Supplementary Information

### **Supplementary Tables**

**Supplementary Table 1** – Additional information including nominal capacity  $(Q_n)$ , preset end of life (EOL), total amount of cells used, and overall average battery life for all datasets. The codename/filename of cells used in train and test set(s) are listed below with their cycle lives.

| $Q_n = 3.0 \text{ Ah}$                 | 2.0-4.2 V                          | EOL = 80%                                                                               | Total = 21 cells                                                                                    | Average life = 541 cycles                                                                                                                |  |  |  |
|----------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| "SNL_18650_NMC_"                       |                                    |                                                                                         | File name – cycle life                                                                              |                                                                                                                                          |  |  |  |
| <b>Train</b><br>Total: 1<br>Average: 5 | 1 set<br>1 cells<br>15 cycles      | 15C_0-100_0<br>15C_0-100_0<br>25C_0-100_0.<br>25C_0-100_0<br>25C_0-100_0<br>25C_0-100_0 | .5-1C_a - 164<br>.5-2C_a - 156<br>5-0.5C_a - 546<br>.5-1C_a - 515<br>.5-1C_c - 391<br>.5-2C_a - 626 | 25C_0-100_0.5-3C_b - 421<br>25C_0-100_0.5-3C_d - 902<br>35C_0-100_0.5-1C_b - 523<br>35C_0-100_0.5-1C_d - 653<br>35C_0-100_0.5-2C_b - 765 |  |  |  |
| <b>Test</b><br>Total: 1<br>Average: 5  | <b>set</b><br>0 cells<br>69 cycles | 15C_0-100_0<br>15C_0-100_0<br>25C_0-100_0<br>25C_0-100_0<br>25C_0-100_0                 | .5-1C_b - 214<br>.5-2C_b - 151<br>5-0.5C_b - 569<br>.5-1C_b - 779<br>.5-1C_d - 467                  | 25C_0-100_0.5-3C_a - 723<br>25C_0-100_0.5-3C_c - 692<br>35C_0-100_0.5-1C_a - 657<br>35C_0-100_0.5-1C_c - 778<br>35C_0-100_0.5-2C_a - 660 |  |  |  |

SNL-NMC

### SNL-NCA

| $Q_n = 3.2 \text{ Ah}$ 2.5-4.2 V                          | EOL = 80%                                                                  | Total = 16 cells                                                                            | Average life = 435 cycles                                                                                    |  |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| "SNL_18650_NCA_"                                          | File name – cycle life                                                     |                                                                                             |                                                                                                              |  |  |
| <b>Train set</b><br>Total: 9 cells<br>Average: 431 cycles | 15C_0-100_0.<br>15C_0-100_0.<br>25C_0-100_0.<br>25C_0-100_0<br>25C_0-100_0 | $.5-1C_a - 342$<br>$.5-2C_a - 312$<br>$5-0.5C_a - 383$<br>$.5-1C_a - 493$<br>$5-1C_c - 378$ | 25C_0-100_0.5-2C_a - 455<br>35C_0-100_0.5-1C_a - 449<br>35C_0-100_0.5-1C_d - 647<br>35C_0-100_0.5-2C_b - 422 |  |  |
| <b>Test set</b><br>Total: 7 cells<br>Average: 439 cycles  | 25C_0-100_0.<br>25C_0-100_0.<br>35C_0-100_0.<br>35C_0-100_0.               | .5-1C_d - 541<br>.5-2C_b - 452 2<br>.5-1C_b - 459 2<br>.5-2C_a - 467                        | 15C_0-100_0.5-2C_b - 329<br>5C_0-100_0.5-0.5C_b - 331<br>25C_0-100_0.5-1C_b - 493                            |  |  |

#### SNL-LFP

| $Q_n = 1.1 \text{ Ah}$                 | 2.0-3.6 V                      | EOL = 90%                                                     | Total = 19 cells                                                                                                 | Average life = 2795 cycles                                                                                       |
|----------------------------------------|--------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| "SNL_186:                              | 50_LFP_"                       |                                                               | File name – cy                                                                                                   | cle life                                                                                                         |
| <b>Trair</b><br>Total: 1<br>Average: 2 | n set<br>0 cells<br>750 cycles | 15C_0-100_0.<br>15C_0-100_0.<br>25C_0-100_0.5<br>25C_0-100_0. | 5-1C_a - 4336       2         5-2C_a - 3614       2         -0.5C_a - 3047       3         5-1C_b - 3544       3 | 25C_0-100_0.5-3C_a - 2326<br>25C_0-100_0.5-3C_c - 1581<br>35C_0-100_0.5-1C_a - 1898<br>35C_0-100_0.5-1C_d - 2326 |

|                      | 25C_0-100_0.5-1C_d - 3026 | $35C_0-100_0.5-2C_b-1804$ |
|----------------------|---------------------------|---------------------------|
|                      | 15C_0-100_0.5-1C_b - 3549 | 25C_0-100_0.5-3C_b-2147   |
| Test set             | 15C_0-100_0.5-2C_b - 3485 | $25C_0-100_0.5-3C_d-2175$ |
| Total: 9 cells       | 25C_0-100_0.5-1C_a - 3515 | $35C_0-100_0.5-1C_b-1833$ |
| Average: 2844 cycles | 25C_0-100_0.5-1C_c - 3032 | $35C_0-100_0.5-2C_a-2326$ |
|                      | 25C_0-100_0.5-2C_a - 3538 |                           |

## UL-NCA

| $Q_n = 3.4 \text{ Ah}$  | 2.7-4.2 V | EOL = 85%                          | Total = 21 cells                          | Average life = 302 cycles         |
|-------------------------|-----------|------------------------------------|-------------------------------------------|-----------------------------------|
| "UL-PUR_18650_NCA_23C_" |           |                                    | File name – c                             | ycle life                         |
|                         |           | N10-EX9_0-100_                     | $0.5 - 0.5C_i - 197$ F                    | R10-OV5_2.5-96.5_0.5-0.5C_e = 256 |
| Train set               |           | N15-NA10_0-100                     | $0_0.5-0.5C_j - 266$ H                    | R20-EX2_2.5-96.5_0.5-0.5C_b - 257 |
| Average: 300 cvcles     | 00 cycles | N20-EX2_0-100_                     | _0.5-0.5C_b - 289 F                       | 20-NA8_2.5-96.5_0.5-0.5C_h - 490  |
| g                       |           | N20-NA6_0-100_<br>R10-EX6_2.5-96.5 | _0.5-0.5C_f - 199 F<br>5_0.5-0.5C_f - 304 | 220-OV1_2.5-96.5_0.5-0.5C_a - 268 |
|                         |           | N10-NA7_0-100_                     | _0.5-0.5C_g - 174 R                       | 10-NA11_2.5-96.5_0.5-0.5C_k-449   |
| Test                    | set       | N15-EX4_0-100_                     | _0.5-0.5C_d - 172                         | R15-EX4_2.5-96.5_0.5-0.5C_d - 364 |
| Total: 10 cells         | 0 cells   | N15-OV3_0-100_                     | _0.5-0.5C_c - 168                         | R15-OV3_2.5-96.5_0.5-0.5C_c - 406 |
| Average: 3              | 304 cells | N20-NA5_0-100_                     | _0.5-0.5C_e - 162                         | 20-NA7_2.5-96.5_0.5-0.5C_g - 363  |
|                         |           | N20-OV1_0-100_                     | _0.5-0.5C_a - 270                         | R20-NA9_2.5-96.5_0.5-0.5C_i - 508 |

# <u>XJTU</u>

| $Q_n = 2.0 \text{ Ah}$                              | 2.5-4.2 V  | EOL = 80%              | Total = 23 cells | Average life = 303 cycles |  |  |
|-----------------------------------------------------|------------|------------------------|------------------|---------------------------|--|--|
|                                                     |            | Code name – cycle life |                  |                           |  |  |
|                                                     |            | 3C_batter              | ry-1 – 299       | 3C_battery-2 – 292        |  |  |
|                                                     |            | 3C_batter              | ry-3 – 286       | 3C_battery-4 – 322        |  |  |
| <b>.</b> .                                          | ļ          | 3C_batter              | ry-5 – 297       | 3C_battery-6 - 322        |  |  |
| Train set<br>Total: 15 cells<br>Average: 249 cycles |            | 3C_battery-7 – 319     |                  | 3C_battery-8 – 270        |  |  |
|                                                     |            | 3C_battery-9 – 287     |                  | 3C_battery-10 - 164       |  |  |
|                                                     |            | 3C_battery-11 – 131    |                  | 3C_battery-12 - 212       |  |  |
|                                                     |            | 3C_battery-13 – 226    |                  | 3C_battery-14 - 147       |  |  |
|                                                     |            | 3C_battery-15 – 168    |                  |                           |  |  |
|                                                     |            | 2C_batter              | ry-1 – 390       | 2C_battery-2 - 407        |  |  |
| Secondary test set<br>Total: 8 cells                | y test set | 2C battery-3 – 393     |                  | 2C_battery-4 - 396        |  |  |
|                                                     | 402 cells  | 2C_batter              | ry-5 – 403       | 2C_battery-6 – 408        |  |  |
| Average: 402 cells                                  |            | 2C_batter              | ry-7-402         | 2C battery-8 – 420        |  |  |

# <u>TRI</u>

| $Q_n = 1.1 \text{ Ah}$ | 2.0-3.6 V | EOL = 80% | Total = 123 cells | Average life = 804 cycles |
|------------------------|-----------|-----------|-------------------|---------------------------|
|                        |           |           | Code name – cy    | vele life                 |

|                      | b1c1-2160    | b1c28 - 860  | b2c2 - 438   | b2c27 - 468  |
|----------------------|--------------|--------------|--------------|--------------|
|                      | b1c3-1434    | b1c30 - 709  | b2c4 - 444   | b2c29 - 498  |
|                      | b1c5-1074    | b1c32 - 731  | b2c6 - 511   | b2c31 - 492  |
|                      | b1c7-870     | b1c34 - 742  | b2c11 - 477  | b2c33 - 520  |
| Train set            | b1c11 – 788  | b1c36 - 704  | b2c13 - 483  | b2c35 - 463  |
| Total: 41 cells      | b1c15 – 719  | b1c38-617    | b2c17 - 494  | b2c37 - 478  |
| Average: 674 cycles  | b1c17-857    | b1c40-966    | b2c19 - 461  | b2c39 - 459  |
|                      | b1c19 - 788  | b1c42 - 702  | b2c21 - 489  | b2c41 - 429  |
|                      | b1c21 - 559  | b1c44 - 616  | b2c23 - 527  | b2c43 - 462  |
|                      | b1c24 – 1017 | b2c0 - 300   | b2c25 - 461  | b2c45 - 487  |
|                      | b1c26 - 870  |              |              |              |
|                      | b1c0-1852    | b1c27-842    | b2c5 - 480   | b2c30 - 481  |
|                      | b1c2-2237    | b1c29-917    | b2c10 - 561  | b2c32 - 519  |
|                      | b1c4-1709    | b1c31 - 876  | b2c12 - 458  | b2c34 - 499  |
|                      | b1c6-636     | b1c33 - 757  | b2c14 - 485  | b2c36 - 535  |
| Primary test set     | b1c9 – 1054  | b1c35 - 703  | b2c18 - 487  | b2c38 - 465  |
| Total: 42 cells      | b1c14-880    | b1c37 - 648  | b2c20 - 502  | b2c40 - 499  |
| Average: 723 cycles  | b1c16-862    | b1c39-625    | b2c22 - 513  | b2c42 - 466  |
|                      | b1c18-691    | b1c41 - 1051 | b2c24 - 495  | b2c44 - 457  |
|                      | b1c20 - 534  | b1c43 - 651  | b2c26 - 471  | b2c46 - 429  |
|                      | b1c23-1014   | b1c45 - 599  | b2c28 - 509  | b2c47 - 713  |
|                      | b1c25 - 854  | b2c3 - 335   |              |              |
|                      | b3c0-1009    | b3c11 - 817  | b3c21 - 772  | b3c33 - 1284 |
|                      | b3c1-1063    | b3c12 - 932  | b3c22 - 1002 | b3c34 - 1158 |
|                      | b3c3-1115    | b3c13-816    | b3c24 - 825  | b3c35 - 1093 |
|                      | b3c4 - 1048  | b3c14 - 858  | b3c25 - 989  | b3c36 - 923  |
| Secondary test set   | b3c5 - 828   | b3c15 - 876  | b3c26 - 1028 | b3c40 - 796  |
| Average: 1022 cycles | b3c6-667     | b3c16 - 1638 | b3c27 - 850  | b3c41 - 786  |
|                      | b3c7-1836    | b3c17-1315   | b3c28 - 541  | b3c42 - 1642 |
|                      | b3c8 - 828   | b3c18 - 1146 | b3c29 - 858  | b3c43 - 1046 |
|                      | b3c9-1039    | b3c19-1155   | b3c30 - 935  | b3c44 - 940  |
|                      | b3c10 - 1078 | b3c20 - 813  | b3c31 - 731  | b3c45 - 1801 |

**Supplementary Table 2** – List of HIs used as the input for Temperature models presented in **Fig. 4** for SNL-LFP, SNL-NMC, SNL-NCA, UL-NCA and XJTU datasets.

|       | Ш        | SNL-NMC      | SNL-NCA      | SNL-LFP      | UL-NCA       | XJTU         |
|-------|----------|--------------|--------------|--------------|--------------|--------------|
|       | ПІ       | (Charge)     | (Charge)     | (Discharge)  | (Charge)     | (Charge)     |
|       | Kurtosis |              | ✓            | $\checkmark$ |              |              |
|       | Max-Min  |              | ✓            |              |              |              |
|       | Maximum  |              |              | $\checkmark$ | $\checkmark$ |              |
| T(V)  | Mean     | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ |
|       | Minimum  | $\checkmark$ | $\checkmark$ |              |              |              |
|       | Skewness |              |              | ✓            | $\checkmark$ | ✓            |
|       | Variance |              | ✓            |              | $\checkmark$ | $\checkmark$ |
|       | Kurtosis |              |              |              | ✓            | $\checkmark$ |
|       | Max-Min  | ✓            |              |              | ✓            |              |
|       | Maximum  | ✓            |              |              | ✓            | $\checkmark$ |
| dT/dV | Mean     |              | ✓            |              |              | ✓            |
|       | Minimum  |              |              | ✓            | ✓            |              |
|       | Skewness | ✓            |              | $\checkmark$ | ✓            |              |
|       | Variance |              |              |              |              |              |

|           |                                            | TRI-Ten       | nperature         | TRI-H         | Iybrid            |
|-----------|--------------------------------------------|---------------|-------------------|---------------|-------------------|
|           | HI                                         | Charge<br>(Q) | Discharg<br>e (V) | Charge<br>(Q) | Discharg<br>e (V) |
|           | Kurtosis                                   |               |                   |               |                   |
|           | Max-Min                                    | √             |                   | ✓             |                   |
| T(Q)      | Maximum                                    |               |                   |               |                   |
| or        | Mean                                       |               |                   |               |                   |
| T(V)      | Minimum                                    | ✓             |                   |               |                   |
|           | Skewness                                   |               |                   | $\checkmark$  |                   |
|           | Variance                                   |               | ✓                 | $\checkmark$  |                   |
|           | Kurtosis                                   |               |                   |               |                   |
|           | Max-Min                                    |               |                   |               | $\checkmark$      |
| dT/dQ     | Maximum                                    | ✓             |                   | ✓             |                   |
| or        | Mean                                       | ✓             |                   |               |                   |
| dT/dV     | Minimum                                    |               |                   |               |                   |
|           | Skewness                                   | $\checkmark$  |                   |               |                   |
|           | Variance                                   |               |                   |               |                   |
|           | Average charge time first 5 cycles         |               |                   | ```           | /                 |
| Severson  | Internal resistance <sub>cycle 2</sub>     |               |                   | ۰             | /                 |
| et al.[1] | Minimum temperature <sub>cycle 2-10</sub>  |               |                   | ٧             | /                 |
|           | Temperature integral <sub>cycle 2-10</sub> |               |                   | ١             | (                 |

**Supplementary Table 3** – List of HIs used as the input for Temperature and Hybrid models presented in **Fig. 4** for TRI dataset.

**Supplementary Table 4** – Benchmark models: Discharge capacity ( $Q_d$ ) at cycle 2 or 5, and average cycle life of the training set (Train set mean) are used as the Naïve univariate models. Features used in "*Variance*", "*Discharge*", and "*Full*" models from Severson et al.[1] are adapted to use data from the first 10 cycles, instead of the original 100 cycles.

|                        | MAE (N     | IAPE%)     | RMSE (RMSPE%) |            |  |
|------------------------|------------|------------|---------------|------------|--|
|                        | Train Test |            | Train         | Test       |  |
| Q <sub>d cycle 5</sub> | 122 (24.8) | 128 (28.6) | 146 (29.0)    | 147 (40.6) |  |
| Train set mean (515)   | 169 (56.3) | 197 (56.7) | 218 (97.2)    | 220 (90.9) |  |
| Variance               | 167 (56.7) | 194 (56.8) | 214 (98.4)    | 220 (92.9) |  |
| Discharge              | 73 (16.5)  | 186 (49.1) | 86 (20.4)     | 257 (87.1) |  |

#### SNL-NMC

#### SNL-NCA

|                        | MAE (M     | IAPE%)    | RMSE (RMSPE%) |           |  |
|------------------------|------------|-----------|---------------|-----------|--|
|                        | Train Test |           | Train         | Test      |  |
| Q <sub>d cycle 5</sub> | 72 (17.2)  | 69 (16.7) | 92 (21.9)     | 79 (20.1) |  |
| Train set mean (431)   | 71 (16.5)  | 66 (16.1) | 94 (20.6)     | 75 (19.2) |  |
| Variance               | 68 (15.9)  | 67 (16.2) | 89 (20.5)     | 76 (19.0) |  |
| Discharge              | 59 (14.1)  | 71 (16.9) | 72 (17.5)     | 78 (18.6) |  |

#### SNL-LFP

|                                   | MAE (N     | IAPE%)     | RMSE (RMSPE%) |             |  |  |  |  |
|-----------------------------------|------------|------------|---------------|-------------|--|--|--|--|
|                                   | Train      | Test       | Train         | Test        |  |  |  |  |
| $\mathrm{Q}_{\mathrm{d}}$ cycle 5 | 755 (31.0) | 585 (22.3) | 842 (37.8)    | 620 (25.5)  |  |  |  |  |
| Train set mean (2750)             | 763 (31.0) | 654 (24.4) | 860 (36.7)    | 681 (26.5)  |  |  |  |  |
| Variance                          | 695 (28.5) | 954 (35.3) | 798 (34.2)    | 1021 (37.7) |  |  |  |  |
| Discharge                         | 305 (10.4) | 814 (31.9) | 392 (12.5)    | 948 (38.9)  |  |  |  |  |

#### <u>UL-NCA</u>

|                                   | MAE (N    | IAPE%)     | RMSE (RMSPE%) |            |  |  |  |  |
|-----------------------------------|-----------|------------|---------------|------------|--|--|--|--|
|                                   | Train     | Test       | Train         | Test       |  |  |  |  |
| $\mathrm{Q}_{\mathrm{d}}$ cycle 5 | 84 (27.4) | 47 (17.9)  | 102 (31.4)    | 56 (22.9)  |  |  |  |  |
| Train set mean (300)              | 91 (30.5) | 114 (45.7) | 127 (38.8)    | 124 (53.4) |  |  |  |  |
| Variance                          | 91 (30.5) | 114 (45.7) | 127 (38.8)    | 124 (53.4) |  |  |  |  |
| Discharge                         | 81 (26.2) | 65 (26.3)  | 101 (28.6)    | 74 (31.7)  |  |  |  |  |

# <u>XJTU</u>

|                      | MAE (N    | IAPE%)     | RMSE (RMSPE%) |            |  |  |  |  |
|----------------------|-----------|------------|---------------|------------|--|--|--|--|
|                      | Train     | Test       | Train         | Test       |  |  |  |  |
| Qd cycle 2           | 30 (14.5) | 84 (21.0)  | 38 (19.8)     | 92 (22.9)  |  |  |  |  |
| Train set mean (249) | 60 (29.1) | 153 (38.0) | 66 (37.5)     | 153 (38.0) |  |  |  |  |
| Variance             | 58 (28.2) | 105 (26.2) | 64 (35.7)     | 118 (29.7) |  |  |  |  |
| Discharge            | 25 (12.0) | 90 (22.2)  | 33 (16.3)     | 103 (25.2) |  |  |  |  |

# <u>TRI</u>

|                      | N          | IAE (MAPE%      | <b>(0)</b>        | RMSE (RMSPE%) |                 |                   |  |  |  |
|----------------------|------------|-----------------|-------------------|---------------|-----------------|-------------------|--|--|--|
|                      | Train      | Primary<br>Test | Secondary<br>Test | Train         | Primary<br>Test | Secondary<br>Test |  |  |  |
| Qd cycle 2           | 192 (26.4) | 229 (26.9)      | 482 (44.1)        | 315 (32.0)    | 388 (31.9)      | 557 (45.8)        |  |  |  |
| Train set mean (674) | 221 (33.5) | 248 (31.9)      | 355 (30.9)        | 323 (40.0)    | 389 (37.6)      | 450 (34.2)        |  |  |  |
| Variance             | 193 (25.9) | 240 (29.4)      | 410 (36.5)        | 317 (31.1)    | 397 (36.8)      | 496 (39.2)        |  |  |  |
| Discharge            | 182 (24.4) | 239 (29.0)      | 466 (42.3)        | 306 (29.3)    | 401 (35.8)      | 543 (44.2)        |  |  |  |
| Full                 | 80 (10.5)  | 122 (14.5)      | 304 (26.8)        | 143 (15.3)    | 202 (18.1)      | 380 (29.7)        |  |  |  |

**Supplementary Table 5** – Exploring the optimal set of HIs for Temperature model on the TRI dataset using the average HI of the first 3 to 10 cycles, evaluated on the test sets where MAE and RMSE of the primary and secondary test sets are provided below. Note that the first initialization cycle was excluded for all average ranges.

|             |          | Avg <sub>3</sub> |     | vg <sub>3</sub> Avg <sub>4</sub> |              | Avg <sub>5</sub> |              | Avg <sub>6</sub> |              | Avg <sub>7</sub> |              | Avg <sub>8</sub> |              | Avg <sub>9</sub> |              | Avg <sub>10</sub> |              |
|-------------|----------|------------------|-----|----------------------------------|--------------|------------------|--------------|------------------|--------------|------------------|--------------|------------------|--------------|------------------|--------------|-------------------|--------------|
|             | HI       | Ch               | Dis | Ch                               | Ch           | Ch               | Dis          | Ch                | Dis          |
|             |          | (Q)              | (V) | (Q)                              | (Q)          | (Q)              | (V)          | (Q)               | (V)          |
|             | Kurtosis |                  |     |                                  |              |                  |              |                  |              |                  |              |                  |              |                  |              |                   |              |
|             | Max-Min  | $\checkmark$     |     | $\checkmark$                     | $\checkmark$ | $\checkmark$     |              | $\checkmark$     |              | $\checkmark$     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$     |              | $\checkmark$      |              |
| T(Q)        | Maximum  |                  |     |                                  |              |                  |              |                  |              |                  |              |                  |              |                  |              |                   |              |
| or          | Mean     |                  |     |                                  |              |                  |              |                  |              |                  |              |                  |              |                  |              |                   |              |
| <i>T(V)</i> | Minimum  |                  |     |                                  |              |                  |              |                  |              |                  |              |                  |              |                  |              | $\checkmark$      |              |
|             | Skewness | $\checkmark$     |     |                                  |              | $\checkmark$     |              |                  |              |                  |              |                  |              |                  |              |                   |              |
|             | Variance |                  | ✓   |                                  | $\checkmark$ |                  | $\checkmark$ |                  | $\checkmark$ |                  | $\checkmark$ |                  | $\checkmark$ |                  | $\checkmark$ |                   | $\checkmark$ |
|             | Kurtosis |                  |     |                                  |              |                  |              |                  |              |                  |              |                  |              |                  |              |                   |              |
|             | Max-Min  |                  |     |                                  |              |                  |              |                  |              |                  | $\checkmark$ |                  | $\checkmark$ |                  |              |                   |              |
| dT/dQ       | Maximum  | $\checkmark$     |     | $\checkmark$                     |              | $\checkmark$     |              | $\checkmark$     |              | $\checkmark$     |              | $\checkmark$     |              | $\checkmark$     |              | $\checkmark$      |              |
| or          | Mean     |                  |     |                                  |              | $\checkmark$     |              |                  |              |                  |              |                  |              | $\checkmark$     |              | $\checkmark$      |              |
| dT/dV       | Minimum  |                  |     |                                  |              |                  |              |                  |              |                  |              |                  |              |                  |              |                   |              |
|             | Skewness |                  |     | $\checkmark$                     |              | $\checkmark$     |              | ~                |              | $\checkmark$     |              | $\checkmark$     |              | $\checkmark$     |              | $\checkmark$      |              |
|             | Variance |                  |     |                                  |              | $\checkmark$     |              | ~                |              | $\checkmark$     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$     |              |                   |              |
| Primary     | MAE      | 1.               | 55  | 15                               | 155<br>257   |                  | 39           | 13               | 30           | 12               | 20           | 12               | 26           | 12               | 28           | 12                | 29           |
| test        | RMSE     | 23               | 38  | 25                               |              |                  | 21           | 20               | )5           | 20               | )2           | 222              |              | 221              |              | 216               |              |
| Seconda     | MAE      | 19               | 98  | 20                               | )5           | 19               | 97           | 18               | 32           | 180              |              | 183              |              | 176              |              | 174               |              |
| ry test     | RMSE     | 20               | 54  | 27                               | 76           | 26               | 59           | 25               | 59           | 2.               | 56           | 26               | 56           | 264              |              | 257               |              |

**Supplementary Table 6** – Exploring the optimal set of HIs for Hybrid model on the TRI dataset using the average HI of the first 3 to 10 cycles, evaluated on the test sets where MAE and RMSE of the primary and secondary test sets are provided below. Note that the first initialization cycle was excluded for all average ranges.

|                    |                     | Avg <sub>3</sub> |     | $Avg_3$ $Avg_4$ |              | Av           | Avg <sub>5</sub> |              | <sup>7</sup> g <sub>6</sub> | Av           | /g <sub>7</sub> | Avg <sub>8</sub> |              | Avg <sub>9</sub> |              | Avg <sub>10</sub> |              |
|--------------------|---------------------|------------------|-----|-----------------|--------------|--------------|------------------|--------------|-----------------------------|--------------|-----------------|------------------|--------------|------------------|--------------|-------------------|--------------|
|                    | HI                  | Ch               | Dis | Ch              | Ch           | Ch           | Dis              | Ch           | Dis                         | Ch           | Dis             | Ch               | Dis          | Ch               | Dis          | Ch                | Dis          |
|                    |                     | (Q)              | (V) | (Q)             | (Q)          | (Q)          | (V)              | (Q)          | (V)                         | (Q)          | (V)             | (Q)              | (V)          | (Q)              | (V)          | (Q)               | (V)          |
|                    | Kurtosis            |                  |     |                 |              |              |                  |              |                             |              |                 |                  |              |                  |              |                   |              |
|                    | Max-Min             | $\checkmark$     |     |                 | $\checkmark$ |              | $\checkmark$     | $\checkmark$ |                             | $\checkmark$ |                 | $\checkmark$     |              | $\checkmark$     |              | $\checkmark$      |              |
| T(Q)<br>or<br>T(V) | Maximum             |                  |     |                 |              | $\checkmark$ |                  |              |                             |              |                 |                  |              |                  |              |                   |              |
|                    | Mean                |                  |     |                 |              |              |                  |              |                             |              |                 |                  |              |                  |              |                   |              |
|                    | Minimum             |                  |     |                 |              |              |                  |              |                             |              |                 |                  |              |                  |              |                   |              |
|                    | Skewness            | $\checkmark$     |     | $\checkmark$    |              | $\checkmark$ |                  | $\checkmark$ |                             | $\checkmark$ |                 | $\checkmark$     |              | $\checkmark$     |              | $\checkmark$      |              |
|                    | Variance            | $\checkmark$     | ✓   |                 | $\checkmark$ | $\checkmark$ | $\checkmark$     | $\checkmark$ |                             | $\checkmark$ | $\checkmark$    | $\checkmark$     |              | $\checkmark$     |              | $\checkmark$      |              |
|                    | Kurtosis            |                  |     |                 |              |              |                  |              |                             |              |                 |                  |              |                  |              |                   |              |
|                    | Max-Min             |                  |     |                 |              |              |                  |              | $\checkmark$                |              |                 |                  | $\checkmark$ |                  | $\checkmark$ |                   | $\checkmark$ |
| dT/dQ              | Maximum             | $\checkmark$     |     | $\checkmark$    |              | $\checkmark$ |                  | $\checkmark$ |                             | $\checkmark$ |                 | $\checkmark$     |              | $\checkmark$     |              | $\checkmark$      |              |
| or                 | Mean                |                  |     |                 |              |              |                  |              |                             |              |                 |                  |              |                  |              |                   |              |
| dT/dV              | Minimum             |                  |     |                 |              |              |                  |              |                             |              |                 |                  |              |                  |              |                   |              |
|                    | Skewness            |                  |     |                 |              |              |                  |              |                             |              |                 |                  |              |                  |              |                   |              |
|                    | Variance            |                  |     |                 |              |              |                  |              |                             |              |                 |                  |              |                  |              |                   |              |
|                    | Average             | 1                |     |                 |              |              |                  |              |                             |              |                 |                  |              |                  |              |                   |              |
|                    | charge time         | $\checkmark$     |     | $\checkmark$    |              | $\checkmark$ |                  | v            | /                           | v            | /               | v                | /            | ✓                |              | $\checkmark$      |              |
|                    | first 5 or x cycles |                  |     |                 |              |              |                  |              |                             |              |                 | ───              |              | <b> </b>         |              |                   |              |
|                    | Internal            |                  |     |                 |              |              |                  |              |                             |              |                 |                  |              |                  |              | /                 |              |
| Severso            | resistance          |                  |     |                 |              |              |                  | V            |                             |              |                 | v                |              | <b>√</b>         |              | ✓                 |              |
| n et               | cycle 2             |                  |     |                 |              |              |                  |              |                             | <b></b>      |                 | +                |              | <u> </u>         |              |                   |              |
| al.[1]             | temperature         | • •              | /   |                 | /            | ✓            |                  | · .          | ×                           |              | <u> </u>        |                  | /            |                  | /            |                   | /            |
|                    | cycle 2 x           |                  |     |                 |              | Ÿ            |                  | •            |                             |              |                 |                  |              | ľ                |              | *                 |              |
|                    | Temperatur          |                  |     |                 |              |              |                  |              |                             |              |                 |                  |              |                  |              | 1                 |              |
|                    | e integral          | v                | /   | v               | /            | v            | /                | v            | /                           | v            | /               | v                | /            | v                | /            | v                 | /            |
|                    | cycle 2-x           |                  |     |                 |              |              |                  |              |                             |              |                 |                  |              |                  |              |                   |              |
| Primary            | MAE                 | 8                | 5   | 9               | 6            | 8            | 8                | 8            | 8                           | 8            | 9               | 9                | 4            | 9                | 5            | 9                 | 4            |
| test               | RMSE                | 13               | 35  | 14              | 41           | 13           | 38               | 13           | 35                          | 13           | 38              | 14               | 45           | 14               | 47           | 14                | 16           |
| Seconda            | MAE                 | 15               | 53  | 1.5             | 57           | 1.5          | 50               | 16           | 50                          | 1.           | 51              | 14               | 48           | 14               | 48           | 14                | 18           |
| ry test            | RMSE                | 21               | 11  | 20              | )2           | 20           | )4               | 20           | )4                          | 20           | )4              | 20               | )4           | 20               | 02           | 203               |              |

#### **Supplementary Figures**

Supplementary Figure 1 – Visualization of TRI dataset distribution and the highlighted feature for cycles difference of 100-10 and 10-2. **a**, Cycle life as a function of discharge capacity until EOL, 0.88 Ah. **b-c**, Plot of discharge capacity curve difference for **b**, cycle 100 – 10 ( $\Delta Q_{100-10}(V)$ ), and **c**, cycle 10-2 ( $\Delta Q_{10-2}(V)$ ), as a function of voltage. **d-e**, The feature variance of  $\Delta Q_{y-x}(V)$  is plotted against cycle life for **d**,  $\Delta Q_{100-10}(V)$ , and **e**,  $\Delta Q_{10-2}(V)$  with a Pearson correlation coefficient of -0.93 and -0.14, respectively, under a logarithmic-scale on both axes. In all figures, color opacity indicates the EOL of cells.



**Supplementary Figure 2** – Cycling temperature profiles of three sample cells at cycle 10 with cycle life annotated in the bracket, and (dis)charge capacity as the x-axis for SNL, UL and XJTU datasets.





**Supplementary Figure 3** – Five HIs used in the Temperature model for SNL-NMC were preprocessed to their standardized values (i.e. z-score) as shown on the x-axis based on their training set, plotted against cycle life under a normal scale on the y-axis. The marker colors represent the train (green) and test (blue) data, the marker shape represents the discharge C-rates (circle: 1 C, square: 2C, triangle: 3C), and the marker outline color represents the environment temperature (light blue: 15°C, black: 25°C, red: 35°C). The coefficient (w) is notated at the top of each HI plot.



**Supplementary Figure 4** – Five HIs used in the Temperature model for SNL-NCA were preprocessed to their standardized values (i.e. z-score) as shown on the x-axis based on their training set, plotted against cycle life under a logarithmic scale on the y-axis. The marker colors represent the train (green) and test (blue) data, the marker shape represents the discharge C-rates (circle: 1 C, square: 2C), and the marker outline color represents the environment temperature (light blue: 15°C, black: 25°C, red: 35°C). The coefficient (w) is notated at the top of each HI plot.



**Supplementary Figure 5** – Six HIs used in the Temperature model for SNL-LFP were preprocessed to their standardized values (i.e. z-score) as shown on the x-axis based on their training set, plotted against cycle life under normal scale on the y-axis. The marker colors represent the train (green) and test (blue) data, the marker shape represents the discharge C-rates (circle: 1 C, square: 2C, triangle: 3C), and the marker outline color represents the environment temperature (light blue: 15°C, black: 25°C, red: 35°C). The coefficient (w) is notated at the top of each HI plot.



**Supplementary Figure 6** – Eight HIs used in the Temperature model for UL-NCA were preprocessed to their standardized values (i.e. z-score) as shown on the x-axis based on their training set, plotted against cycle life under a logarithmic scale on the y-axis. The marker colors represent the train (green) and test (blue) data. The coefficient (w) is notated at the top of each HI plot.



**Supplementary Figure 7** – Six HIs used in the Temperature model for XJTU were preprocessed to their standardized values (i.e. z-score) as shown on the x-axis based on their training set, plotted against cycle life under normal scale on the y-axis. The marker colors represent the train (green) and test (blue) data, and the marker shape represents the charge C-rates (square: 2C, triangle: 3C). The coefficient (w) is notated at the top of each HI plot.



**Supplementary Figure 8** – Six HIs used in the Temperature model for TRI were preprocessed to their standardized values (i.e. z-score) as shown on the x-axis based on their training set, plotted against cycle life under a logarithmic scale on the y-axis. The marker colors represent the train (green), primary test (blue), and secondary test (orange) data. The coefficient (w) is notated at the top of each HI plot.



**Supplementary Figure 9** – Nine HIs used in the Hybrid model for TRI were preprocessed to their standardized values (i.e. z-score) as shown on the x-axis based on their training set, plotted against cycle life under logarithmic scale on the y-axis. The marker colors represent the train (green), primary test (blue), and secondary test (orange) data. The coefficient (w) is notated at the top of each HI plot.



**Supplementary Figure 10** – "*Variance*", "*Discharge*" and "*Full*" models, recreated using the first 10 cycles on each dataset, were used as benchmarks. The models are indicated by the plot line colors orange, red, and violet respectively, and the related dataset name is notated at the top of each plot. Only the TRI dataset uses the "*Full*" model as internal resistance information was unavailable on other datasets.



**Supplementary Figure 11** – Performance of Temperature and Hybrid models trained using the average HI across different cycle ranges from 3 to 100 cycles. MAE (solid gray line) and RMSE (hollow olive line) of the trained Average  $HI_x$  cycles models are evaluated against the test sets in each dataset, on the primary test set for **a**, SNL-NMC, **b**, SNL-NCA, **c**, SNL-LFP, **d**, UL-NCA, **f**, TRI; and secondary test set for **e**, XJTU, **g**, TRI. The Temperature model is indicated by circle markers, whereas the Hybrid model is represented using triangle markers. Note that the first initialization cycle was excluded for all average ranges.



### Supplementary Note 1 – Online dataset preparation and feature engineering

In this study, we used four online datasets provided by Toyota Research Institute (TRI)[1], Sandia National Laboratories (SNL)[2], Underwriters Laboratories Inc. and Purdue University (UL-PUR)[3], and Xi'an Jiaotong University (XJTU)[4] as shown in Section 2.2 and Supplementary Table 1. The raw data were initially prepared in MATLAB as struct format, then converted into Python dictionaries for preprocessing (e.g. filling in missing data), standardizing the formatting of array vectors, and extracting key features, or Health Indicators (HIs). Following this, the data were transformed and used for model training, during which the HI values were selected and rescaled. To ensure consistent data processing, we linearly interpolated the raw temperature data, focusing specifically on the constant-current (CC) region. This interpolation produced temperature vectors with 100 evenly spaced values as a function of voltage (or capacity), ensuring uniform vector formatting. Since each dataset used different battery chemistries, the cutoff voltages (or capacities) for interpolation were as follows:

- SNL-NMC: Charge 3.15 4.195 V; Discharge 4.195 2.005 V
- SNL-NCA: Charge 3.5 4.195 V; Discharge 4.195 2.505 V
- SNL-LFP: Charge 2.995 3.595 V; Discharge 3.595 2.005 V
- UL-NCA: Charge 2.95 4.195 V; Discharge 4.195 2.705 V
- TRI: Charge 0 0.88 Ah; Discharge 3.6 2.04 V
- XJTU: Charge 3.6 4.195 V; Discharge 4.15 2.5 V

We applied small adjustments to the interpolation cutoff voltages to accommodate overpotential at the start of charging, and to capture the final points before the constant-voltage (CV) phase during discharge. Although we tested including the entire CC-CV region for the TRI dataset, this approach significantly increased the Pearson correlation coefficient for some statistical HIs in both the training and primary test sets. However, to avoid overfitting the TRI training set and sacrificing accuracy on the secondary test set, we ultimately decided not to use the full CC-CV region. The secondary test set for TRI is critical, as it evaluates the generalizability of our proposed temperature-based model.

For the TRI dataset, we used capacity instead of voltage for the charging region interpolation. This decision was made because the charging protocols often involved multi-step current settings at specific states of charge (SOC), leading to sharp voltage fluctuations when the current was switched. These fluctuations introduced noise into the temperature-voltage profile, so using capacity instead of voltage provided a cleaner data set for interpolation. For the other datasets, voltage was used for interpolation to evaluate the variation in ohmic overpotential at the beginning of charge or discharge between battery cells. Additionally, the upper cutoff capacity value for segregating the CC stage varied slightly between cells of the same cycle number, making voltage a more convenient variable for these datasets.

After interpolation, we extracted statistical HIs from the temperature vectors, with their formula expressed in **Supplementary Note 2**. For model prediction, we transformed the target variable (i.e., cycle life) to its  $log_{10}$  value. Severson et al[1] reported a better relationship between their features and  $log_{10}$  cycle life, as it linearizes the observed exponential trend when using the normal scale for cycle life. We applied this  $log_{10}$  transformation to SNL-NCA and UL-NCA, but not SNL-LFP, SNL-NMC and XJTU. In the case of LFP dataset, which has a very high cycle life range (i.e. 1500-4500), the  $log_{10}$  transformation altered the relationship between the HIs and cycle life in a way that was less effective than using the normal scale. Similarly, for SNL-NMC and XJTU, we found that using the normal cycle life scale yielded slightly better or similar results.

Finally, we used the extracted HIs to train our models via ElasticNet regularization, combined with an exhaustive search for feature selection. The Pearson correlation coefficient was employed to rank and prioritize the selection of HIs during the optimization process, reducing training time. We also standardized the features during model training to ensure that all feature weightings were comparable.

#### Supplementary Note 2 – Formulation of statistical temperature HIs

T[V] or T[Q] is a temperature vector of S = 100 elements with equal intervals of V or Q. The temperature gradient dT/dV or dT/dQ is derived from the gradient of each corresponding temperature vector with length S - 1 (i.e. 99 elements). The statistical HI summary formulas are shown below[4,5] where the vectors T[V], T[Q], dT/dV, and dT/dQ are represented as X interchangeably,  $\overline{X}$  is the vector mean, and  $x_i$  indicates the element of each vector.

- 1. Maximum =  $\log_{10} (|max(X)|)$
- 2. Minimum =  $\log_{10} (|min(X)|)$
- 3. Maximum Minimum =  $\log_{10} (|max(X) min(X)|)$

4. Mean =  

$$\log_{10} \left( \left| \frac{1}{S} \sum_{i=1}^{S} x_i \right| \right)$$
5. Variance =  

$$\log_{10} \left( \left| \frac{1}{S} \sum_{i=1}^{S} (x_i - \overline{X})^2 \right| \right)$$
6. Skewness =  

$$\log_{10} \left( \frac{1}{S} \sum_{i=1}^{S} (x_i - \overline{X})^3 (x_i - \overline{X})^2 \right)^3$$
6. Skewness =  

$$\log_{10} \left( \frac{1}{S} \sum_{i=1}^{S} (x_i - \overline{X})^2 (x_i - \overline{X})^2 (x_i - \overline{X})^2 \right)^3$$
7. Kurtosis =

### Supplementary Note 3 – Limitations of temperature HI efficacy

This study covers various cycling operations, including diverse environmental temperatures and cathode chemistries. However, the current design remains somewhat inflexible and leaves room for improvement, particularly in terms of extracting HIs from partial cycling data (i.e. less than 100% DOD) and selecting an optimal set of universal HIs. For instance, the HIs used in our models were chosen based on the best generalization performance for each individual dataset. As a result, no single set of HIs consistently stands out across all datasets, as their predictive impact varies depending on the specific characteristics of each dataset.

Statistical temperature HIs were computed for each of the first 10 cycles and the average values of each HI were used as the model input (i.e. 1-D vector). We initially explored the performance of the model when using HIs from later cycles, but found that adding more data did not necessarily improve predictive accuracy, as illustrated in **Fig. 5 and Fig. S11**. There are several possible reasons for this result. First, the models were trained on the best set of averaged HIs, but the importance of each HI likely shifts from cycle to cycle. While it would be possible to find the best model for each individual cycle through an exhaustive search, this approach would be time-consuming and was not pursued in this study.

Second, our study does not account for the evolution of the temperature profile between early and later cycles, a factor that was considered by Severson et al.[1] As batteries age, the magnitude of temperature fluctuations tends to increase, leading to larger temperature swings. When extracting HIs from single-cycle data, this consistent shift in temperature magnitude can make differences between cells less apparent. As a result, the Pearson correlation coefficient between the HIs and cycle life remains relatively unchanged across different cycles. Further investigation could involve comparing the distribution of temperature profiles between early and later cycles to gain deeper insights into this phenomenon.

Data quality and quantity play a crucial role in model performance. For example, in the Hybrid model used on the TRI dataset, errors in the secondary test set were higher than those observed in the training and primary test sets. This discrepancy could be indicative of overfitting, which may have originated from either model complexity or insufficient data. In this case, the latter is likely the primary issue, as Severson et al.[1] noted that calendar aging effects persist in their secondary test set. Our model may not fully capture these calendar aging patterns, which could explain the elevated error rates.

Additionally, we aimed to develop accurate early-cycle models by minimizing the training data, which was done via a balanced train-test split ratio. Our Temperature model performed better than expected on the XJTU dataset with a 2:1 split ratio. The train set consists of 3C charging rate protocols, which predicted the test set, containing 2C charging rate (i.e. out-of-protocol predictions), very accurately as shown in **Fig. 4**. However, we could not replicate similar results on the other datasets, UL-NCA and SNL datasets, which are heavily affected by data insufficiency. These datasets are much smaller than TRI, with each model being trained on only around 10 data points for the k-fold splits and a 1:1 split ratio. This limited amount of data combined with more experimental dimensionality including environmental temperature and discharge rate settings may be inadequate for effective feature selection on 14 HIs. While

it would be possible to adjust the train-test ratio, a larger dataset would be required for more robust model validation against training data overfitting.

We note that the proposed temperature HIs have been specifically tested on lithium-ion cells, leveraging the heat generated from resistive components and charge transfer processes inherent in intercalation-based systems. While effective for LIBs due to their electrochemical and thermal behaviors, the effectiveness of these HIs may vary for energy storage technologies with different degradation mechanisms, such as conversion-based systems. Further research is needed to validate their universality across various technologies. Additionally, the LIB datasets used in this study feature cylindrical-18650 cells with single-point temperature measurements. While these temperature HIs could potentially be adapted for different cell configurations, incorporating a greater number and strategic placement of temperature sensors may enhance data collection and analysis.

References

[1] K. Severson, P. Attia, N. Jin, N. Perkins, B. Jiang, Z. Yang, M. Chen, M. Aykol, P. Herring, D. Fraggedakis and M. Bazant, *Nat. Energy*, 2019, **4**, 383-391.

[2] Y. Preger, H. Barkholtz, A. Fresquez, D. Campbell, B. Juba, J. Romàn-Kustas, S. Ferreira and B. Chalamala, *J. Electrochem. Soc.*, 2020, **167**, 120532.

[3] D. Juarez-Robles, J. Jeevarajan and P. Mukherjee, J. Electrochem. Soc., 2020, 167, 160510.

[4] F. Wang, Z. Zhai and Z. Zhao, Nat. Commun., 2024, 15, 4332.

[5] C. Harris, K. Millman and S. van der Walt, Nature, 2020, 585, 357-362.

[6] F. Pedregosa, J. Mach. Learn. Res., 2011, 12, 2825-2830.