to be active at a time, and equation
gathers when any equipment is “on.”

Equation states that the startup variable, v, is one if the system went
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from being off at time ¢ — 1 to on at time ¢, and zero otherwise. Similarly,
states that shutdown variable, wy, is one if the system went from being
on at time ¢t — 1 to off at time ¢, and zero otherwise. Since there is a cost
associated with startup and shutdown (equation , startup and shutdown
of the system will only take place if the action results in higher profit margins.
Equations and enforce the minimum up time, 7%, and minimum down
time, 7%, constraints (more information available in [78]). Also, see SI Table
for start-up/shut-down costs and minimum up and down times.

In addition to the listed equations, constraints enforcing a ramping rate
for each system were included in the original formulation. However, all sys-
tems can ramp from the minimum to maximum output in significantly less
than an hour, so they were ultimately excluded when optimizing these sys-
tems. Ramping rates are also included in SI Table [S2] This assumption is
consistent with other analyses on solid oxide-based systems [46].
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S3. Market Optimization Solution Procedure

The market optimization problem was solved using a two-step procedure.
First, the problem was solved using Dicopt but formulated with bilinear
terms where the profit in the objective for each mode is multiplied by the
binary variable that represents whether the mode is active and the big-M
constraints are omitted. Dicopt will solve this problem using a non-linear
programming relaxation, and the result is feasible but not necessarily opti-
mal. The initialization problem solves quickly and reliably. The result of
the bilinear problem is used to initialize the problem as formulated with big-
M constraints in Section [52] to obtain the optimal solution. For both the
initialization and final problem, the default Dicopt settings were used.

Table lists each process concept’s minimum, average, and maximum
computation times in minutes. The problems were solved on an Apple M1
processor with 8 GB of RAM.

Table S3: Minimum, average, and maximum computa-
tional time across all cases for each system

Process Concept Minimum | Average | Maximum
Time Time Time
(min) (min) (min)
NGCC 0.32 0.78 2.14
SOFC 0.55 1.47 4.15
NGCC + SOEC 2.17 8.96 123.59
rSOC 0.82 3.61 22.95
SOFC + SOEC 2.65 12.42 97.88
SOEC 0.23 1.49 17.59

S4. LMP Statistics

Multimodal distributions have more than one local maxima rather than
one [79]. We utilize two different statistical metrics to determine whether our
selected signals are multimodal or unimodal. The first is the bimodality coef-
ficient, which is defined by an empirical relationship between multimodality
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and third-order (skewness - m3) and fourth-order (kurtosis - my) statistics
[80, 81]. The formula for the coefficient, BC is as follows [82]:

(S1)

Here, when BC > 0.555, a distribution can be considered bimodal or
multimodal, with a value of 1.0 obtained for a Bernoulli distribution. Values
BC < 0.555 can be considered unimodal or heavy-tailed of any modality
[82].

We also use Hartigan’s dip test to rule out unimodality. Here, the dip test
statistic is defined as the maximum difference between the empirical distri-
bution function and the unimodal distribution function that minimizes that
maximum difference [83]. The dip test statistic and p-value determine if this
difference is great enough to reject the null hypothesis (unimodality). The
dip test statistic measures deviation from unimodality, with a smaller value
indicating the distribution is close to unimodal and a larger value indicating
the distribution is far from unimodal. Literature suggests that both statistics
have strengths, but neither is specific or sensitive enough to reliably predict
multimodality [84]. In Figure[3] we identify 13 electricity price scenarios with
a bimodality coefficient greater than 0.555 and dip test statistic greater than
0.05 as biomodal or multimodal.

S5. Linear Regression

We performed multivariate linear regression on optimal annual profit re-
sults using economic conditions as features. We regress the coefficients of the
following equation:

y =p6"X (S1)

For a set of m dependent variables and n features, X is an n X m matrix
of features, 3 is a 1 xn vector of coefficients to be fit, and y is an m x 1 vector
of dependent variables. Here, our dependent variables are the optimal profits
for each case, and the features are natural gas price (in $-MMBtu™!); H, price
(in $-kg~1); mean LMP; minimum LMP; 25, 50" and 75" percentile LMP;
maximum LMP, standard deviation (in $-MWh™!); skewness of the LMP
signal; kurtosis of the LMP signal; the bimodality coefficient; and the dip
test statistic. We started by standardizing all features across the scenarios
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using the following equation:

vy o DT M (S2)
O

7

where z; represents the unstandardized feature, ji,, represents the mean value
of that feature across all the market scenarios, and o, represents the standard
deviation of the feature across all market scenarios. The case annual profits
are also standardized across all cases using the following equation:

y —
y Hy (S3)
Yy

where y is the case optimal profit, p, is the mean annual profit value
across every process concept and market scenario, and o, is the standard
deviation across every process concept and market scenario. See SI Table
[S4] for all means and standard deviations used to standardize features and
profit values. After standardizing, we use an ordinary least squares objective
to fit § values for each of the above features. We used the statsmodels
version 0.13.5 linear regression function to conduct the regression and obtain
the coefficients, intercepts, and R? values in Table [S5| (see Section .

Table S4: Means and Standard Deviations of Linear Re-
gression Features

] Feature ‘ Mean ‘ Standard Deviation ‘
Natural Gas Price ($/MMBtu) | 4.09 2.25
Carbon Tax ($/tonne) 35.33 56.02
Hydrogen Price ($/kg) 2.00 0.71
Mean LMD ($/MWh) 12.60 19.43
Minimum LMP (3/MWh) 756.40 101.09
25th Percentile (3/MWh) 24.09 16.20
Median LMP ($/MWh) 35.81 21.57
75th Percentile ($/MWh) 54.46 27.00
Meaximum LMP ($/MWh) 1546.74 1549.95
Standard Deviation ($/MWh) | 56.05 36.85
Skewness 10.71 10.95
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‘ Feature ‘ Mean ‘ Standard Deviation

Kurtosis 335.88 354.64
Bimodality Coefficient 0.62 0.23
Dip Test Statistic 0.03 0.04
Optimal Profit (M$) 29.98 76.69
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S6. Linear Regression: Correlation Matrix Analysis

Figure shows the correlations between the linear regression features.
The strongest feature correlation, 0.87, is between the LMP signal’s max-
imum value and standard deviation. As expected, there are also strong
positive correlations between the mean and percentile statistics for LMP:
0.85 between mean LMP and median LMP, 0.81 between mean and 75" per-
centile, and 0.71 between mean and 25" percentile. Moreover, mean LMP
and natural gas price have a positive correlation of 0.64, which is expected
because a significant fraction of the generators in each market relies on nat-
ural gas. The standard deviation of the signal is moderately correlated with
the bimodality coefficient (0.59) and moderately negatively correlated with
the dip test statistic (-0.22). This is expected as all three metrics point to
considerable variation in the signal. The dip test statistic is also negatively
correlated with natural gas price (-0.57) and 25" percentile LMP (-0.4), in-
dicating a market with higher gas prices and LMPs may be more likely to be
unimodal. Conversely, this suggests that lower natural gas prices result in
more volatile electricity pricing, possibly due to other less flexible resources
being dispatched first, such as coal. Carbon tax is positively correlated with
the dip test statistic (0.69), indicating signals with carbon taxes are less likely
to be unimodal. This also may be due to the LMP scenarios we utilized to
project the effect of carbon taxes, many of which included high renewables
penetration.

SI-13



Feature Correlation Matrix

Natural Gas Price ($/MMBtu)

Carbon Tax ($/tonne) -
Hydrogen Price ($/kg){ 00 -00
Mean LMP ($/MWh)
Minimum LMP ($/MWh) E
25th Percentile ($/MWh)
50th Percentile ($/MWh)
75th Percentile ($/MWh)
Maximum LMP ($/MWh)
Standard Deviation ($/MWh)

Skewness

Kurtosis{ 004 -045 00 -018 -021 006 -014 -0.42

Bimoda”ty Coefficient{-022 004 00 -0.09 036 027 003

Dip Test Statisticq-0s7 . 0.0 -0.08

-0.4  -0.06 -0.47 -0.22 -0.53 -0.45

D 0@ @ Q@@ QR @&
™ v .S,
F N ST TS S S S S
& & & \KQQ@ et o@Q\& (\@ o {_(Pe <2
G ST LE T e R
< () < () \ :
AR I G IIE S R s °@o"’4\ R
> 3 V&\o BN o ?}b &
™ Vo AN
é’b %\,’b

Figure S1: Correlation between features for linear regression
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S7. Marginal Cost Plots and Break Even Analysis

The following section of SI is a series of plots for the marginal cost of
power, Hy, or a combination of both in those systems that can produce
power and Hs. Also, break even plots for the systems at natural gas prices

of $4.42-MMBtu~! and $8.00-MMBtu~! are presented for each technology.

_Marginal Cost of Power

(OV)
N
(OV)

-MWh~1

32.1¢ ]

Marginal Cost $

31.9]

350 400 450 500 550 600 650
Net Power (MW)

Figure S2: Marginal cost of power for standalone NGCC.
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Marginal Cost of Power
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Figure S3: Marginal cost of power for standalone SOFC and rSOC in power only mode.
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Marginal Cost of H
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Figure S4: Marginal cost of hydrogen for standalone SOEC and rSOC in hydrogen only
mode. Marginal cost plotted at three different LMP values (as electricity needs to be
purchased from the grid to produce hydrogen for this process concept).
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Marginal Cost of Power $-MWh™1
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Figure S5: Marginal cost of power for the NGCC + SOEC. Contours correspond to the
marginal cost values. Grey outlined box represents the feasible coproduction range -
outside of this box, only one product can be produced at once (hydrogen or electricity).
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Figure S6: Marginal cost of hydrogen for the NGCC + SOEC. Contours correspond to
the marginal cost values. Grey outlined box represents the feasible coproduction range -
outside of this box, only one product can be produced at once (hydrogen or electricity).
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Figure S7: Marginal cost of power for the SOFC + SOEC. Contours correspond to the
marginal cost values. Grey outlined box represents the feasible coproduction range -
outside of this box, only one product can be produced at once (hydrogen or electricity).
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Marginal Cost of H, $-kg™?
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Figure S8: Marginal cost of hydrogen for the SOFC + SOEC. Contours correspond to
the marginal cost values. Grey outlined box represents the feasible coproduction range -
outside of this box, only one product can be produced at once (hydrogen or electricity).
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Figure S9: Break-even curves for system concepts based on electricity prices in $-MWh~!
and hydrogen prices in $-kg='. Natural gas price $4.42-MMBtu~'. Prices in 2018 dollars
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Table S6: R? Values for Surrogate Equations. No R?
value for fixed cost surrogates because they are developed
from system costs, not simulation.

System ‘ Value ‘ R’ ‘
Fixed Cost ( yf ) -
NGCC Fuel Cost (%) 1.0
Variable Cost ( r) 1.0
Fixed Cost (1;/[7) -
SOFC Fuel Cost (%) 1.0
Variable Cost ( ,,) 1.0
Fixed Cost (1;/17) -
Fuel Cost () 0.997
Variable Cost (%) 0.997
NGCC + SOEC 0.992
Feasible Operating Range gggg
Fixed Cost (M%) _
yr
Fuel Cost (%) 1.0
SOC (power only) i '
Variable Cost (3-) 1.0
(power only)
Fuel Cost (%)
(hydrogen only) o
. 3
Variable Cost (<) 1.0
(hydrogen only)
Electricity Cost (%) 1.0
(hydrogen only) '
Fixed Cost (l\y/[—f) -
Fuel Cost (%)
el Cost (1) 0.997
SOFC + SOEC Variable Cost ()
hr 0.988
(power + hydrogen)
3
Fuel Cost (%) 1.0
(power only)
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Table S6:

| System ‘ Value | R? |
Variable Cost (%) 10
(power only)
0.999
Feasible Operating Range 0.998
SOFC + SOEC -
Fixed Cost (l\;—f) -
SOEC Electricity Cost () 1.0
Variable Cost () 0.995

S8. Supplemental Optimization Results

In the main text, only an H, price of $2.00-kg™! is examined in Figure .
Therefore, all other Hy prices (1.00, 1.50, 2.50, and 3.00 $-kg™!) are shown
in this section. Also, a market summary with markets sorted in the same
fashion as these plots is shown. In this way, Figure can be used to
directly compare what market statistics lead to a given optimal solution.
Market data are also summarized in Table [STl
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Figure S11: Optimal results for (a) Annualized profit, (b) Annual Hy Capacity Factor,
and (¢) Annual Power Capacity Factor. Each market and technology are shown for an H2

price of $1.00-kg~!. Within each reference, markets are sorted by ascending profit for the

SOFC process concept.
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Figure S12: Optimal results for (a) Annualized profit, (b) Annual Hy Capacity Factor,
and (¢) Annual Power Capacity Factor. Each market and technology are shown for an H2

price of $1.50-kg~!. Within each reference, markets are sorted by ascending profit for the

SOFC process concept.
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Figure S13: Optimal results for (a) Annualized profit, (b) Annual Hy Capacity Factor,
and (¢) Annual Power Capacity Factor. Each market and technology are shown for an H2

price of $2.50-kg~!. Within each reference, markets are sorted by ascending profit for the

SOFC process concept.
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Figure S14: Optimal results for (a) Annualized profit, (b) Annual Hy Capacity Factor,
and (¢) Annual Power Capacity Factor. Each market and technology are shown for an H2

price of $3.00-kg~!. Within each reference, markets are sorted by ascending profit for the

SOFC process concept.
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Figure S15: Summary statistics of the LMP market signals for (a) LMP Distribution

¢) Multimodality Test Statistics. For

(

market signal modality, only those that have both statistics above the normalized threshold

and
are considered to be multimodal (indicated with markers). Markets are broken down by

Quartiles and Mean, (b) Natural Gas Price,

To compare with the above optimal operating solution plots, the SI version
of this figure has been sorted by ascending SOFC as to align the x-axes of Figures

through

reference.
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Figure S16: Sample histograms for each reference described in Section [3:4] Five markets
from each reference are shown with multimodal markets in orange and unimodal markets

in blue.
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Figure S17: Here, the difference in optimized annual profits for standalone NGCC (top)
and SOEC (bottom) process concepts when compared with the NGCC + SOEC integrated
process concept is shown at a Hy price of 2.00 $-kg~!. The height of the bars indicates how
many scenarios achieve a profit improvement through integration. Break even line is shown
for reference (solid black). Multimodal scenarios are labeled differently to demonstrate
that multimodal scenarios see large profit differences.
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S9. Process Alternatives Detailed Figures

The following section includes all integrated energy system alternatives
as full size figures.
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