# Supplementary Information

# **Opportunities and Challenges for Emerging Inorganic Chalcogenide-**

# Silicon Tandem Solar Cells

Vijay C. Karade<sup>1,2</sup>, Mingrui He<sup>3</sup>, Zhaoning Song<sup>1</sup>, Abasi Abudulimu,<sup>1</sup> Yeonwoo Park<sup>2</sup>, Donghoon Song<sup>4,5</sup>, Yanfa Yan<sup>1</sup>, Jin Hyeok Kim<sup>6</sup>, Randy J. Ellingson<sup>1</sup>, Jae Ho Yun<sup>2, \*</sup>, Xiaojing Hao<sup>3</sup>, Seung Wook Shin<sup>7, \*</sup>, and Mahesh. P. Suryawanshi<sup>3, \*</sup>

<sup>1</sup>Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606 USA.

<sup>2</sup>Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 522132, Republic of Korea.

<sup>3</sup>School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.

<sup>4</sup>School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

<sup>5</sup>School of Materials Science and Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, Georgia 30332, United States

<sup>6</sup>Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea. <sup>7</sup>Future Agricultural Research Division, Rural Research Institute, Korea Rural Community Corporation, Ansan-si 15634, Republic of Korea.

## \*Corresponding Authors:

Seung Wook Shin, Email: <u>swshin1211@gmail.com</u> Jae Ho Yun, Email: <u>jhyun@kentech.ac.kr</u> Mahesh. P. Suryawanshi, Email: m.suryawanshi@unsw.edu.au

### <u>Note 1</u>

Previous studies on metal-chalcogenide-based thin-film solar cells with multi-layered structures have shown that surface roughness is a critical factor in achieving high PCE. A rough surface can lead to a high recombination rate due to the formation of defects and defect clusters or cause shunt current loss through shunting paths in thin-film solar cells. To address this issue, various strategies have been explored, including doping, compositional ratio control, optimization of post-annealing parameters, additives in the precursor solution, crystal orientation control, surface etching, and the introduction of seed or interfacial layers, as summarized in **Table S1**.

| Chalcogenide<br>materials | Deposition process                                     | Average<br>Roughness<br>(nm) | Control<br>strategy                 | Device<br>performance<br>(%) | refs |
|---------------------------|--------------------------------------------------------|------------------------------|-------------------------------------|------------------------------|------|
| CIGS                      | Sputtered metallic<br>precursor and post-<br>annealing | 200                          | Surface<br>etching                  | 10                           | 1    |
|                           | Three stage co-<br>evaporation                         | 90                           | Surface<br>etching                  | 14                           | 2    |
|                           | Three stage co-<br>evaporation                         | 80                           | Modification<br>of initial<br>stage |                              | 3    |
|                           | Hydrazine-based<br>precursor and post-<br>annealing    | 8.6                          | Sb doping                           | 12.3                         | 4    |
|                           | Spin coated precursor and post-annealing               | 60                           |                                     | 3.4                          | 5    |
|                           | Three stage co-<br>evaporation                         | 44                           | Alkali doping                       |                              | 6    |
|                           | PLD-based precursor and                                | 25                           |                                     | 7.25                         | 7,8  |

**Table S1** The large area roughness of chalcogenides; CIGS, CZTSSe, and  $Sb_2(S,Se)_3$  by various deposition processes.

|                                     | post-annealing                                                  |       |                                          |       |    |
|-------------------------------------|-----------------------------------------------------------------|-------|------------------------------------------|-------|----|
|                                     | Three stage co-<br>evaporation                                  | 55    | Control of composition                   | 17.4  | 9  |
|                                     | Three stage co-<br>evaporation                                  | 34.9  |                                          | 12.3  | 10 |
|                                     | Co-electrodeposited<br>metallic precursor and<br>post-annealing | 140   | Modification<br>of metallic<br>precursor | 8.64  | 11 |
|                                     | Sputtered metallic<br>precursor and post-<br>annealing          | 150   | Deposition of overlayer                  | 10.1  | 12 |
|                                     | Co-electrodeposited<br>metallic precursor and<br>post-annealing | 153   | Control of<br>metallic<br>precursor      | 9.5   | 13 |
|                                     | Solution-based precursor<br>and post-annealing                  | 105   | Al doping                                | 9.25  | 14 |
| Kesterite                           | Co-electrodeposited<br>metallic precursor and<br>post-annealing | 322   |                                          | 9.4   | 15 |
|                                     | Sputtered metallic<br>precursor and post-<br>annealing          | 117   | Control of<br>compositional<br>ratio     | 9.7   | 16 |
|                                     | Sputtered precursor and post-annealing                          | 49.5  | Deposition of overlayer                  | 10.2  | 17 |
|                                     | Solution-based precursor<br>and post annealing                  | 55.7  | Sb doping                                | 13.11 | 18 |
|                                     | Solution-based precursor<br>and post-annealing                  | 67    | Mg doping                                | 9.0   | 19 |
|                                     | Spin-coated precursor and post-annealing                        | 68.2  | Ti doping                                | 12.07 | 20 |
|                                     | Solution-based precursor<br>and post-annealing                  | 50.27 | Ag doping                                | 11.23 | 21 |
| Sb <sub>2</sub> (S,Se) <sub>3</sub> | Hydrothermal                                                    | 31.6  | Surface<br>etching                       | 10    | 22 |

| Vapor thermal deposition                                | ion 10.7 Vapor<br>atmosphere |                                                              | 7.27  | 23 |
|---------------------------------------------------------|------------------------------|--------------------------------------------------------------|-------|----|
| Chemical bath deposition                                | 38.5                         | Treatment of<br>oxygen<br>plasma                             | 6.7   | 24 |
| Spin coating-based<br>precursor and post-<br>annealing  | 6                            | Ag doping                                                    | 7.73  | 25 |
| Hydrothermal                                            | 28                           | Addition of<br>ethanol in<br>precursor                       | 10.75 | 26 |
| Chemical bath deposition                                | 18.7                         | •                                                            | 8.06  | 27 |
| Hydrothermal                                            | 20.8                         | Additive in<br>precursor<br>solution                         | 9.94  | 28 |
| Hydrothermal                                            | 15.5                         | Addition of<br>BaBr <sub>2</sub> in<br>precursor<br>solution | 10.12 | 29 |
| Hydrothermal and CSS process                            | 5.3                          | Addition of see layer                                        | 7.4   | 30 |
| CSS                                                     | 17                           |                                                              | 4.27  | 31 |
| Spin coating -based<br>precursor and post-<br>annealing | 27.10                        | Control of<br>crystal<br>orientation                         | 9.21  | 32 |



| Device<br>structure                                    | Tande<br>m<br>types | E <sub>g</sub> (eV)<br>(Top<br>/bottom) | V <sub>oc</sub><br>(V) | J <sub>sc</sub><br>(mA<br>/cm <sup>2</sup> ) | FF<br>(%) | РС<br>Е<br>(%)           | Theoretica<br>l PCE<br>Limit (%) | Challenge<br>s and<br>Solutions                                   |
|--------------------------------------------------------|---------------------|-----------------------------------------|------------------------|----------------------------------------------|-----------|--------------------------|----------------------------------|-------------------------------------------------------------------|
| CZTS/Si <sup>33</sup>                                  |                     |                                         | 0.899                  | 6.9                                          | 17.6      | 1.10                     |                                  | Band tailing,<br>Voc-Deficit –<br>Needs interface                 |
| CZTS/Si <sup>33</sup>                                  | 2T                  | 1.5/                                    | 0.948                  | 6.3                                          | 58.3      | 3.5                      | 32-35                            | passivation and<br>defect control<br>Low doping<br>density, back- |
| CZTS/Si <sup>34</sup>                                  |                     | 1.12                                    | 0.997                  | 8.1                                          | 47.2      | 3.9                      |                                  | contact losses<br>KCN etching<br>and alkali                       |
| CZTS/Si <sup>35</sup>                                  |                     |                                         | 1.083                  | 10.8                                         | 58.6      | 6.80                     |                                  | doping improve<br>Voc                                             |
| CGS/Si <sup>35</sup>                                   |                     |                                         | 1.30                   | 8.01                                         | 49.32     | 5.13                     |                                  | Stability under                                                   |
| CGS/Si <sup>36</sup>                                   | 2T                  | 1.7/1.1<br>2                            | 1.32                   | 12.3                                         | 59.4      | 9.7                      | 35-40                            | light exposure<br>needs<br>improvement                            |
| Sb <sub>2</sub> (S,Se) <sub>3</sub> /Si <sup>37</sup>  | 4T                  | 1.5/1.1<br>2                            | 0.526/                 | 23.5/<br>139                                 | 57/67.5   | 7.05/<br>4.61<br>(11.66) | 28-32                            | Large Voc-<br>deficit due to<br>deep trap states                  |
| Sb <sub>2</sub> S <sub>3</sub> /Si <sup>38</sup>       | 2T                  | 1.71/1.<br>1                            | 0.367                  | 0.01                                         | 28        |                          | 28-32                            | Growth control<br>needed to avoid<br>phase<br>segregation         |
| GaInP/GaAs/Si <sup>39</sup><br>(stacked)               | 4T                  |                                         | 2.52/0.68<br>1         | 13.6/11.<br>0                                | 87.5/78   | 35.9                     | 40-45                            | Expensive III-<br>IV material<br>growth, needs<br>cost reduction  |
| GaInP/GaInAsP/Si <sup>3</sup><br><sup>9</sup> (bonded) | 2T                  |                                         | 3.30                   | 12.7                                         | 86.0      | 36.1                     | 40-45                            | High<br>processing<br>costs,<br>scalability<br>challenge          |
| PSK/Si <sup>40</sup>                                   | 2T                  |                                         | 1.96                   | 20.76                                        | 83.0      | 33.9                     | 35-40                            | Stability and                                                     |

|                         |    |       |           |          |          |            |       | lead toxicity     |
|-------------------------|----|-------|-----------|----------|----------|------------|-------|-------------------|
|                         |    |       |           |          |          |            |       | concerns          |
|                         |    |       |           |          |          |            |       |                   |
|                         |    | 1.25  |           |          |          |            |       | Stability and     |
| PSK/PSK <sup>41</sup>   | 2T | 1120  | 2.159     | 16.59    | 78.9     | 28.2       | 35-40 | lead toxicity     |
|                         |    | /1.78 |           |          |          |            |       | concerns          |
|                         |    |       |           |          |          |            |       |                   |
|                         |    |       |           |          |          |            |       | Needs interface   |
| PSK/CIGSe <sup>42</sup> | 2T |       | 1.76      | 19.24    | 72.9     | 24.2       | 30-35 | engineering for   |
|                         |    | -     |           |          |          |            |       | stability         |
|                         |    |       |           |          |          |            |       |                   |
|                         |    |       |           |          |          | 21.8       |       | Long-term         |
|                         |    | 1.63  |           | 21.5/19. | 81.9/73. |            | 20.25 |                   |
| PSK/CIGSe <sup>43</sup> | 4T |       | 1.24/0.57 | 3        | 7        | /8.1 30-35 | 30-33 | stability still a |
|                         |    | /1.00 |           | 5        |          | (29.9)     |       | challenge         |
|                         |    |       |           |          |          |            |       |                   |

**Table S3** Ratio of different device parameters of champion chalcogenide and high-performance PV to their theoretical limit (S-Q).

| Absorber           | PCE/<br>PCE <sub>(S-Q)</sub> | $V_{oc}/V_{oc(S-Q)}$ | $\begin{array}{c} J_{sc} / \\ J_{sc(S-Q)} \end{array}$ | FF/<br>FF <sub>(S-Q)</sub> | V <sub>oc</sub> ×FF/<br>V <sub>oc</sub> ×FF <sub>(S-Q)</sub> |
|--------------------|------------------------------|----------------------|--------------------------------------------------------|----------------------------|--------------------------------------------------------------|
| AgBiS <sub>2</sub> | 0.31                         | 0.50                 | 0.76                                                   | 0.82                       | 0.41                                                         |
| AgBiS <sub>2</sub> | 0.27                         | 0.44                 | 0.81                                                   | 0.77                       | 0.34                                                         |
| CGSe               | 0.39                         | 0.76                 | 0.70                                                   | 0.74                       | 0.56                                                         |
| CIGS               | 0.55                         | 0.72                 | 0.97                                                   | 0.79                       | 0.57                                                         |
| CIS                | 0.37                         | 0.55                 | 0.86                                                   | 0.79                       | 0.44                                                         |
| CZGS               | 0.26                         | 0.53                 | 0.79                                                   | 0.62                       | 0.33                                                         |
| CZTS               | 0.42                         | 0.59                 | 0.86                                                   | 0.76                       | 0.45                                                         |
| CZTSSe             | 0.46                         | 0.63                 | 0.87                                                   | 0.85                       | 0.53                                                         |
| CZTSSe-Ag          | 0.43                         | 0.66                 | 0.80                                                   | 0.81                       | 0.53                                                         |
| CZTSSe-Ge          | 0.37                         | 0.60                 | 0.74                                                   | 0.83                       | 0.50                                                         |
| GeS                | 0.05                         | 0.37                 | 0.37                                                   | 0.34                       | 0.13                                                         |
| SnS                | 0.15                         | 0.34                 | 0.69                                                   | 0.62                       | 0.21                                                         |
| $Sb_2(S,Se)_3$     | 0.30                         | 0.51                 | 0.75                                                   | 0.79                       | 0.40                                                         |
| $Sb_2(S,Se)_3$     | 0.33                         | 0.52                 | 0.85                                                   | 0.75                       | 0.39                                                         |

| $Sb_2(S,Se)_3$                  | 0.34 | 0.53 | 0.86 | 0.74 | 0.39 |
|---------------------------------|------|------|------|------|------|
| $Sb_2S_3$                       | 0.28 | 0.52 | 0.80 | 0.66 | 0.35 |
| $Sb_2S_3$                       | 0.28 | 0.47 | 0.82 | 0.71 | 0.33 |
| $Sb_2Se_3$                      | 0.32 | 0.48 | 0.87 | 0.77 | 0.37 |
| Sb <sub>2</sub> Se <sub>3</sub> | 0.24 | 0.42 | 0.82 | 0.70 | 0.30 |
| Si-C                            | 0.83 | 0.86 | 0.96 | 1.00 | 0.86 |
| GaAs                            | 0.88 | 0.97 | 0.93 | 0.97 | 0.94 |
| Perovskite                      | 0.84 | 0.95 | 0.95 | 0.94 | 0.89 |
| CdTe                            | 0.69 | 0.79 | 0.96 | 0.90 | 0.72 |
| CIGSe                           | 0.71 | 0.87 | 0.88 | 0.93 | 0.80 |
|                                 |      |      |      |      |      |

### <u>Note 2</u>

The excellent research and reviews for the PCE degradations, mechanism, and longterm stability results in CIGS-based thin film solar cells have been extensively investigated.<sup>44–46</sup> In contrast, the PCE degradations and demonstrating mechanisms for the kesterite- and Sb<sub>2</sub>(S,Se)<sub>3</sub> are lacking. Thus, the detailed PEC degradation investigations and mechanisms for kesterite- and Sb<sub>2</sub>(S,Se)<sub>3</sub>-based thin film solar cells should be studied to realize early commercialization.

Table S4 The stability failure of chalcogenide-based SC; CIGS, CZTSSe, and  $Sb_2(S,Se)_3$ , respectively.

| Chalcogenide<br>materials | Cell or module information | Stability and atmosphere                                                                   | Failures                                                             | refs |
|---------------------------|----------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------|
|                           | Cells                      | Less than 10% after 480 h<br>under damp and heat<br>conditions (85% humidity<br>and 85 °C) | Degradation of<br>buffer and TCO,<br>migration of alkali<br>elements | 47   |
|                           | Mini module                | Less than 20% after 1000                                                                   | Degradation of                                                       | 48   |

| CIGS      |                                                | h under encapsulation and damp and heat condition                                                                     | buffer and TCO,<br>migration of alkali<br>elements                         |    |
|-----------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----|
| -         | Cells                                          | Less than 30% after 800 h<br>under damp and heat<br>condition                                                         | migration of alkali<br>elements, Increase<br>the electrical<br>resistivity | 49 |
|           | Cells                                          | Less than 5% after 336 h<br>under encapsulation and<br>damp and heat condition                                        | migration of alkali-<br>elements                                           | 50 |
|           | Cells                                          | 0% after 50 h under air<br>atmosphere                                                                                 | migration of alkali-<br>elements                                           | 51 |
|           | Cells                                          | Less than 30% after 800 h<br>under damp and heat<br>condition<br>Less than 5% after 120 h<br>Less than 5% after 120 h |                                                                            | 52 |
|           | Commercial<br>modules                          | Less than 5% after 120 h<br>under damp and heat<br>condition                                                          | Leakage current<br>density from<br>shunting path                           | 53 |
|           | Field module                                   | Less than 15% after 750 h<br>under damp and heat<br>conditions and negative<br>1000 V biases applied.                 | Charge carrier<br>concentration or<br>lifetime reduction,<br>TCO corrosion | 54 |
|           | Mini module on<br>K-rich<br>borosilicate glass | No degradation after 1600<br>h under damp and heat<br>conditions and positive<br>1000 V biases applied.               |                                                                            | 55 |
|           | Cells                                          | Less than 20% after 5000 h under inside box with $N_2$                                                                |                                                                            | 56 |
| Kesterite | Cells                                          | Less than 20% after 7200<br>h under air atmosphere                                                                    | Degradation of TCO                                                         | 57 |
|           | Cells                                          | Less than 40% after 95 h<br>under heat conditions<br>(105 °C)                                                         |                                                                            | 58 |

|                                               | Cells          | Cells Less than 5% after 720 h .<br>under air atmosphere                                   |                                |    |
|-----------------------------------------------|----------------|--------------------------------------------------------------------------------------------|--------------------------------|----|
|                                               | Flexible Cells | No degradation after 168<br>h under ambient light and<br>80 % humidity                     |                                | 60 |
|                                               | Cells          | Less than 10 % after 2400<br>h under ait atmosphere                                        | Instability for<br>organic HTL | 61 |
|                                               | Cells          | Less than 5% after 2160 h<br>under air atmosphere                                          |                                | 62 |
| -<br>Sb <sub>2</sub> (S,Se) <sub>3</sub><br>- | Cells          | Less than 30% after 100 h<br>under damp and heat<br>condition                              |                                | 63 |
|                                               | Cells          | Less than 5% after 1440 h<br>under air atmosphere                                          |                                | 64 |
|                                               | Cells          | Less than 5% after 360 h<br>under heat conditions (85<br>°C) and N <sub>2</sub> atmosphere |                                | 65 |
|                                               | Cells          | No degradation after 500<br>h under air atmosphere                                         |                                | 66 |
|                                               | Cells          | Less than 20% after 140 h<br>under 85 °C and air<br>atmosphere                             | Degradation of HTL             | 67 |
|                                               | Cells          | Less than 5% after 960 h<br>under air atmosphere                                           | Instability for organic HTL    | 68 |

## References

- 1 C. Wang, D. Zhuang, M. Zhao, Y. Li, L. Dong, H. Wang, J. Wei and Q. Gong, *Ceram Int*, 2021, 47, 34508–34513.
- 2 Z. Jehl, M. Bouttemy, D. Lincot, J. F. Guillemoles, I. Gerard, A. Etcheberry, G. Voorwinden, M. Powalla and N. Naghavi, *J Appl Phys*, 2012, 111, 114509.
- M. Langhorst, E. Bykov, Q. Jiang, J. Kim, S. Rozeveld, M. Mushrush, A. Wall,
   A. Khare and R. Feist, 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015, DOI:10.1109/PVSC.2015.7356222.
- 4 M. Yuan, D. B. Mitzi, W. Liu, A. J. Kellock, S. Jay Chey and V. R. Deline, *Chemistry of Materials*, 2010, 22, 285–287.

- 5 D. Tiwari, T. Koehler, X. Lin, A. Sarua, R. Harniman, L. Wang, R. Klenk and D. J. Fermin, *ACS Appl Mater Interfaces*, 2017, 9, 2301–2308.
- 6 W. C. Lim, J. Lee, S. Won and Y. Lee, *Surface and Interface Analysis*, 2012, 44, 724–728.
- 7 M. Mazzer, S. Rampino, E. Gombia, M. Bronzoni, F. Bissoli, F. Pattini, M. Calicchio, A. Kingma, F. Annoni, D. Calestani, N. Cavallari, V. Thottapurath Vijayan, M. Lomascolo, A. Cretì and E. Gilioli, DOI:10.3390/en9030207.
- 8 S. Rampino, F. Bissoli, E. Gilioli and F. Pattini, *Progress in Photovoltaics: Research and Applications*, 2013, 21, 588–594.
- 9 Y. Zhang, Z. Hu, S. Lin, C. Wang, S. Cheng, Z. He, Z. Zhou, Y. Sun and W. Liu, *Solar RRL*, 2020, 4, 2000290.
- 10 M. J. Shin, A. Lee, A. Cho, K. Kim, S. K. Ahn, J. H. Park, J. Yoo, J. H. Yun, J. Gwak, D. Shin, I. Jeong and J. S. Cho, *Nano Energy*, 2021, 82, 105729.
- 11 K. B. Cheon, S. K. Hwang, S. W. Seo, J. H. Park, M. A. Park and J. Y. Kim, *ACS Appl Mater Interfaces*, 2019, 11, 24088–24095.
- 12 K. S. Gour, P. S. Pawar, M. Lee, V. C. Karade, J. S. Yun, J. Heo, J. Park, J. H. Yun and J. H. Kim, ACS Applied Materials and Interfaces, 2024, 16, 30010– 30019.
- 13 Y. Han, J. Ao, Z. Zhang, Q. Gao, J. Guo, W. Liu, F. Liu and Y. Zhang, ACS Appl Energy Mater, 2021, 4, 11793–11801.
- 14 B. Han, Y. Li, R. Wang, W. Zhu, Z. He, H. Sun, X. Meng, S. Huang, Y. Song, J. Zhang and B. Yao, ACS Appl Energy Mater, 2024, 7, 7074–7084.
- S. K. Hwang, J. H. Park, K. B. Cheon, S. W. Seo, J. E. Song, I. J. Park, S. G. Ji, M.
   A. Park and J. Y. Kim, *Progress in Photovoltaics: Research and Applications*, 2020, 28, 1345–1354.
- 16 W. L. Jeong, J. H. Min, H. S. Kim, J. H. Kim, J. H. Kim and D. S. Lee, *Sustain Energy Fuels*, 2018, 2, 999–1006.
- X. Cui, K. Sun, J. Huang, J. S. Yun, C. Y. Lee, C. Yan, H. Sun, Y. Zhang, C. Xue,
  K. Eder, L. Yang, J. M. Cairney, J. Seidel, N. J. Ekins-Daukes, M. Green, B.
  Hoex and X. Hao, *Energy Environ Sci*, 2019, 12, 2751–2764.
- 18 Y. Li, X. Chen, R. Wang, N. Zhou, F. Huang, J. Zhao, Z. Su, S. Chen and G. Liang, *J Mater Chem A Mater*, 2024, 12, 10260–10268.
- 19 Y. Mi, Y. Yang, G. Cui, R. Wang, L. Bai, Z. Gong, S. Li, X. Lv, Y. Cao and C. Zhu, *J Alloys Compd*, 2024, 1005, 176127.

- U. Farooq, U. Ali Shah, M. Ishaq, J. G. Hu, S. Ahmed, S. Chen, Z. H. Zheng, Z. H. Su, P. Fan and G. X. Liang, *Chemical Engineering Journal*, 2023, 451, 139109.
- 21 L. Siqin, C. Yang, J. Guo, Y. Wang, L. Wang, Y. Li, Y. Wang, S. Li, X. Chen, H. Luan, R. Liu and C. Zhu, *Solar Energy*, 2024, 283, 112913.
- 22 A. Liu, R. Tang, L. Huang, P. Xiao, Y. Dong, C. Zhu, H. Wang, L. Hu and T. Chen, *ACS Appl Mater Interfaces*, 2023, 15, 48147–48153.
- Z. Cao, W. Wang, J. Dong, L. Lou, H. Liu, Z. Wang, J. Luo, Y. Liu, Y. Dai, D. Li,
   Q. Meng and Y. Zhang, ACS Appl Mater Interfaces, 2022, 14, 55691–55699.
- 24 H. Guo, Z. Chen, X. Wang, Q. Cang, X. Jia, C. Ma, N. Yuan and J. Ding, Solar RRL, 2019, 3, 1800224.
- 25 Y. Li, R. Li, Z. Jia, B. Yu, Y. Yang, S. Bai, M. Pollard, Y. Liu, Y. Ma, H. Kampwerth and Q. Lin, *Small*, 2024, 20, 2308895.
- 26 X. Chen, B. Che, Y. Zhao, S. Wang, H. Li, J. Gong, G. Chen, T. Chen, X. Xiao, J. Li, X. Chen, Y. Zhao, S. Wang, J. Gong, X. Xiao, J. Li, B. Che, T. Chen, H. Li and G. Chen, *Adv Energy Mater*, 2023, 13, 2300391.
- 27 X. Chen, Y. Zhao, C. Li, X. Wang, P. Xiao, J. Gong, T. Chen, X. Xiao and J. Li, Adv Energy Mater, 2024, 14, 2400441.
- 28 Q. Zhu, W. Wang, Z. Chen, Z. Cao, W. Wang, X. Feng, H. Deng, C. Zhang, Q. Zheng, J. Wu, Y. Zhang and S. Cheng, *Small*, 2025, 21, 2408978.
- 29 D. Ren, C. Li, J. Xiong, W. Liang, M. Cathelinaud, X. Zhang, S. Chen, Z. Li, D. Pan, G. Liang and B. Zou, *Angewandte Chemie International Edition*, 2025, 64, e202413108.
- A. Amin, D. Li, X. Duan, S. N. Vijayaraghavan, H. G. Menon, J. Wall, M. Weaver, M. Ming-Cheng Cheng, Y. Zheng, L. Li, F. Yan, A. Amin, X. Duan, H. G. Menon, J. Wall, M. Weaver, L. Li, F. Yan, D. Li, Y. Zheng and M. M-C Cheng, *Adv Mater Interfaces*, 2022, 9, 2200547.
- 31 L. Guo, B. Zhang, Y. Qin, D. Li, L. Li, X. Qian and F. Yan, Solar RRL, 2018, 2, 1800128.
- 32 X. Jin, Y. Fang, T. Salim, M. Feng, Z. Yuan, S. Hadke, T. C. Sum and L. H. Wong, *Advanced Materials*, 2021, 33, 2104346.
- 33 M. Valentini, C. Malerba, L. Serenelli, M. Izzi, E. Salza, M. Tucci and A. Mittiga, Solar Energy, 2019, 190, 414–419.

- F. Martinho, A. Hajijafarassar, S. Lopez-Marino, M. Espíndola-Rodríguez, S. Engberg, M. Gansukh, F. Stulen, S. Grini, S. Canulescu, E. Stamate, A. Crovetto, L. Vines, J. Schou and O. Hansen, ACS Appl Energy Mater, 2020, 3, 4600–4609.
- 35 A. Assar, F. Martinho, J. Larsen, N. Saini, D. Shearer, M. V. Moro, F. Stulen, S. Grini, S. Engberg, E. Stamate, J. Schou, L. Vines, S. Canulescu, C. Platzer-Björkman and O. Hansen, ACS Appl Mater Interfaces, 2022, 14, 14342–14358.
- 36 A. R. Jeong, S. Bin Choi, W. M. Kim, J. K. Park, J. Choi, I. Kim and J. H. Jeong, *Scientific Reports 2017 7:1*, 2017, 7, 1–10.
- 37 C. Qian, K. Sun, J. Cong, H. Cai, J. Huang, C. Li, R. Cao, Z. Liu, M. Green, B. Hoex, T. Chen and X. Hao, *Advanced Materials*, 2023, 35, 2303936.
- 38 C. Gao, M. Xu, B. K. Ng, L. Kang, L. Jiang, Y. Lai and F. Liu, *Mater Lett*, 2017, 195, 186–189.
- 39 S. Essig, C. Allebé, T. Remo, J. F. Geisz, M. A. Steiner, K. Horowitz, L. Barraud, J. S. Ward, M. Schnabel, A. Descoeudres, D. L. Young, M. Woodhouse, M. Despeisse, C. Ballif and A. Tamboli, *Nature Energy 2017 2:9*, 2017, 2, 1–9.
- 40 LONGi sets a new world record of 33.9% for the efficiency of crystalline siliconperovskite tandem solar cells -LONGi, https://www.longi.com/en/news/newworld-record-for-the-efficiency-of-crystalline-silicon-perovskite-tandem-solarcells/, (accessed 23 May 2024).
- R. Lin, Y. Wang, Q. Lu, B. Tang, J. Li, H. Gao, Y. Gao, H. Li, C. Ding, J. Wen,
  P. Wu, C. Liu, S. Zhao, K. Xiao, Z. Liu, C. Ma, Y. Deng, L. Li, F. Fan and H.
  Tan, *Nature*, 2023, 620, 994–1000.
- 42 M. Jošt, E. Köhnen, A. Al-Ashouri, T. Bertram, Š. Tomšič, A. Magomedov, E. Kasparavicius, T. Kodalle, B. Lipovšek, V. Getautis, R. Schlatmann, C. A. Kaufmann, S. Albrecht and M. Topič, *ACS Energy Lett*, 2022, 7, 1298–1307.
- H. Liang, J. Feng, C. D. Rodríguez-Gallegos, M. Krause, X. Wang, E. Alvianto,
  R. Guo, H. Liu, R. K. Kothandaraman, R. Carron, A. N. Tiwari, I. M. Peters, F.
  Fu and Y. Hou, *Joule*, 2023, 7, 2859–2872.
- 44 M. Jahandardoost, C. Walkons and S. Bansal, *Solar Energy*, 2023, 260, 61–70.
- 45 M. Theelen and F. Daume, *Solar Energy*, 2016, 133, 586–627.
- 46 P. Yilmaz, J. Schmitz and M. Theelen, *Renewable and Sustainable Energy Reviews*, 2022, 154, 111819.
- 47 M. Theelen, K. Beyeler, H. Steijvers and N. Barreau, *Solar Energy Materials and Solar Cells*, 2017, 166, 262–268.

- 48 S. T. Zhang, M. Guc, O. Salomon, R. Wuerz, V. Izquierdo-Roca, A. Pérez-Rodríguez, F. Kessler, W. Hempel, T. Hildebrandt and N. Schneider, *Solar Energy Materials and Solar Cells*, 2021, 222, 110914.
- 49 M. Theelen, V. Hans, N. Barreau, H. Steijvers, Z. Vroon and M. Zeman, *Progress in Photovoltaics: Research and Applications*, 2015, 23, 537–545.
- 50 S. Yamaguchi, S. Jonai, K. Hara, H. Komaki, Y. Shimizu-Kamikawa, H. Shibata, S. Niki, Y. Kawakami and A. Masuda, *Jpn J Appl Phys*, 2015, 54, 08KC13.
- 51 V. Fjallstrom, P. M. P. Salome, A. Hultqvist, M. Edoff, T. Jarmar, B. G. Aitken, K. Zhang, K. Fuller and C. K. Williams, *IEEE J Photovolt*, 2013, 3, 1090–1094.
- 52 J. Malmström, J. Wennerberg and L. Stolt, *Thin Solid Films*, 2003, 431–432, 436–442.
- S. Boulhidja, A. Mellit, S. Voswinckel, V. Lughi, A. Ciocia, F. Spertino and A. M. Pavan, *Energies 2020, Vol. 13, Page 537*, 2020, 13, 537.
- P. Hacke, K. Terwilliger, S. H. Glick, G. Perrin, J. H. Wohlgemuth, S. R. Kurtz, K. Showalter, J. D. Sherwin, E. Schneller, S. Barkaszi and R. M. Smith, https://doi.org/10.1117/1.JPE.5.053083, 2015, 5, 053083.
- 55 C. P. Muzzillo, K. Terwilliger, P. Hacke, H. R. Moutinho, M. R. Young, S. Glynn, B. Stevens, I. L. Repins and L. M. Mansfield, *Solar Energy*, 2022, 232, 298–303.
- 56 G. Larramona, C. Choné, D. Meissner, K. Ernits, P. Bras, Y. Ren, R. Martín-Salinas, J. L. Rodríguez-Villatoro, B. Vermang and G. Brammertz, *Journal of Physics: Energy*, 2020, 2, 024009.
- 57 J. S. Jang, V. C. Karade, M. P. Suryawanshi, D. M. Lee, J. Kim, S. Jang, M. C. Baek, M. He, J. H. Kim and S. W. Shin, *Solar RRL*, 2023, 7, 2300199.
- 58 C. Neubauer, A. Samieipour, S. Oueslati, M. Danilson and D. Meissner, *Thin Solid Films*, 2019, 669, 595–599.
- 59 L. Meng, B. Yao, Y. Li, Z. Ding, Z. Xiao, K. Liu and G. Wang, *J Alloys Compd*, 2017, 710, 403–408.
- 60 J. Li, K. Sun, X. Yuan, J. Huang, M. A. Green and X. Hao, *npj Flexible Electronics 2023* 7:1, 2023, 7, 1–15.
- Z. Wang, Y. Wang, N. Taghipour, L. Peng, G. Konstantatos, Z. Wang, Y. Wang,
   N. Taghipour, L. Peng and G. Konstantatos, *Adv Funct Mater*, 2022, 32, 2205948.

- 62 X. Chen, Z. Li, H. Zhu, Y. Wang, B. Liang, J. Chen, Y. Xu and Y. Mai, *J Mater Chem C Mater*, 2017, 5, 9421–9428.
- 63 L. Zhang, C. Jiang, C. Wu, H. Ju, G. Jiang, W. Liu, C. Zhu and T. Chen, ACS Appl Mater Interfaces, 2018, 10, 27098–27105.
- 64 M. Ishaq, H. Deng, U. Farooq, H. Zhang, X. Yang, U. A. Shah and H. Song, *Solar RRL*, 2019, 3, 1900305.
- 65 J. Li, X. Hu, X. Zheng, Z. Gao, S. Wang, Y. Liu, C. Wang, W. Shao and G. Fang, Energy Technology, 2024, 12, 2300694.
- Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu,
  R. E. I. Schropp and Y. Mai, *Nature Communications 2019 10:1*, 2019, 10, 1–9.
- L. Guo, S. N. Vijayaraghavan, X. Duan, H. G. Menon, J. Wall, L. Kong, S. Gupta,
   L. Li and F. Yan, *Solar Energy*, 2021, 218, 525–531.
- 68 K. Shen, Y. Zhang, X. Wang, C. Ou, F. Guo, H. Zhu, C. Liu, Y. Gao, R. E. I Schropp, Z. Li, X. Liu, Y. Mai, K. Shen, Y. Zhang, X. Wang, C. Ou, F. Guo, H. Zhu, C. Liu, Y. Gao, R. E. I Schropp, Y. Mai, Z. Li and X. Liu, *Advanced Science*, 2020, 7, 2001013.