Flowing liquid Phase Induces the Crystallization Processes of Cesium Lead

Triiodide for 21.85%-Efficiency Solar Cells and Low-Energy Loss

Fei Yang,^a Yuyao Ruan,^a Shuo Li,^a Xingpei Wei,^a Shuwan Zai,^a Fei Gao,^{a*} Shengzhong

(Frank) Liu,^{ab*} Wangen Zhao,^{a*}

a. Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China. Email: feigao@snnu.edu.cn; szliu@dicp.ac.cn; wgzhao@snnu.edu.cn

Prof. S. Liu

b. Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023,
Liaoning, China; Center of Materials Science and Optoelectronics Engineering,
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Email: szliu@dicp.ac.cn

Experimental procedures

Materials Section:

N, N -Dimethylformamide (DMF, 99.8%), Dimethyl sulfoxide (DMSO, \geq 99.9%), Chlorobenzene (CB), Li-bis-(trifluoromethanesulfonyl) imide (Li-TFSI), and 4-tertbutylpyridine (TBP, 96%) were purchased from Alfa Aesar. Ammonium formate (HCOOHNH₄, 99.0%) was purchased from Aladdin. Cesium iodide (CsI, 99.5%), lead iodide (PbI₂, 99.5%), Dimethylammonium iodine (DMAI), Spiro-OMeTAD (2, 2', 7, 7'-Tetrakis (N, N-di-p-methoxyphenylamine)-9, 9-spirobifluorene) were purchased from Advanced Election Technology Co.,Ltd. All the chemicals were used without further purification.

Functional Layer Preparation Section:

Preparation of Compact TiO₂ **layer:** TiO_2 is deposited on a glass (25 * 25 mm) substrate coated with fluorine-doped tin oxide (FTO) by chemical bath method. Clean the FTO substrate separately with acetone/ isopropanol /ethanol for 30 minutes. The TiO_2 layer was deposited on FTO glass by immersing itself in 200 mL aqueous solution

containing 4.5 mL TiCl₄ at 70 °C. After sedimentation, clean TiO₂ with ultrapure water and then soak it in ethanol, followed by drying with N_2 .

Preparation of Precursor Perovskite Solution: 0.6M CsI, 0.6M PbI₂, and 0.6M DMAI were dissolved in the mixture of DMSO and DMF (3:17, v/v). Then the mixture was stirred at 30 °C for more than 8 h to obtain a clear, light-yellow solution. The target CsPbI₃ perovskite solutions with additives were gained by adding HCOOHNH₄ (x=0, 3, 5, 8 mg) and then stirred at room temperature for 12 h. Finally, the solutions were filtering through a 0.46-µm pore PVDF (Polyvinylidene Fluoride) syringe filter before spin-coating.

Preparation of spiro-OMeTAD Solution: 90 mg Spiro-OMeTAD was dissolved in 1 mL chlorobenzene and mixed with 36 μ L t-BP and 22 μ L Li-TFSI (520 mg/ml in acetonitrile).

Device Assembly Section:

The prepared compact TiO₂ layer was annealed on a hot platform at 200 °C for 30 min and UV for 15 min, and the perovskite precursor solution with and without AFMS additive was spin-coated at 1000 rpm for 10 s and 3000 rpm for 30 s on the prepared compact TiO₂ substrate. Then the substrates were sequentially annealed at 200 °C for 10 min. After that, 40 μ L spiro-OMeTAD solution was spin-coated onto the perovskite films at 5000 rpm for 30 s. Finally, an ~ 80-nm thick Au was deposited on the top of the spiro-OMeTAD layer via thermal evaporation method. The active area of each device is 0.09 cm².

Characterization Section

XRD: XRD patterns of the samples were obtained by X-ray Diffraction (XRD; DX-2700) using Cu-K α radiation (λ =1.5416 Å).

Thermogravimetric analysis (TGA): The TGA were obtained on TA Discovery TGA 550, the temperature varied from 30 to 800 °C at a heating rate of 10 °C min⁻¹ in nitrogen atmosphere.

Optical microscope: The nucleation process of perovskite films was observed in situ on a hot table at 200 °C by optical microscope with a lens of 50 times.

SEM and AFM: The top-view and cross-sectional SEM images of the perovskite films were investigated using a HITACHI SU-8020 microscope. The AFM images were acquired using a Veeco Nano Scope IV with a silicon cantilever.

Water contact angles: The Water contact angles were measured using a Data Physics OCA 20.

Absorbance, PL and TR-PL: Absorbance spectra were collected using a Shimadzu UV-3600. The PL (excitation at 510 nm) and TR-PL spectra were measured using a PicoQuant FluoTime 300.

XPS and UPS: The XPS measurements were performed in a VG ESCALAB MK2 system with monochromatized Al K α radiation at a pressure of 5.0 * 10⁻⁷ Pa. The UPS measurements were carried out using a photoelectron spectrometer (Thermo Scientific, ESCA Lab 250Xi system) with helium gas admitted employing the He-I (21.22 eV) emission line.

NMR: The NMR date was carried using JNM-ECZ400S/L1 with a frequency of 400 MHz.

FTIR: The FTIR spectra were measured by FTIR (VERTEX70, Bruker, Germany).

J-V and EQE: The *J-V* characteristics of the PSCs were performed by using the solar simulator (SS-F5-3A, Enlitech) along with AM 1.5G spectra, which was calibrated by a NREL-traceable KG5-fltered silicon reference cell. All devices measured on a Keithley 2400 Source Meter under ambient conditions. The *J-V* reversed test was scanned from 2.5 to -0.1 V at a rate of 10 mV/s, and the forward test was scanned from -0.1 to 2.5 V at a rate of 10 mV/s. The EQE data were obtained by using the solar cell spectral-response measurement system (QE-R3011, Enlitech).

EIS and C-V: The EIS measurements were performed using a Zahner Zennium electrochemical workstation. The C-V measurements were performed using a Zahner Zennium electrochemical workstation.

Figure S1. Illustration of the preparation of perovskite films.

Figure S2. *In situ* microscopy images of the crystallization process of the perovskite system without and with AFMS.

Figure S3. The TGA and DSC curves for AFMS.

Figure S4. The solution of PbI_2 in NH_4COOH at 120 °C with time.

Figure S5. FTIR spectra of AFMS and AFMS with PbI₂.

Figure S6. XPS spectra of Pb 4f (a) and N 1s (b) for the $CsPbI_3$ and $AFMS-CsPbI_3$ film.

Figure S7. (a)Top view SEM images, (b) Grain size distribution, (c) AFM and Water contact angle image of CsPbI₃ films via different concentration of AFMS process.

Figure S8. (a). XRD spectra of perovskite films without and with treatment by different concentrations of AFMS (b). The variation of the (110) peak intensity of perovskite as a function of AFMS concentration.

Figure S9. UV-vis absorption spectra (a) and Tauc plots (b) of $CsPbI_3$ films via 5 mg/ml AFMS.

Figure S10. TRPL spectra of $CsPbI_3$ films via different AFMS concentration.

Figure S11. The full UPS spectra of the CsPbI₃ and AFMS-CsPbI₃ film.

Figure S12. Cross-sectional SEM images of the CsPbI₃ PSCs.

Figure S13. Statistical comparison of *J-V* parameters of CsPbI₃ perovskite solar cells prepared without or with AFMS process with different content.

Figure S14. Wavelength-dependent EQE spectra, and integrated current density.

Figure S15. Dark *J-V* curves of the CsPbI₃ and AFMS-CsPbI₃ perovskite solar cells.

Figure S16. Nyquist plots of the CsPbI₃ and AFMS-CsPbI₃ perovskite solar cells.

Figure S17. Stabilized photocurrent and SPO at the MPP voltage.

Sample	τ_{ave} (ns)	$\tau_1(ns)$	A ₁ (%)	$\tau_2(ns)$	A ₂ (%)
Pristine	17.45	53.59	22.71	6.839	77.28
5 mg/mL	54.12	104.38	47.75	8.182	52.25

Table S1. Parameters of the TRPL spectra for pristine and AFMS CsPbI₃ film.

Table S2. Parameters of the UPS spectra for pristine and AFMS CsPbI₃ film.

Sample	E _{cut-off} (eV)	E _{V-} E _F (eV)	E _F (eV)	E _V (eV)	E _C (eV)
Pristine	17.22	1.46	4.01	5.47	3.77
5 mg/mL	17.25	1.40	3.97	5.37	3.67

Table S3. Statistical average values of various parameters for 25 devices with and without added AFMS.

Average	$V_{oc}(V)$	J_{sc} (mA/cm ²)	FF (%)	PCE (%)
Pristine	1.15	20.44	79.27	18.77
AFMS	1.25	20.63	81.72	21.14

Table S4. EIS fitting parameters for the CsPbI₃ films with and without AFMS process.

Sample	$R_s(\Omega)$	$R_{tr}(\Omega)$	$C_{tr}(F)$	$R_{rec}(\Omega)$	$C_{rec}(F)$
Pristine	2.512	39.93	1.21×10-7	1061	2.23×10-7
5 mg/mL	1.833	113.9	1.35×10 ⁻⁷	3189	1.98×10 ⁻⁷

Configuration	Eg (eV)	PCE (%)	V _{oc} (V)	$\frac{J_{sc}}{(\text{mA/cm}^2)}$	FF (%)	Eloss (eV)	Ref.
FTO/TiO ₂ /CsPbI ₃ /Carbon	1.67	15.23	1.121	18.30	74.2	0.549	1
ITO/P3HT-N/ CsPbI ₃ /PCBM/C ₆₀ /BCP/Ag	1.68	18.93	1.176	20.10	80.04	0.504	2
FTO/c-TiO ₂ / CsPbI ₃ /spiro/Au	1.73	20.04	1.171	20.48	83.40	0.559	3
ITO/PTAA/ CsPbI ₃ /PCBM/BCP/Ag	1.745	15.00	1.09	17.33	79.41	0.655	4
FTO/TiO ₂ / CsPbI ₃ /spiro/Au	1.70	20.06	1.197	20.64	81.19	0.503	5
FTO/TiO ₂ / CsPbI _x Br _{3-x} /spiro/Au	1.72	20.06	1.192	20.32	82.8	0.528	6
FTO/TiO ₂ / CsPbI ₃ /spiro/Au	1.68	20.10	1.18	20.80	82.0	0.5	7
FTO/TiO ₂ / CsPbI ₃ /spiro/Au	1.68	20.1	1.18	20.4	83.5	0.5	8
FTO/TiO ₂ / CsPbI ₃ / Carbon	1.68	16.642	1.117	18.81	79.2	0.563	9
FTO/TiO ₂ / CsPbI _{2.80} Br _{0.2} /spiro/Au	1.73	20.8	1.21	20.64	83.2	0.52	10
FTO/TiO ₂ / CsPbI ₃ /Carbon	1.7	15.35	1.075	18.7	76.4	0.625	11
FTO/SnO ₂ /TBAAc/ CsPbI ₃ / Carbon	1.73	12.79	1.08	17.48	67.8	0.65	12
FTO/c-TiO ₂ / CsPbI ₃ /spiro/Au	1.72	20.01	1.17	20.6	83.0	0.55	13
FTO/c-TiO ₂ / CsPbI ₃ /spiro/Au	1.7	21.0	1.195	20.86	84.1	0.505	14
FTO/TiO ₂ / CsPbI ₃ /spiro/Au	1.7	19.18	1.118	20.77	82.58	0.582	15
ITO/TiO ₂ /CsPbI _{2.81} Br _{0.19} /spiro/Au	1.788	14.25	1.09	18.47	70.67	0.698	16
FTO/MX-TiO ₂ / CsPbI ₂ Br/carbon	1.90	11.223	1.313	11.818	72.32	0.587	17
FTO/TiO ₂ /CsPbI _{2.85} Br _{0.15} /TFA/spiro/Au	1.742	21.35	1.239	20.74	83.07	0.503	18
FTO/TiO ₂ / CsPbI ₃ /quasi-2D/2D/spiro /Au	1.71	19.06	1.13	20.28	82.65	0.58	19
FTO/TiO ₂ / CsPbI ₃ -AC/spiro/Au	1.672	19.04	1.13	20.69	80.79	0.542	20
FTO/TiO ₂ / CsPbI ₃ /spiro/Au	1.73	20.26	1.22	20.51	81.0	0.51	21

Table S5. Summaries of V_{oc} deficits of CsPbX₃: perovskite solar cells fabricated with different configuration and defect passivation method in recent years.

FTO/TiO ₂ / CsPbI ₃ /spiro/Au	1.73	21.85	1.26	20.84	82.82	0.47	Our work
FTO/ TiO ₂ / CsPbI ₃ /spiro- OMeTAD/MoO ₃ /Ag	1.73	17.47	1.06	20.01	82.2	0.67	25
ITO/SnO ₂ /CsPbI ₃ /MD/MoO _x /Ag	1.73	10.33	1.12	14.97	61.30	0.61	24
FTO/TiO ₂ /PFPA/CsPbI ₂ Br / Carbon	1.92	14.15	1.21	14.80	79.07	0.71	23
FTO/TiO ₂ / BTABr-CsPbI ₃ /spiro/Au	1.725	21.31	1.20	20.81	85.4	0.525	22

Configuration	PCE(%)	$V_{\rm OC}({ m V})$	$J_{\rm SC}$ (mA/cm ²)	FF(%)	Year ^{Ref.}
FTO/ TiO ₂ /MAPyA-CsPbI ₃ /Spiro/Au	16.67	1.074	20.08	77.32	2020 ²⁶
FTO/ TiO ₂ / CsPbI ₃ / PTAA/Au	16.52	1.10	19.53	77.0	2020 ²⁷
FTO/ SnO ₂ / CsPbI ₃ -Zn(C ₆ F ₅) ₂ / Spiro/Ag	19.00	1.12	20.67	81.98	2020 ²⁸
FTO/ TiO ₂ / CsPbI ₃ / Spiro/Au	16.04	1.09	18.29	80.50	202029
FTO/ c-TiO ₂ / CsPbI ₃ / Spiro/MoO ₃ /Au	18.27	1.121	20.25	80.5	2020 ³⁰
FTO/ TiO ₂ / CsPbI ₃ / PTAA/Au	18.02	1.125	20.30	78.9	202031
FTO/ TiO ₂ / CsPbI ₃ / PTAA/Au	17.30	1.098	21.15	76.96	2020 ³²
FTO/c-TiO ₂ / CsPbI ₃ /spiro/Au	20.04	1.171	20.48	83.40	2021 ³
FTO/ TiO ₂ / CsPbI ₃ / Spiro/Au	19.83	1.20	20.20	81.74	202133
FTO/ c-TiO ₂ / CsPbI ₃ / Spiro/Au	20.37	1.198	20.59	82.5	202134
FTO/ c-TiO ₂ / CsPbI ₃ / Spiro/Au	20.04	1.171	20.52	83.4	202135
FTO/ TiO ₂ / CsPbI ₃ / Spiro/Au	20.08	1.148	20.76	84.3	2021 ³⁶
FTO/ TiO ₂ / CsPbI ₃ / Spiro/Au	18.40	1.10	20.9	80.2	202137
FTO/ TiO ₂ / CsPbI _{3-x} Br _x / MOPEABr/Spiro/Au	20.31	1.226	20.12	82.35	202138
FTO/ c-TiO ₂ / PCBA/CsPbI ₃ / Spiro/Au	18.71	1.10	20.60	83.0	2021 ³⁹
FTO/TiO ₂ / CsPbI ₃ /spiro/Au	20.06	1.197	20.64	81.19	20225
FTO/TiO ₂ / CsPbI _x Br _{3-x} /spiro/Au	20.06	1.192	20.32	82.8	20226
FTO/TiO ₂ / CsPbI ₃ /spiro/Au	20.10	1.18	20.80	82.0	20227
FTO/ TiO ₂ / CsPbI ₃ / Spiro/Au	20.06	1.197	20.64	81.19	2022 ⁴⁰
FTO/ c-TiO ₂ / CsPbI ₃ / Spiro/Au	21.14	1.25	20.76	81.6	2022 ⁴¹
FTO/ c-TiO ₂ / PCBA/Cs(Pb,Ge)I ₃ / Spiro/Au	19.52	1.165	20.33	82.4	2022 ⁴²
FTO/ TiO ₂ / PSM-CsPbI ₃ / Spiro/Au	20.50	1.20	20.58	82.87	202243
FTO/ SnO ₂ / CsPbI ₃ / Spiro/Ag	20.1	1.18	20.4	83.5	202244
FTO/ c-TiO ₂ / CsPbI ₃ / Spiro/Au	20.01	1.17	20.60	83.0	2022 ⁴⁵

Table S6. Summary of some key photovoltaic parameters of the PSCs with highefficiency in recent years.

19.18	1.118	20.77	82.58	2022 ¹⁵
19.06	1.13	20.28	82.65	202319
20.26	1.22	20.51	81.0	2023 ²¹
21.31	1.20	20.81	85.4	2023 ²²
20.95	1.23	20.65	82.44	2023 ⁴⁶
20.72	1.221	20.49	82.8	202347
21.35	1.239	20.74	83.07	202318
21.02	1.27	19.40	85.31	202348
20.69	1.13	19.04	80.79	2024 ²⁰
21.86	1.26	20.71	83.80	202449
21.85	1.26	20.84	82.82	Our work
	 19.18 19.06 20.26 21.31 20.95 20.72 21.35 21.02 20.69 21.86 21.85 	19.181.11819.061.1320.261.2221.311.2020.951.2320.721.22121.351.23921.021.2720.691.1321.861.2621.851.26	19.181.11820.7719.061.1320.2820.261.2220.5121.311.2020.8120.951.2320.6520.721.22120.4921.351.23920.7421.021.2719.4020.691.1319.0421.861.2620.7121.851.2620.84	19.181.11820.7782.5819.061.1320.2882.6520.261.2220.5181.021.311.2020.8185.420.951.2320.6582.4420.721.22120.4982.821.351.23920.7483.0721.021.2719.4085.3120.691.1319.0480.7921.861.2620.7183.80 21.851.2620.8482.82

References:

- H. Wang, H. Liu, Z. Dong, T. Song, W. Li, L. Zhu, Y. Bai and H. Chen, *Nano Energy*, 2021, **89**, 106411.
- S. Fu, W. Zhang, X. Li, J. Guan, W. Song and J. Fang, ACS Energy Lett., 2021, 6, 3661-3668.
- 3. X. Wang, Y. Wang, Y. Chen, X. Liu and Y. Zhao, Adv. Mater., 2021, 33, 2103688.
- Z. Zhang, R. Ji, M. Kroll, Y. J. Hofstetter, X. Jia, D. Becker-Koch, F. Paulus, M. Löffler, F. Nehm, K. Leo and Y. Vaynzof, *Adv. Energy Mater.*, 2021, 11, 2100299.
- G. Yu, K. J. Jiang, W. M. Gu, Y. Li, Y. Lin, Y. Xu, X. Jiao, T. Xue, Y. Zhang and Y. Song, *Angew. Chem. Int. Ed.*, 2022, 61, e202203778
- Q. Zhou, J. Qiu, Y. Wang, S. Li, M. Yu, J. Liu and X. Zhang, *Chem. Eng. J.*, 2022, 440, 135974.
- T. Liu, X. Zhao, X. Zhong, Q. C. Burlingame, A. Kahn and Y.-L. Loo, *ACS Energy Lett.*, 2022, 7, 3531-3538.
- J. Yuan, D. Zhang, B. Deng, J. Du, W. C. H. Choy and J. Tian, *Adv. Funct. Mater.*, 2022, 32, 2209070.
- X. Tan, S. Wang, Q. Zhang, H. Wang, H. Liu, W. Li, L. Zhu, T. Song, Z. Cui, Y. Bai and H. Chen, J. Mater. Chem. A, 2023, 11, 1920-1926.
- 10. T. Xu, W. Xiang, D. J. Kubicki, Y. Liu, W. Tress and S. Liu, Adv. Sci., 2022, 9, 2204486.
- K. L. Wang, Z. H. Su, Y. H. Lou, Q. Lv, J. Chen, Y. R. Shi, C. H. Chen, Y. H. Zhou, X. Y. Gao, Z. K. Wang and L. S. Liao, *Adv. Energy Mater.*, 2022, **12**, 2201274.
- H. Zhong, W. Li, Y. Huang, D. Cao, C. Zhang, H. Bao, Z. Guo, L. Wan, X. Zhang, X. Zhang, Y. Li, X. Ren, X. Wang, D. Eder, K. Wang, S. F. Liu and S. Wang, *ACS Appl. Mater. Interfaces*, 2022, 14, 5183-5193.
- Y. Du, Q. Tian, X. Chang, J. Fang, X. Gu, X. He, X. Ren, K. Zhao and S. Liu, *Adv. Mater.*, 2022, 34, 2211.
- 14. S. Tan, B. Yu, Y. Cui, F. Meng, C. Huang, Y. Li, Z. Chen, H. Wu, J. Shi, Y. Luo, D. Li and Q. Meng, *Angew. Chem. Int. Ed.*, 2022, **61**, e202201300.
- 15. Y. Liu, F. Li, J. Gong and M. Liu, ACS Energy Lett., 2022, 7, 3227-3234.
- 16. H. Liu, H. Han, J. Xu, X. Pan, K. Zhao, S. Liu and J. Yao, Adv. Mater., 2023, 35, 2300302.
- 17. Y. Xu, F. Liu, R. Li, Y. Jing, Q. Chen, X. Chen, C. Deng, Z. Du, W. Sun, J. Wu and Z. Lan, *Chem. Eng. J.*, 2023, **461**, 141895.
- 18. H. Zhang, W. Xiang, X. Zuo, X. Gu, S. Zhang, Y. Du, Z. Wang, Y. Liu, H. Wu, P. Wang, Q. Cui, H. Su, Q. Tian and S. Liu, *Angew. Chem. Int. Ed.*, 2022, **62**, e202216634.
- H. Han, J. Xu, H. Liu, Y. Fu, C. Zhao, R. Shi, H. Zhang and J. Yao, *ACS Energy Lett.*, 2023, 8, 4608-4616.

- 20. Y. Fu, H. Han, H. Liu, J. Xu, Y. Liu, R. Shi and J. Yao, J. Mater. Chem. A, 2024, 12, 2877-2886.
- 21. J. Huang, H. Wang, C. Chen, Y. Tang, H. Yang, S. Liu and D. Zhang, *Chem. Eng. J.*, 2023, **466**, 143120.
- 22. S. Tan, C. Tan, Y. Cui, B. Yu, Y. Li, H. Wu, J. Shi, Y. Luo, D. Li and Q. Meng, *Adv. Mater.*, 2023, **35**, 2301879.
- 23. X. Huo, Y. Jiang, J. Lv, W. Sun, W. Liu, R. Yin, Y. Gao, K. Wang, T. You and P. Yin, *Chem. Eng. J.*, 2024, **484**, 149626.
- 24. C. Duan, F. Zou, S. Li, Q. Zhu, J. Li, H. Chen, Z. Zhang, C. Chen, H. Guo, J. Qiu, K. Wang, Y. Dong, Y. Qiu, L. Ding, X. Lu, H. Luo and K. Yan, *Adv. Energy Mater.*, 2024, 14, 202303997.
- 25. D. Rui, J. Fu, Q. Chen, J. Cao, W. Wu, L. Chen, J. Zhang, Z. Zhang, Y. Zhou and B. Song, J. Mater. Chem. A, 2024, 12, 7847-7855.
- 26. S. Fu, L. Wan, W. Zhang, X. Li, W. Song and J. Fang, ACS Energy Lett., 2020, 5, 3314-3321.
- 27. Z. Yao, W. G. Zhao, S. J. Chen, Z. W. Jin and S. Z. R. Liu, ACS Appl. Energy Mater., 2020, 3, 5190-5197.
- 28. X. Chang, J. Fang, Y. Fan, T. Luo, H. Su, Y. Zhang, J. Lu, L. Tsetseris, T. D. Anthopoulos, S. F. Liu and K. Zhao, *Adv. Mater.*, 2020, **32**, 2001243.
- 29. C. Liu, Y. Yang, X. Xia, Y. Ding, Z. Arain, S. An, X. Liu, R. C. Cristina, S. Dai and M. K. Nazeeruddin, *Adv. Energy Mater.*, 2020, **10**, 1903751.
- 30. Y. Wang, G. Chen, D. Ouyang, X. He, C. Li, R. Ma, W. J. Yin and W. C. H. Choy, *Adv. Mater.*, 2020, **32**, 2000186.
- C. J. Yan, Z. Z. Li, Y. Sun, J. Zhao, X. C. Huang, J. L. Yang, Z. P. Ci, L. M. Ding and Z. W. Jin, *J. Mater. Chem. A*, 2020, 8, 10346-10353.
- 32. H. Bian, H. Wang, Z. Li, F. Zhou, Y. Xu, H. Zhang, Q. Wang, L. Ding, S. F. Liu and Z. Jin, *Adv. Sci.*, 2020, 7, 1902868.
- 33. J. Zhang, Y. Fang, W. Zhao, R. Han, J. Wen and S. F. Liu, *Adv. Mater.*, 2021, 33, 2103770.
- 34. S. M. Yoon, H. Min, J. B. Kim, G. Kim, K. S. Lee and S. I. Seok, Joule, 2021, 5, 183-196.
- 35. X. Wang, Y. Wang, Y. Chen, X. Liu and Y. Zhao, Adv. Mater., 2021, 33, 2103688.
- 36. B. Yu, J. Shi, S. Tan, Y. Cui, W. Zhao, H. Wu, Y. Luo, D. Li and Q. Meng, Angew. Chem. Int. Ed., 2021, 60, 13436-13443.
- 37. K. Choi, D. H. Lee, W. Jung, S. Kim, S. H. Kim, D. Lee, S. Song and T. Park, Adv. Funct. Mater., 2021, 32, 2112027.
- 38. S. Zhang, L. Zhang, Q. Tian, X. Gu, Y. Du, K. Zhao and S. Liu, *Adv. Energy Mater.*, 2021, 12, 2103007.

- 39. S. Tan, J. Shi, B. Yu, W. Zhao, Y. Li, Y. Li, H. Wu, Y. Luo, D. Li and Q. Meng, Adv. Funct. Mater., 2021, 31, 2010813.
- 40. G. Yu, K. J. Jiang, W. M. Gu, Y. Li, Y. Lin, Y. Xu, X. Jiao, T. Xue, Y. Zhang and Y. Song, *Angew. Chem. Int. Ed.*, 2022, **61**, e202203778.
- 41. Y. Cui, J. Shi, F. Meng, B. Yu, S. Tan, S. He, C. Tan, Y. Li, H. Wu, Y. Luo, D. Li and Q. Meng, *Adv. Mater.*, 2022, **34**, 2205028.
- 42. F. Meng, B. Yu, Q. Zhang, Y. Cui, S. Tan, J. Shi, L. Gu, D. Li, Q. Meng and C. Nan, *Adv. Energy Mater.*, 2022, **12**, 2103690.
- J. Zhang, B. Che, W. Zhao, Y. Fang, R. Han, Y. Yang, J. Liu, T. Yang, T. Chen, N. Yuan,
 J. Ding and S. F. Liu, *Adv. Mater.*, 2022, **34**, 2202735.
- 44. J. Yuan, D. Zhang, B. Deng, J. Du, W. C. H. Choy and J. Tian, *Adv. Funct. Mater.*, 2022, 32, 2209070.
- 45. Y. Du, Q. Tian, X. Chang, J. Fang, X. Gu, X. He, X. Ren, K. Zhao and S. F. Liu, *Adv. Mater.*, 2022, **34**, 2106750.
- 46. N. Zhang, J. Wang, Y. Duan, S. Yang, D. Xu, X. Lei, M. Wu, N. Yuan, J. Ding, J. Cui and Z. Liu, *Adv. Funct. Mater.*, 2023, **33**, 2303873.
- 47. C. Xu, S. Zhang, W. Fan, F. Cheng, H. Sun, Z. Kang and Y. Zhang, *Adv. Mater.*, 2023, **35**, 2207172.
- 48. X. Chu, Q. Ye, Z. Wang, C. Zhang, F. Ma, Z. Qu, Y. Zhao, Z. Yin, H.-X. Deng, X. Zhang and J. You, *Nat. Energy*, 2023, **8**, 372-380.
- 49. J. Qiu, X. Mei, M. Zhang, G. Wang, S. Zou, L. Wen, J. Huang, Y. Hua and X. Zhang, *Angew. Chem. Int. Ed.*, 2024, **63**, e202401751.