Electronic supplementary information

An Ultra-High Output Self-Managed Power System Based on a Multilayer Magnetic Suspension Hybrid Nanogenerator for Harvesting Water Wave Energy

Ying Lou,^{‡a,b} Mengfan Li,^{‡a,c} Aifang Yu,^{*a,b,c} Zhong Lin Wang,^{*a,c,d} and Junyi

Zhai*^{a,b,c}

^a Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China

^b Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality; Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region; School of Physical Science & Technology, Guangxi University, Nanning 530004, China.

^c School of Nanoscience and Engineering, University of Chinese Academy of Science, Beijing 100049, China

^dGeorgia Institute of Technology, Atlanta, GA30332, USA

‡ These authors contributed equally to this work.

E-mail addresses: yuaifang@binn.cas.cn (A. Yu), <u>zlwang@gatech.edu(Z.L.Wang)</u>, jyzhai@binn.cas.cn (J. Zhai).

This file includes:

Supplementary Figures:

Supplementary Figure 1 The photograph of the MS-HNG.

Supplementary Figure 2 Detailed view of the magnets embedded in each substrate layer.

Supplementary Figure 3 Working principle of the proposed MS-TENG.

Supplementary Figure 4 Working principle of the proposed MS-EMG.

Supplementary Figure 5 Effect of the number of generating units on short-circuit current and transferred charge of the MS-TENG.

Supplementary Figure 6 Effect of the counterweight mass on short-circuit current and transferred charge of the MS-TENG.

Supplementary Figure 7 Durability result for the current of the (a) MS-TENG and (b) MS-EMG at various cycles.

Supplementary Figure 8 The average power density of the MS-TENG and MS-EMG at different frequencies.

Supplementary Figure 9 Comparison of the impedance between the MS-TENG and other excellent TENGs.

Supplementary Figure 10 The photograph of the PCB board.

Supplementary Figure 11 Working process of the ESPS.

Supplementary Figure 12 Verification of MOSFET turn-on voltage varies according to LED signals.

Supplementary Figure 13 Circuit connections with exploration of resistance and capacitance parameters.

Supplementary Figure 14 Effect of voltage divider resistor (R_D) on the output voltage of the MS-EMG at 2.1Hz and 1.6 Hz, respectively.

Supplementary Figure 15 Effect of filter capacitor (C_F) on the output voltage of the MS-EMG at 2.1Hz and 1.6 Hz, respectively.

Supplementary Figure 16 Comparison of alternating current and direct current of ESPS.

Supplementary Figure 17 The current and peak power density with respect to the

load resistance for the ESPS.

Supplementary Figure 18 The photograph of wave-making apparatus.

Supplementary Table:

Supplementary Table 1. Comparison of device shape, mechanism, excitation condition, power and energy management for different types of triboelectric-electromagnetic hybrid nanogenerators.

Supplementary Table 2. Comparison of electrical output of multi-layer TENGs under motor and water waves.

Supplementary Movies:

Supplementary Movie 1. The bulb array is illuminated by the ESPS.

Supplementary Movie 2. A water quality tester is powered by the ESPS to transmit wireless signal to a mobile phone.

Figure S1. The photograph of the MS-HNG.

Figure S2. Detailed view of the magnets embedded in each substrate layer.

Figure S3. Working principle of the proposed MS-TENG.

Figure S4. Working principle of the proposed MS-EMG.

Figure S5. Effect of the number of generating units on (a) short-circuit current and (b) transferred charge of the MS-TENG.

Figure S6. Effect of the counterweight mass on (a) short-circuit current and (b) transferred charge of the MS-TENG.

Figure S7. Durability result for the current of the (a) MS-TENG and (b) MS-EMG at various cycles.

Figure S8. The average power density of the (a) MS-TENG and (b) MS-EMG at different frequencies.

Figure S9. Comparison of the impedance between the MS-TENG and other excellent TENGs.¹⁻⁵

Figure S10. The photograph of the PCB board.

Figure S11. Working process of the ESPS.

Figure S12. Verification of MOSFET turn-on voltage varies according to LED signals.

Figure S13. Circuit connections with exploration of resistance and capacitance parameters.

Figure S14. Effect of voltage divider resistor (R_D) on the output voltage of the MS-EMG at (a) 2.1Hz and (b) 1.6 Hz, respectively.

Figure S15. Effect of filter capacitor (C_F) on the output voltage of the MS-EMG at (a) 2.1Hz and (b) 1.6 Hz, respectively.

Figure S16. Comparison of alternating current and direct current of ESPS.

Figure S17. The current and peak power density with respect to the load resistance for the ESPS.

Figure S18. The photograph of wave-making apparatus.

Device Shane	Hybrid	Mechanism	Excitation	Power / Power	Power	Energy	Ref
Derree Shape	Module		Laciation	Density	Ratio	Management	
Bidirectional	TENG	Freestanding		115 mW		No	6
Rotating Turbine	EMG	Transverse cutting	l Hz	350 mW	1:10	No	
Box	TENG	Rolling	1.0.11	0.08 mW	1 196	NO	7
	EMG	Transverse cutting	1.8 HZ	14.9 mW	1:180	No	
Paper-based zigzag	TENG	Contact-separation	1 Ша	22.5 mW	16.1	No	8
multilayer	EMG	Transverse cutting	1 HZ	1.39 mW	10.1	No	
Topological	TENG	Contact-separation	1 Ша	0.5 mW	1 . 8	NO	9
Structure	EMG	Longitudinal cutting	1 HZ	4 mW	1.0	NO	
Cylinder	TENG	Freestanding	0.2 Hz	13.77 W/m ³	1.11	NO	10
	EMG	Transverse cutting	0.2 HZ	148.24 W/m ³	1.11	NO	
Clip-like structure	TENG	Contact-separation	26 117	16 mW	100.1	Yes	11
	EMG	Longitudinal cutting	2.0 112	0.16 mW	100.1	Yes	
Magnetic-Levitation	TENG	Contact-separation	8 m s ⁻²	12.17 mW	26:1	Yes	12
	EMG	Longitudinal cutting	0 11 3	0.47 mW	20.1	NO	
Chaotic	TENG	Freestanding	2 5 Hz	15.21 mW	1.82	NO	13
pendulum	EMG	Transverse cutting	2.5 112	1.23 mW	1.02	NO	
Flexible pendulum	TENG	Contact-separation	2 2 Hz	470 mW	1.1113	NO	14
structure	EMG	Transverse cutting	2.2 112	523 mW	1.1115	NO	
Double-sided fluff	TENG	Freestanding	1 4 Hz	2.02 W/m ³	1.8	NO	15 This work
	EMG	Transverse cutting	1.4 112	16.96 W/m ³	1.0	NO	
Multilayer magnetic suspension	TENG	Contact-separation	2 6 Hz	631 W/m ³	Integrated	VFS	
	EMG	EMG Longitudinal cutting	2.0 112	031 w/m	austam	1 113	
					system		

 Table S1. Comparison of device shape, mechanism, excitation condition, power and energy

 management for different types of triboelectric-electromagnetic hybrid nanogenerators.

	Motor Condition			W	Ref		
Device	Motor	Matching	Peak Power	Water	Water	Peak Power	
structure	Excitation	Impedance	/Power	Frequency	Amplitude	/Power	
			Density			Density	
Cube	2 Hz	500 MΩ	52.87 W/m ³	0.8 Hz	6 cm	80.29 W/m ³	16
Open-book	1 Hz	13.8 MΩ	9.675 W/m ³	0.588 Hz	/	7.45 W/m ³	17
Pendulum	1Hz	200ΜΩ	15.15 W/m ³	0.3 Hz	/	14.71 W/m ³	18
Disk	1Hz	1ΜΩ	29.4mW	0.58Hz	/	45.0mW	19
swing	1 Hz	/	12.1 mW	1 Hz	10 cm	4.1 mW	20
pendulum	20°	1 MΩ	39.2 mW	/	/	3.1 mW	21
Spherical	2.5 Hz	/	5.5 mW	1.0 Hz	9 cm	2.5 mW	22
swing	2 Hz	/	53.5 mW	0.8 Hz	7.0 cm	27.6 mW	23
Anaconda	20°	5 ΜΩ	347 W/m ³	/	/	80.61 W/m ³	24
Pendulum	20°	5 ΜΩ	200 W/m ³	/	/	34.7 W/m ³	25
Magnetic	2.6 Hz	1 kΩ	631 W/m ³	1 Hz	10 cm	120 W/m ³	This work
suspension			(261.3 mW)			(49.7mW)	

Table S2. Comparison of electrical output of multi-layer TENGs under motor and water waves.

Reference

- Y. Sun, F. Zheng, X. Wei, Y. Shi, R. Li, B. Wang, L. Wang, Z. Wu and Z. L. Wang, ACS Appl. Mater. Interfaces, 2022, 14, 15187-15194.
- C. C. Shan, W. C. He, H. Y. Wu, S. K. Fu, K. X. Li, A. P. Liu, Y. Du, J. Wang, Q. J. Mu, B. Y. Liu, Y. Xi and C. G. Hu, *Adv. Funct. Mater.*, 2023, 33, 2305768.
- 3. Y. J. Luo, P. F. Chen, L. N. Y. Cao, Z. J. Xu, Y. Wu, G. F. He, T. Jiang and Z. L. Wang, *A Adv. Funct. Mater.*, 2022, **32**, 2205710.
- H. Y. J. Jung, B. Friedman, W. Hwang, A. Copping, R. Branch and Z. D. Deng, *Nano Energy*, 2023, 114, 108633.
- 5. X. M. Zhang, Q. X. Yang, D. H. Ren, H. K. Yang, X. C. Li, Q. Y. Li, H. Y. Liu, C. G. Hu, X. M. He and Y. Xi, *Nano Energy*, 2023, **114**, 108614.
- 6. T. Y. Li, X. Wang, K. K. Wang, Y. X. Liu, C. X. Li, F. H. Zhao, Y. M. Yao and T. H. Cheng, *Adv. Energy Mater.*, 2024, 14, 2400313.

- C. C. Hao, J. He, C. Zhai, W. Jia, L. L. Song, J. D. Cho, X. J. Chou and C. Y. Xue, Nano Energy, 2019, 58, 147-157.
- H. M. Yang, M. M. Deng, Q. Tang, W. C. He, C. G. Hu, Y. Xi, R. C. Liu and Z. L. Wang, *Adv. Energy Mater.*, 2019, 9, 1901149.
- J. Y. Wang, L. Pan, H. Y. Guo, B. B. Zhang, R. R. Zhang, Z. Y. Wu, C. S. Wu, L. J. Yang, R. J. Liao and Z. L. Wang, *Adv. Energy Mater.*, 2019, 9, 1802892.
- C. Q. Zhu, M. W. Wu, C. Liu, C. Xiang, R. J. Xu, H. Y. Yang, Z. Y. Wang, Z. Y. Wang, P. Xu, F. Z. Xing, H. Wang and M. Y. Xu, *Adv. Energy Mater.*, 2023, 13, 2301665.
- Y. Lou, M. F. Li, J. X. Hu, Y. L. Zhao, W. Q. Cui, Y. L. Wang, A. F. Yu and J. Y. Zhai, *Nano Energy*, 2024, **121**, 109240.
- 12. M. F. Li, Y. Lou, J. X. Hu, W. Q. Cui, L. Chen, A. F. Yu and J. Y. Zhai, Small, 2024, 2402009.
- X. Chen, L. X. Gao, J. F. Chen, S. Lu, H. Zhou, T. T. Wang, A. B. Wang, Z. F. Zhang, S. F. Guo, X. J. Mu, Z. L. Wang and Y. Yang, *Nano Energy*, 2020, **69**, 104440.
- W. B. Xie, L. X. Gao, L. K. Wu, X. Chen, F. Y. Wang, D. Q. Tong, J. Zhang, J. Y. Lan, X. B. He, X. J. Mu and Y. Yang, *Research*, 2021, **2021**, 5963293.
- 15. C. C. Han, Z. Cao, Z. H. Yuan, Z. W. Zhang, X. Q. Huo, L. A. Zhang, Z. Y. Wu and Z. L. Wang, *Adv. Funct. Mater.*, 2022, **32**, 2205011.
- Y. Duan, H. Xu, S. Liu, P. Chen, X. Wang, L. Xu, T. Jiang and Z. L. Wang, *Nano Res.*, 2023, 16, 11646-11652.
- W. Zhong, L. Xu, X. D. Yang, W. Tang, J. J. Shao, B. D. Chen and Z. L. Wang, Nanoscale, 2019, 11, 7199-7208.
- 18. W. Zhong, L. Xu, H. M. Wang, D. Li and Z. L. Wang, Nano Energy, 2019, 66, 104108.
- Y. Bai, L. Xu, C. He, L. P. Zhu, X. D. Yang, T. Jiang, J. H. Nie, W. Zhong and Z. L. Wang, Nano Energy, 2019, 66, 104117.
- X. Liang, Z. Liu, Y. Feng, J. Han, L. Li, J. An, P. Chen, T. Jiang and Z. L. Wang, Nano Energy, 2021, 83, 105836.
- C. Zhang, W. Yuan, B. Zhang, O. Yang, Y. Liu, L. He, J. Wang and Z. L. Wang, *Adv. Funct. Mater.*, 2022, **32**, 2111775.
- 22. S. Liu, X. Liang, P. Chen, H. Long, T. Jiang and Z. L. Wang, Small Methods, 2023, 7, 202201392.
- 23. X. Y. Wang, C. Y. Ye, P. F. Chen, H. Pang, C. H. Wei, Y. X. Duan, T. Jiang and Z. L. Wang, *Adv. Funct. Mater.*, 2024, **34**, 2311196.
- 24. W. Yuan, B. F. Zhang, C. G. Zhang, O. Yang, Y. B. Liu, L. X. He, L. L. Zhou, Z. H. Zhao, J. Wang and Z. L. Wang, One Earth, 2022, 5, 1055-1063.
- 25. C. G. Zhang, L. L. Zhou, P. Cheng, D. Liu, C. L. Zhang, X. Y. Li, S. X. Li, J. Wang and Z. L. Wang, *Adv. Energy Mater.*, 2021, **11**, 2003616.