Supplementary Information

Molecular Order Manipulation with Dual Additives Suppressing Trap Density in Non-Fullerene Acceptors Enables Efficient Bilayer Organic Solar Cells

Zhenmin Zhao¹, Sein Chung², Lixing Tan¹, Jingjing Zhao¹, Yuan Liu¹, Xin Li¹, Liang Bai¹, Hyunji Lee², Minyoung Jeong², Kilwon Cho², Zhipeng Kan^{1,3*}

¹ Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, School of Physical Science & Technology, Guangxi University, Nanning 530004, China.

² Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea.

³ State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China.

* Corresponding author, E-mail: kanzhipeng@gxu.edu.cn

Content

1. Experimental Section/Methods3
2. Energy level of PM6, L8-BO6
3. AFM measurements of L8-BO with and without additives7
4. GIWAXS measurements of L8-BO with and without additives.8
5. The surface energy of L8-BO films changed with additives12
6. Evidences of the bilayer active layer13
7. Optimization processes of bilayer OSCs14
8. J-V measurements of PM6:L8-BO BHJ devices with and without
additives16
9. EQE of PM6/L8-BO bilayer OSCs changed with additives17
10. Dark J-V measurements of bilayer OSCs based on PM6/L8-BO
with and without additives17
11. TPC measurements of bilayer OSCs based on PM6/L8-BO18
12. TPV measurements of bilayer OSCs based on PM6/L8-BO19
13. J-V curves of bilayer OSCs based on PM6/L8-BO20
14. DoS calculation21
15. DLTS measurements of bilayer OSCs based on PM6/L8-BO 23
16. AFM measurements of N3 with and without additives24
17. Bimolecular recombination calculation25
18. J-V curves of bilayer OSCs based on PM6/N326

19.	DLTS measurements of bilayer OSCs based on PM6/N3	.27
20.	References	.28

<u>1. Experimental Section/Methods</u>

Materials: PM6 and L8-BO were purchased from Dongguan Volt-Amp Optoelectronics Technology Co., Ltd. PEDOT:PSS (CLEVIOSTM P VP AI 4083, Heraeus, Germany) was purchased from Xi'an Yuri Solar Co., Ltd. PDIN was purchased from Organtec Ltd.

Device Fabrication: Bilayer organic solar cells were prepared on glass substrates with tin-doped indium oxide (ITO, 15 Ω /sq) (device area: 0.04 cm2). Substrates were prewashed with isopropanol to remove organic residues before immersing them in an ultrasonic bath of soap for 15 min. Samples were rinsed in flowing deionized water for 5 min before being sonicated for 15 min each in successive baths of deionized water, acetone, and isopropanol. Next, the samples were dried with pressurized nitrogen before being exposed to a UV-ozone plasma for 15 min. A thin layer of PEDOT:PSS (~20 nm) (Clevios AL4083) was spin-coated onto the UV-treated substrates, the PEDOT-coated substrates were subsequently annealed on a hot plate at 150 °C for 20 min, and the substrates were then transferred into the glovebox for active layer deposition.

For the solar cells with a bilayer architecture, PM6 in chloroform solution (8 mg/mL) was bladed on the PEDOT: PSS layer to form a front layer, and then a solution of the L8-BO (10 mg/mL) in dichloromethane (DCM) with or without additives were bladed onto the donor layer. Then, a methanol solution of PDIN at a concentration of 2.0 mg/ml with acetic acid (0.3 vol%) was spin-coated onto the active layer at 5000 rpm. Next, the substrates were pumped down in a high vacuum at a pressure of 3×10^{-4} Pa, and the Ag layer (100 nm) was thermally evaporated onto the PDIN.

Photocurrent measurements: The J–V measurement was performed via a XES-50S1 (SAN-EI Electric Co., Ltd.) solar simulator (AAA grade) whose intensity was calibrated by a certified standard silicon solar cell (SRC-2020, Enlitech) under the illumination of AM 1.5G 100 mW cm⁻². The AM 1.5G light source with a spectral mismatch factor of 1.01 was calibrated by the National Institute of Metrology. The intensity of the AM 1.5G spectra was calibrated by a certified standard silicon solar cell

(SRC-2020, Enlitech) calibrated by the National Institute of Metrology. The J-V curves of small-area devices were measured in forwarding scan mode (from -0.2 V to 1.2 V) with a scan step length of 0.02 V. The external quantum efficiency (EQE) was measured by a certified incident photon to electron conversion (IPCE) equipment (QE-R) from Enli Technology Co., Lt. The light intensity at each wavelength was calibrated using a standard monocrystalline Si photovoltaic cell. Optoelectronic characterizations were performed with PAIOS (Fluxim, Switzerland).

2. Energy level of PM6, L8-BO

Figure. S1 | Normalized PL and absorption spectra of **a**) PM6, **b**) L8-BO, **c**) L8-BO with BBS, **d**) L8-BO with CN, **e**) L8-BO with BBS+CN.

3. AFM measurements of L8-BO with and without additives

Figure. S3 | Roughness of L8-BO films changed with additive

4. GIWAXS measurements of L8-BO with and without additives

Grazing-incidence wide-angle X-ray scattering (GIWAXS) was carried out to investigate the molecular packing and molecular orientation in the thin films. The π - π stacking distance (d-spacing) and crystalline coherence length (CCL) were calculated quantitatively using the equations d-spacing = $2\pi/q$ and CCL = $2\pi K/\Delta q$, where q, Δq and the K constant represent the peak positions, full width at half maximum. ^[1,2]

Figure S4. In-plane (dash lines) and out-of-plane (solid lines) line cuts of L8-BO films cast from **a**) DCM, **b**) DCM with BBS, **c**) DCM with CN, and **d**) DCM with BBS+CN.

Table S1In-plane and out-of-plane parameters; peak location, d-spacing, FWHM,and crystal coherence length (CCL) extracted from the 2D GIWAXS of L8-BO filmswith and without additives.

Condition	Peak	Peak location	d-space	FWHM	CCL
		(Å-1)	(Å)	(Å-1)	(Å)
As cast	(010)	1.72	3.65	0.30	19.04
BBS	(010)	1.72	3.65	0.31	18.07
CN	(100)	1.74	3.61	0.17	33.26
BBS+CN	(100)	1.73	3.63	0.22	25.70

Figure S5. | 2D-GIWAXS pattern of L8-BO films cast from **a**) DCM, **b**) DCM with BBS, **c**) DCM with CN, and **d**) DCM with BBS+CN.

Figure S6. | The corresponding polar intensity profiles extracted from the (001) diffraction of L8-BO films with and without additives.

Figure S7. | 2D-GIWAXS pattern of L8-BO films cast from **a**) DCM, **b**) DCM with BBS, **c**) DCM with CN, and **d**) DCM with BBS+CN.

Figure S8. | The corresponding polar intensity profiles extracted from the (010) diffraction of L8-BO films with and without additives.

Figure S9. | a) AFM topography of the PM6 film. b) 2D-GIWAXS pattern of the PM6 film. c) In-plane (dash lines) and out-of-plane (solid lines) line cuts of the PM6 film.

Table S2 | In-plane and out-of-plane parameters; peak location, d-spacing, FWHM,and crystal coherence length (CCL) extracted from the 2D GIWAXS of the PM6 film.

Materials	Peak	Peak location	d-space	FWHM	CCL
		(Å-1)	(Å)	(Å ⁻¹)	(Å)
PM6	(010)	1.67	3.76	0.32	17.56

5. The surface energy of L8-BO films changed with additives

L8-BO	H ₂ O (deg)		Average (deg)	F. (de	A eg)	Average (deg)	Surface free energy (mJ/cm²)
As-cast	95.91	96.02	95.97	74.83	75.89	75.36	25.31
CN	93.54	92.11	92.83	75.1	76.7	75.90	23.25
BBS	94.89	95.83	95.36	75.59	76.04	75.82	24.46
BBS+CN	95.93	96.36	96.15	78.28	80.12	79.20	21.50
PM6	99.13	100.62	99.88	83.31	82.58	82.95	19.60

Table S3	Parameters of films obtained by contact angle.
14010 00	i didiliciolo di inino dolunica di contact digic.

6. Evidences of the bilayer active layer

Figure S11. | The immersion video of PM6 film in DCM and the absorption spectra before and after immersion.

Figure S12. | SEM images of BHJ films based on PM6:L8-BO

7. Optimization processes of bilayer OSCs

Table S4Photovoltaic performance of the bilayer OSCs based on PM6/L8-BOchanged with PM6 concentration under simulated AM1.5G illumination (100 mW cm⁻²). Values are averaged by ten devices.

Concentration	Voc	J_{SC}	FF	PCE
(mg/mL)	(mV)	(mA/cm^2)	(%)	(%)
6/10	913	23.22	75.88	16.09
	(911±2)	(22.42±0.72)	(75.83±1.08)	(15.50±0.65)
8/10	917	26.45	72.97	17.70
	(915±3)	(26.10±0.30)	(72.88±0.26)	(17.40 ± 0.18)
10/10	907	27.53	69.93	17.46
	(907±2)	(26.34±0.66)	(69.67±0.70)	(16.65 ± 0.40)
12/10	907	26.73	64.73	15.70
	(909±3)	(25.08 ± 1.15)	(64.94 ± 0.44)	(14.81±0.69)

Figure S5. Photovoltaic performance of the bilayer OSCs based on PM6/L8-BO changed with L8-BO concentration under simulated AM1.5G illumination (100 mW cm⁻²). Values are averaged by ten devices.

Concentration	Voc	J_{SC}	FF	PCE
(mg/mL)	(mV)	(mA/cm^2)	(%)	(%)
8/8	914	26.51	71.71	17.37
	(914±3)	(25.72±0.96)	(72.14±1.34)	(16.95±0.51)
8/10	917	26.45	72.97	17.70
	(915±3)	(26.10±0.30)	(72.88±0.26)	(17.40±0.18)
8/12	905	26.77	72.09	17.46
	(904±1)	(25.76±1.22)	(71.61±1.11)	(16.69±0.78)
8/14	908	25.99	72.41	17.07
	(908±2)	(25.71±0.86)	(71.56±0.44)	(16.62±0.51)

Figure S6. Photovoltaic performance of the bilayer OSCs based on PM6/L8-BO changed with BBS concentration under simulated AM1.5G illumination (100 mW cm⁻²). Values are averaged by ten devices.

Concentration	Voc	J_{SC}	FF	PCE
(mg/mL)	(mV)	(mA/cm^2)	(%)	(%)
0	917	26.45	72.97	17.70
	(915±3)	(26.10±0.30)	(73.01 ± 1.11)	(17.40 ± 0.18)
0.5	917	27.15	72.37	18.01
	(918±3)	(26.40±0.77)	(71.76±0.44)	(17.40 ± 0.60)
1	924	26.98	72.60	18.10
	(921±4)	(26.02 ± 0.67)	(73.01 ± 1.11)	(17.50 ± 0.38)
2	929	25.97	69.03	16.65
	(927±2)	(25.09±0.61)	(69.67 ± 1.14)	(16.20±0.29)
3	924	25.55	66.75	15.75
	(927±3)	(24.92 ± 1.04)	(65.52±0.91)	(15.12±0.60)

Figure S7. Photovoltaic performance of the bilayer OSCs based on PM6/L8-BO changed with CN concentration under simulated AM1.5G illumination (100 mW cm-2). Values are averaged by ten devices.

Volume Fraction	Voc	J_{SC}	FF	РСЕ
(%)	(mV)	(mA/cm^2)	(%)	(%)
0	917	26.45	72.97	17.70
	(915±3)	(26.10±0.30)	(73.01±1.11)	(17.40±0.18)
0.2	904	26.77	75.29	18.21
	(906±3)	(25.92±0.59)	(75.82 ± 0.88)	(17.80 ± 0.30)
0.5	889	27.10	77.06	18.56
	(893±4)	(26.96 ± 0.32)	(76.38 ± 0.68)	(18.39±0.17)
1	897	25.87	76.39	17.73
	(901±6)	(25.39±0.58)	(75.65±1.64)	(17.17±0.63)
2	886	7.87	54.62	3.81
	(877±7)	(7.36±0.29)	(54.63±2.00)	(3.52±0.22)

8. J-V measurements of PM6:L8-BO BHJ devices with and without

<u>additives</u>

Figure S13. | J-V curves of PM6:L8-BO BHJ devices with or without additives.

Table S8. Photovoltaic performance of the optimized BHJ OSCs based on PM6/L8-BO with or without additives under simulated AM1.5G illumination (100 mW cm⁻²). Values are averaged by 10 devices.

Materials	V _{OC} (mV)	J _{SC} (mA/cm ²)	FF (%)	PCE (%)
	921	26.5	70.5	17.3
PM0/L8-BO	917±7	25.9±0.5	70.1±0.4	16.6±0.4
	923	25.9	70.1	16.7
PMI0/L8-BO(BBS)	921±2	25.3±0.6	69.3±0.7	16.2±0.3
	897	26.4	78.0	18.5
PMIO/L8-BO(CN)	897±5	26.4±0.2	77.3±0.6	18.3±0.1
PM6/L8-	905	25.8	76.4	17.8
BO(BBS+CN)	893±9	25.7±0.6	75.6±1.0	17.3±0.3

9. EQE of PM6/L8-BO bilayer OSCs changed with additives

Figure S14. EQE spectra difference of PM6/L8-BO with and without additives.

10. Dark J-V measurements of bilayer OSCs based on PM6/L8-BO

with and without additives

Figure. S15 | Dark J-V curves of PM6/L8-BO bilayer OSCs with and without additives.

Figure. S16 | TPC curves of PM6/L8-BO bilayer OSCs with and without additives.
Table. S9 | Charge extraction time fitted by TPC measurements of bilayer devices based on PM6/L8-BO with and without additives.

Condition	Device 1	Device 2	Device 3	Device 4	Device 5
As-cast	0.39 µs	0.39 µs	0.37 µs	0.41 µs	0.36 µs
BBS	0.43 µs	0.39 µs	0.42 µs	0.41 µs	0.38 µs
CN	0.33 µs	0.33 µs	0.31 µs	0.35 µs	0.34 µs
BBS+CN	0.36 µs	0.35 µs	0.30 µs	0.34 µs	0.31 µs

Figure. S17 | TPV curves of PM6/L8-BO bilayer OSCs with and without additives.
Table. S10 | Carrier lifetime fitted by TPV measurements of bilayer OSCs based on PM6/L8-BO with and without additives.

Condition	Device 1	Device 2	Device 3	Device 4
As-cast	1.78 µs	1.93 µs	1.69 µs	1.51 μs
BBS	1.37 µs	1.35 µs	1.66 µs	1.96 µs
CN	2.67 µs	2.23 µs	2.07 µs	2.03 µs
BBS+CN	2.45 µs	2.38 µs	2.56 µs	2.89 μs

13. J-V curves of bilayer OSCs based on PM6/L8-BO

Figure. S18 | J-V curves of PM6/L8-BO bilayer OSCs with and without additives changed with light intensity.

14. DoS calculation

Figure. S19 | a) Mott-schottky spectra of devices based on PM6/L8-BO with and without additives. b) Capacitance-frequency spectra of devices based on PM6/L8-BO with and without additives.

The density of the state of trap distributions was performed through measurement of capacitance spectroscopy in a dark environment. In which, we applied capacitancevoltage (C-V) measurements under a frequency of 100 kHz at a different applied voltage from -1V to 1.2V (**Figure S16a**), and in the capacitance-frequency (C-f) measurement a varied frequency from 10 MHz to 10 Hz were used (**Figure S16b**). The demarcation energy E_{ω} and modulation frequency ω are described as:

$$\omega = \omega_0 \exp(-\frac{\Delta E}{k_{\rm B}T}) \tag{1}$$

with the solution of:

$$E_{\omega} = k_{\rm B} T ln(\frac{\omega_0}{\omega}) \tag{2}$$

The trap density at energy DoS (E_{ω}) can be acquired as:

$$DoS(E_{\omega}) = -\frac{V_{bi}}{qW} \frac{dC}{d\omega} \frac{\omega}{k_{\rm B}T}$$
(3)

Where $\omega_0 = 2\pi \nu_0$ ($\nu_0 = 10^{12}$ s⁻¹) is called the attempt-to-escape frequency, W is the depletion width, $\frac{dC}{d\omega}$ is the derivative of each point in the capacitance with respect of AC frequency. ^[3,4]

Condition	FWHM (meV)	E ₀ (meV)	$n_t (\times 10^{16}/cm^3)$	σ (meV)
As-cast	49.8	29.6	1.72	22.8
BBS	47.9	29.7	1.62	22.2
CN	44.4	29.3	1.28	19.8
BBS+CN	44.2	29.3	1.17	19.8

Table.S11Energetic disorder fitted by capacitance-voltage andcapacitance-frequency measurements of bilayer OSCs based on PM6/L8-BO with andwithout additives.

15. DLTS measurements of bilayer OSCs based on PM6/L8-BO

In this experiment, a method of transient photocurrent was used to the DLTS measurement. ^[5,6] In there, when a bias of 0V was applied the traps in space charge region were populated, and after a reverse bias of -2.5V used the trap filled can emit the captured charge carriers for heating up to a new bias condition. The carrier emission process is observed as a current transient in the device current signal. By following equation according to experimental data the trapped defect state volume density N_t can be given:

$$j_{te}(t) = \frac{1}{\tau_{te}} \cdot q \cdot d \cdot N_t \cdot exp\left(-\frac{t}{\tau_{te}}\right)$$
(4)

Here, j_{te} is trap emission current, τ_{te} is catch-trap emission time constant, q is a single charge amount, d is the thickness of the device.

Figure. S20 | Transient photocurrent of bilayer OSCs based on PM6/L8-BO with and without additives changed with applied voltage.

16. AFM measurements of N3 with and without additives

Figure. S21 | a) AFM topography of N3 films cast from DCM. b) Peak force error topography of N3 films cast from DCM.

Figure. S22 | Depth of N3 films changed with additives.

Figure. S23 | Roughness of N3 films changed with additives.

<u>17. Bimolecular recombination calculation</u>

Figure. S24 | Current versus time of bilayer OSCs based on PM6/N3 with and without additives obtained by photo-CELIV measurements.

Figure. S25 | Charge carrier density of bilayer OSCs based on PM6/N3 with and without additives as a function of delay time and the bimolecular recombination fits (solid lines).

Figure. S26 | J-V curves of PM6/N3 bilayer OSCs with and without additives changed with light intensity.

Figure. S27 | The change of FF with voltage of bilayer OSCs based on PM6/N3 with and without additives.

19. DLTS measurements of bilayer OSCs based on PM6/N3

Figure. S28 | Transient photocurrent of bilayer devices based on PM6/N3 with and without additives changed with applied voltage.

Figure. S29 | The change of DLTS with voltage of bilayer OSCs based on PM6/N3 with and without additives.

20. References

 Qin, Y. et al. Low Temperature Aggregation Transitions in N3 and Y6 Acceptors Enable Double-Annealing Method That Yields Hierarchical Morphology and Superior Efficiency in Nonfullerene Organic Solar Cells. *Adv. Funct. Mater. 30*, 2005011 (2020).
 Sun, R. et al. A Layer-by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency. *Joule.* 4, 407-419 (2020).

(3) Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. *Science*. **367**, 1352–1358 (2020).

(4) Jiang, K. et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. *Joule.* **3**, 3020-3033 (2019).

(5) Bozyigit, D. et al. Deep Level Transient Spectroscopy (DLTS) on Colloidal-Synthesized Nanocrystal Solids. *ACS Appl. Mater. Interfaces.* 5, 2915–2919 (2013).

(6) Li, R. et al. Self-Structural Healing of Encapsulated Perovskite Microcrystals for Improved Optical and Thermal Stability. *Adv. Mater.* **33**, 2100466 (2021).