
 

 

Electronic Supplementary Information (ESI) 

 

Data-driven insights into reaction mechanism of  

Li-rich cathodes 

Jieun Kima,†, Injun Choib, †, Ju Seong Kima, Hyokkee Hwangb, Byongyong Yua, Sang-Cheol Nama, 

and Inchul Parka,*  

 

aLiB Materials R&D Laboratory, POSCO N.EX.T Hub, 100 Songdogwahak-ro, Yeonsu-gu, Incheon, 

21985, Republic of Korea. 

b Convergence Innovation Research Laboratory, Research Institute of Industrial Science & 

Technology, 67 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea 

Email Address: inchul@posco-inc.com 

*Corresponding author at: inchul@posco-inc.com 

†These authors contributed equally to this work. 

  

Supplementary Information (SI) for Energy & Environmental Science.
This journal is © The Royal Society of Chemistry 2025

mailto:inchul@posco-inc.com
mailto:inchul@posco-inc.com


 

 

Table S1. Description of the collected experimental dataset 

Items Value & conditions 

Dataset 

# of cells 390 

# of cycles 30,467 

Electrode 

Cathode material 92.5 wt% 

Conductor 3.5 wt% 

Binder 4.0 wt% 

Electrode density Min: 2.53, Max: 3.18, Mean: 2.85 g/cm3 

Drying condition 130 ℃, 20 min 

Coin Half Cell 

Size 2032 

Al-foil 20 um thickness 

Anode Li-metal 

Electrolyte 1M LiPF6 in (EC+EMC = 3 : 7 vol. ratio) 

Separator Polypropylene 

Test Sequence 

cc-mode 

Standard capacity 1C, 200mAh/g 

Temperature 25 ℃ 

Formation & initial cycles 0.1C/0.1C~2C (4.7/4.5-2.5V) 

Cycle test 0.5C/0.5C (4.5-2.5V) 

  



 

 

Supplementary Section 1. Detailed Preprocessing Criteria and Rationale 

(Figure S1 - 2) 

This section provides a comprehensive overview of the filtering thresholds and interpolation 

choices discussed in the main text (Section 2.1 and Experimental Section). The primary goal is 

to ensure that only consistent and representative charge curves are retained for PCA, thereby 

minimizing noise and spurious signals arising from early activation, dendritic failures, or 

abnormal cycling behavior.  

Although lower cutoffs (e.g., 2.0 - 2.5 V) and higher cutoffs (e.g., 4.8 - 4.9 V) can provide 

additional insights into Mn3+/4+ and oxygen redox mechanisms, we limited our upper voltage 

to 4.5 V due to industrial considerations that aim to reduce electrolyte oxidation above 4.5 V. 

In addition, we emphasize charge curves rather than discharge curves because the charging 

process is more controllable, enabling a consistent representation of the electrochemical 

behavior and state of health. 

 

S1.1. Activation Considerations  

1. Exclusion of Cycles Before the 10th-Cycles 

• Description: We disregard the first nine cycles for each cell, beginning our analysis from 

the 10th cycle onward.  

• Rationale: Many Li-rich layered oxide (LRLO) materials undergo “activation” during the 

initial few cycles, where capacity and average voltage can fluctuate significantly. By focusing 



 

 

on cycles after this phase, we capture more stable behavior reflective of the material’s steady-

state operation.  

2. Minimum 10th-Cycle Capacity (> 160 mAh g⁻¹)  

• Description: If a cell’s 10th-cycle capacity falls below 160 mAh g⁻¹, we exclude that cell 

entirely.  

• Rationale: Persistently low capacity at this point suggests that either the cell is defective, 

or the material is failing to activate properly. We remove such cells to avoid confounding 

lower-limit outliers in the PCA analysis. 

 

S1.2. Capacity-Based Outlier Removal  

1. Capacity range (150–250 mAh g⁻¹)  

• Description: For any cycle, if the capacity is < 150 mAh g⁻¹ or > 250 mAh g⁻¹, we discard 

that specific cycle from further consideration.  

• Rationale:  

Empirical observations from operating LRLO-based cathodes in the 3.0–4.5 V range suggest 

that their capacities typically lie between roughly 150 and 250 mAh g⁻¹ after activation. Values 

far outside this range are likely attributable to measurement errors, sudden cell failures, or 

extraneous test conditions (e.g., accidental short circuits).  

2. Minor Recovery Artifacts (Capacity > 1.025× Previous Cycle)  



 

 

• Description: If a cycle’s capacity exceeds 1.025 times that of the immediately preceding 

cycle, we exclude the anomalous cycle only.  

• Rationale: Slight capacity “jumps” can occur when different testing protocols introduce 

partial rest steps or small changes in temperature. These rest steps are often employed as a 

precautionary measure every 25 cycles; while they might transiently reverse some degradation 

markers, we observe that such steps do not substantially alter long-term patterns (Figure S1). 

Because our focus is on continuous degradation trends, these abrupt bumps may not represent 

genuine electrochemical behavior and are excluded.  

3. Major Capacity Fluctuations (Capacity > 1.25× or < 0.8× Previous Cycle)  

• Description: If a cycle’s capacity is more than 25% higher or 20% lower than the previous 

cycle, no subsequent cycles from that cell are included.  

• Rationale: Large, sudden jumps or drops often reflect severe cell malfunctions—such as 

dendrite growth, electrolyte depletion, or internal shorting. Once such an event occurs, the 

long-term cycling profile for that cell typically remains unreliable, and those data are excluded 

from any further analyses.  

 

S1.3. Interpolation and Mean Subtraction  

• Interpolation:  

We linearly interpolated the retained charge curves onto a uniform voltage grid from 3.0 

to 4.5 V, dividing the range into 10,000 equally spaced intervals. This method is 



 

 

computationally straightforward and aligns with the general smoothness of voltage-capacity 

profiles under standard low to moderate C-rates.  

• Zero-Mean Transformation:  

After interpolation, we compute the mean capacity across all training curves at each voltage 

point and subtract it to ensure zero-mean data for PCA. This procedure isolates the relative 

differences in capacity-voltage behavior between cells.  

 

S1.4. Justification and Practical Implications  

• Why These Thresholds?  

The 1.025, 1.25, and 0.8 multipliers are empirically derived through extensive internal 

testing of LRLO coin cells. They reflect practical cutoffs beyond which anomalies are typically 

irreversible or unrepresentative of normal cycling.  

• Effect on Final Dataset:  

While these filters remove a notable fraction of cycles that are “edge cases”, this results in a 

more reliable and consistent dataset, ultimately improving the interpretability of PCA results.  

• Flexibility:  

If future studies employ different cycling protocols or operate in wider capacity ranges, these 

threshold values may be adjusted. The methodology remains general: the goal is to remove 

spurious data while capturing the true material degradation trends.  

 



 

 

By applying these steps and thresholds (Figure S2), we ensure that the final set of charge 

curves more accurately reflects the genuine electrochemical behavior of LRLO materials 

during cycling, mitigating artificial perturbations and noise.  

Note: To reproduce the data further, please refer to the provided Jupyter notebooks 

available on GitHub. The detailed calculation process performed in this study is available at 

https://github.com/LRLO-PCA/Data-driven-insights-into-reaction-mechanism-of-Li-rich-

cathodes  

https://github.com/LRLO-PCA/Data-driven-insights-into-reaction-mechanism-of-Li-rich-cathodes
https://github.com/LRLO-PCA/Data-driven-insights-into-reaction-mechanism-of-Li-rich-cathodes


 

 

 

Figure S1. Average voltage (a) with recovery steps and (b) without recovery steps. 

 

  



 

 

 
Figure S2. The charge curve dataset before and after filtering from LRLO used for PCA in 

this study 

 

  



 

 

 
 

Figure S3. Flowchart of this research 

  



 

 

Supplementary Section 2. Evaluation of Alternative Dimensionality 

Reduction and Regression Methods (Figure S4, Table S2 - 4) 

We employed NMF (Non-negative matrix factorization) as an alternative dimensionality 

reduction technique in addition to PCA. The results show that the component shapes are 

complex and noisy, which hinders the ability to derive insights into electrochemical processes 

(Figure S4). The reconstruction using NMF components also yield less accurate results 

compared to PCA (Table S2). 

For the ablation study at the charge curve prediction phase, we assumed that some principal 

components we extract are not effective for predicting charge curves. To this, Lasso and Ridge 

regression were utilized instead of linear regression, revealing a higher mean of RMSE 

compared to linear regression, which employs all seven components (Table S3). This fact 

suggests that models with pushing component weights toward zero are not suitable in this 

system. 

Also, to consider the latent non-linear characteristics, we tested non-linear models such as 

Support Vector Regression (SVR) with the Radial Basis Function (RBF) kernel and Light 

Gradient Boosting Machine (LightGBM) models which have non-linear discrimination power. 

As a result, both non-linear models undermine the prediction performance (Table S4), 

suggesting that the components derived from PCA, used as features in this study have a 

predominantly linear relationship with the charge curves. 

 



 

 

 

Figure S4. (a) The NMF components derived from the charge curves.  

  



 

 

Table S2. Average RMSE of charge curve reconstruction/prediction from feature 

extraction models. 

Extraction Model 

Reconstruction RMSE 

(mAh/g) 

Prediction RMSE 

(mAh/g) 

NMF 1.7603 9.6122 

PCA 0.1644 2.3895 

  

  



 

 

Table S3. Accuracy of predicted curve via Lasso and Ridge regression. 

Regression Model 
Number of 

components 
α 

Mean of RMSE 

(mAh/g) 

Lasso 

7 

0.01 4.08 

0.1 6.16 

Ridge 

0.01 7.17 

0.1 6.28 

Lasso 

13 

0.01 4.10 

0.1 6.64 

Ridge 

0.01 6.90 

0.1 7.85 

 

  



 

 

Table S4. Accuracy of predicted curve via Support Vector and LightGBM models. 

Regression Model Average RMSE (mAh/g) 

Linear 2.3895 

Support Vector 6.2410 

LightGBM 6.8130 

 

  



 

 

Supplementary Section 3. Determining the Optimal Number of Principal 

Components for Charge Curve Reconstruction (Table S5, Figure S5 – 6) 

The accuracy as a function of the number of PCA components is shown in Figure S5 and 

Table S5 for components ranging from n=1 to 10. With only one component, the average 

RMSE was 2.7 mAh/g, and the upper 95% confidence interval of the RMSE reached 5.2 mAh/g. 

This is an error of more than 2% for a typical capacity of 200 mAh/g. As the number of 

components increases, there is a consistent decrease in RMSE. Utilizing 4 components results 

in RMSE of 0.45 mAh/g. When the component count increases to 7, we observe an 

improvement in precision, as evidenced by the average RMSE declining to 0.16 mAh/g. Upon 

expanding the number of components to 10, the average RMSE further decreases to below 0.1 

mAh/g. Moreover, in 95% of instances, the RMSE remains below 0.14 mAh/g. However, such 

high accuracy may indicate the possibility of overfitting, which could potentially reduce the 

prediction accuracy. Therefore, by measuring the prediction accuracy on a new test set, we 

confirmed that 7 principal components best describe the electrochemical characteristics of 

LRLO materials, and this number was chosen for use (see Table S8). 

  



 

 

 
Figure S5. Accuracy plot of reconstructed curve by the number of PCA components 

  



 

 

Table S5. Accuracy of reconstructed curve by the number of PCA components 

Number of 

components 

RMSE 

mean median 25% 75% 90% 95% 

1 2.7017 2.4857 1.7290 3.4121 4.5449 5.1568 

2 1.4088 1.2768 0.8706 1.8383 2.3914 2.6575 

3 0.8757 0.7692 0.5280 1.0661 1.5176 1.9395 

4 0.4469 0.4021 0.2720 0.5630 0.7556 0.8818 

5 0.3201 0.2837 0.1893 0.3920 0.5223 0.6628 

6 0.2301 0.1973 0.1425 0.2807 0.3874 0.4521 

7 0.1644 0.1401 0.1069 0.1997 0.2680 0.3197 

8 0.1278 0.1064 0.0844 0.1485 0.2158 0.2591 

9 0.1011 0.0890 0.0694 0.1163 0.1584 0.1925 

10 0.0772 0.0689 0.0537 0.0911 0.1177 0.1399 

 
  



 

 

 

Figure S6. Charge curve reconstructed from PCA. 

  



 

 

 
Figure S7. Interpretability of components 

  



 

 

Supplementary Section 4. Interpretation of higher-order principal 

components (PC3, 4) (Figure S8 - 9) 

Figure S8 plot the PC3 and PC4 weights against cycle number, respectively. These weights 

do not change appreciably in a uniform manner over cycles; instead, their values appear more 

strongly dependent on individual cell or material characteristics. In Figure S9, we plot PC1 

weight on the x-axis against PC2, PC3, or PC4 weight on the y-axis (each figure separately). 

Unlike PC2, neither PC3 nor PC4 shows a clear degradation pattern that holds across the 

dataset, indicating that these components may reflect composition-driven variations that are 

less universally tied to LRLO degradation. However, these minor components may be unique to the 

current dataset, so they should not be overinterpreted. 

  



 

 

 

Figure S8. (a) PC3 weight and (b) PC4 weight vs. cycle number. 

  



 

 

 

Figure S9. Scatter plot of PC1 weight (x-axis) vs. (a) PC2 weight, (b) PC3 weight and (c) 

PC4 weight (y-axis). 

  



 

 

Supplementary Section 5. Correlation Analysis of PCA Components with 

Capacity and Average Voltage across Cycles (Figure S10 - 13) 

The Pearson correlation coefficients for all data were measured from the PCA coefficients, 

capacity, and average voltage across all cycles in the training dataset. To understand how the 

correlation coefficient changes with cell aging, the correlation coefficients of the PCA weights, 

capacity, and average voltage were measured specifically for data from certain cycle numbers 

within the training dataset. 

Figure S11 shows the correlation coefficient matrices for all data and specifically for the 

10th, 20th, 30th, 40th, and 50th cycles. It was observed that there is no significant difference 

in the composition of the correlation coefficient matrix between the total cycle data and the 

individual cycle data. PC1 consistently shows a very high correlation with capacity, exceeding 

0.95, regardless of the cycle. Although PC1 and average voltage have a strong correlation over 

all cycles with a coefficient of 0.86, it is lower compared to the correlation with capacity. Since 

the correlation between capacity and average voltage is high at 0.67, this likely contributes to 

the strong correlation between PC1 and average voltage. PC2 has a relatively high but weak 

correlation of 0.44 with average voltage compared to capacity. Further principal components, 

starting with PC3, show inconsistently low correlations. Figures S12 and S13 illustrate the 

cycle-wise relationship between the 1st and 2nd principal components and capacity and 

average voltage, respectively. These relationships appear to be consistent, almost independent 

of the number of cycles. 

 

  



 

 

 
Figure S10. Relationship between the first principal component and (a) capacity for all 

cycles and average voltage for (b) all cycles, (c) fresh cells and (d) aged cycles. 

 



 

 

 
Figure S11. Correlation matrix between PCA components and battery performance for (a) 

all cycles, (b) 10th, (c) 20th, (d) 30th, (e) 40th and (f) 50th cycle. 

  



 

 

 
Figure S12. Relationship between the principal components and capacity for (a) 10th, (b) 

20th, (c) 30th, (d) 40th and (e) 50th cycle. 

  



 

 

 
Figure S13. Relationship between the principal components and average voltage for (a) 

10th, (b) 20th, (c) 30th, (d) 40th and (e) 50th cycle. 

 

  



 

 

 

 

Figure S14. Effect of PC1 and PC2 on electrochemical behavior from the actual dataset. (a) 

Weights of the PC1 and PC2 across all data points, with the regions of PC1 and PC2 variation 

indicated. Variation in the (b) charge curves and (c) dQ/dV curves as influenced by the PC1. 

Variation in the (d) charge curves and (e) dQ/dV curves as influenced by the PC2. 

  



 

 

 

Figure S15. (a) Charge curves and changes in (b) charge curves and (c) dQ/dV curves as 

influenced by the PC1. 

  



 

 

 

Figure S16. (a) Charge curves and changes in (b) charge curves and (c) dQ/dV curves as 

influenced by the PC2. 

 

  



 

 

 

 

Figure S17. (a) Mn L-edge sXAS spectra of charged electrodes. Mn K-edge XANES spectra 

of (b) charged and (c) discharged electrodes. 

  



 

 

 

Figure S18. (a) O K-edge sXAS spectra of charged electrodes. (b) The variation of the 

integrated area under the pre-edge in the low-energy region (below 533 eV) of O K-edge sXAS 

during cycling. 

 

 

  



 

 

Table S6. Fitted resistance of the charged electrode. 

Cycle Rs (ohm) Rsf (ohm) Rct (ohm) 

10th 2.218 2.874 20.74 

21st 2.072 3.982 21.31 

32nd 2.914 5.018 24.71 

45th 3.519 7.384 43.97 

57th 3.954 11.01 45.89 

 

  



 

 

Supplementary Section 6. Extension of PCA to Include Test Dataset and 

Component Consistency Analysis (Table S7, Figure S19 – 21) 

We extended Principal Component Analysis (PCA) to include the test dataset in addition to 

the training dataset. We used the same approach for PCA as described in the Methods section, 

with the only difference being the addition of the test dataset to the original training set. 

The new PCA components derived from the combined dataset of the training and test sets 

are shown in Figure S19. These components are essentially identical to those obtained from 

the training set alone, as shown in Figure 2a. 

Figure S20 illustrates the relationship between the new 1st Principal Components from the 

PCA (which now includes both training and test sets) and two key variables: Capacity and 

Average Voltage. This relationship shows the same trends as observed in Figure S8, indicating 

consistent correlations and patterns even when the test dataset is included in the PCA. 

Table S7 and Figure S21 demonstrate that the reconstruction accuracy of the test set is 

similar to that of the training set (Table S5). 

  



 

 

 
 

 

Figure S19. New PCA components derived from the combined dataset of training and test 

sets. 

  



 

 

 
Figure S20. (a) PC1 – capacity curve and (b) PC1 – average voltage including test set that 

contains data outside of AD. 

  



 

 

Table S7. Accuracy of reconstructed curve of test set based on PCA components obtained 

from train set 

 mean median 25% 75% 90% 95% 

RMSE 0.3836 0.2472 0.1891 0.3367 1.1388 1.4650 

 

  



 

 

 
Figure S21. Reconstructed charge curves of test set based on PCA components obtained 

from train set. 

 

  



 

 

 
Figure S22. Charge curve prediction outside applicability domain for all cells. 

 

  



 

 

 

Figure S23. (a) Degradation behavior of LRLO (Case I). (b) Voltage retention with 

degradation. (c) and (d) Differential charge curve with degradation. 

  



 

 

 
Figure S24. (a) Degradation behavior of LRLO (Case II). (b) Voltage retention with 

degradation. (c) Differential charge curve with degradation. 

  



 

 

 
Figure S25. (a) Degradation behavior of LRLO (Case III). (b) Voltage retention with 

degradation. (c) Differential charge curve with degradation. 

  



 

 

 
Figure S26. (a) Degradation behavior of LRLO (Case IV). (b) Capacity retention and (c) 

Voltage retention with degradation. (d) Differential charge curve with degradation. 

  



 

 

Table S8. Accuracy of predicted curve by the number of PCA components via linear 

regression. 

Number of 

components 

RMSE 

mean median 25% 75% 90% 95% 

1 6.4055 5.2005 3.5205 7.4131 12.4517 18.3536 

2 3.2406 2.2046 1.2691 3.4555 9.4899 11.1451 

3 2.9558 1.5360 0.9043 2.6254 10.6347 12.6155 

4 2.7954 2.1429 1.0992 4.1307 6.1842 7.2780 

5 2.7943 2.1235 1.1597 4.3097 5.5248 6.8018 

6 2.5411 1.6633 0.9691 3.4374 5.8958 7.4763 

7 2.3895 1.6813 1.0225 3.2946 5.1526 6.3071 

8 3.1350 2.7585 1.6229 4.1508 6.0397 7.0650 

9 3.5915 3.2580 2.0245 4.9959 6.3477 7.1838 

10 3.5231 2.9068 1.9773 4.7201 6.8535 7.9810 

 

  



 

 

 

Figure S27. Predicted charge curves with 3.3 V - 3.9 V as input. (left) good case and (right) 

bad case. 

  



 

 

 
Figure S28. Predicted charge curves with 3.8 V – 4.4 V as input. (left) good case and (right) 

bad case. 

 

 

 

 

  



 

 

Supplementary Section 7. Application of Principal Component Analysis 

(PCA) on Capacity Data: Example (Figure S29 - 31, Table S9) 

In this supplementary section, we present a simple example to illustrate the application of 

Principal Component Analysis (PCA) on cumulative capacity data measured at various voltage 

points. As shown in the capacity-voltage curve in Figure S29, we have prepared five virtual 

training datasets. In this example, capacities are recorded at six voltage points, which are 

tabulated in Table S9. 

The data can be represented as the data matrix 𝑋𝑡𝑟𝑎𝑖𝑛: 

𝑋𝑡𝑟𝑎𝑖𝑛 = 

[
 
 
 
 
0 50 50 100 100 150
0 75 75 150 150 150
0 0 0 75 75 150
0 49 49 98 98 147
0 51 51 102 102 153]

 
 
 
 

 

Each row of 𝑋𝑡𝑟𝑎𝑖𝑛 corresponds to one of the five datasets, and each column corresponds 

to one of the six voltage points. 

To perform PCA, we first compute the mean of each column (voltage point): 

𝜇 =  
1

𝑛
∑𝑋𝑡𝑟𝑎𝑖𝑛,𝑖

𝑖=1

= [0, 45, 45, 105, 105, 150] 

where n is the number of datasets. 

Next, we center the data by subtracting the mean vector 𝜇 from each row of 𝑋𝑡𝑟𝑎𝑖𝑛: 

 



 

 

𝑋′ =  𝑋𝑡𝑟𝑎𝑖𝑛 −  𝜇 =  

[
 
 
 
 
0 5 5 −5 −5 0
0 30 30 45 45 0
0 −45 −45 −30 −30 0
0 4 4 −7 −7 3
0 6 6 −3 −3 3]

 
 
 
 

 

 

The centered data matrix 𝑋′ has zero mean in each column. 

We then compute the covariance matrix 𝐶 of the centered data: 

𝐶 =  
1

𝑛 − 1
𝑋′𝑇𝑋′ 

From the covariance matrix C, we perform eigenvalue decomposition to obtain the 

principal components. The eigenvectors of C correspond to the principal components, and the 

associated eigenvalues indicate the amount of variance explained by each component. 

The principal components can be expressed using 3 components, yielding the 

approximation: 

𝑋′ =

[
 
 
 
 
0 5 5 −5 −5 0
0 30 30 45 45 0
0 −45 −45 −30 −30 0
0 4 4 −7 −7 3
0 6 6 −3 −3 3]

 
 
 
 

≈

[
 
 
 
 

0 −10 −0.08
−75 15 0.27
−75 15 −0.03
3.006 −11.024 2.906

−3.006 −8.976 −3.066]
 
 
 
 

[
0 5 5 −5 −5 0
0 30 30 45 45 0
0 −45 −45 −30 −30 0

]

=  𝑈𝑉𝑇 

where U is the matrix of scores (projections of the data onto the principal components), and 

VT is the transpose of the matrix of principal component loadings (eigenvectors). 



 

 

Each row of U represents the weights for each sample, and each row of VT corresponds to 

the values of each principal component at each voltage point. By using these matrices, we can 

plot the weights of Component 1 and Component 2, resulting in Figure S30. Additionally, 

plotting the values of the principal components with respect to voltage yields Figure S31. 

Note: To reproduce the PCA calculations and explore the data further, please refer to the 

provided Jupyter notebooks available on GitHub. The actual calculations using Python’s 

scikit-learn package and the detailed calculation process performed in this study can be found 

at https://github.com/LRLO-PCA/Data-driven-insights-into-reaction-mechanism-of-Li-rich-

cathodes.  

  



 

 

 

Figure S29. Capacity-voltage curve of the virtual training datasets. 

  



 

 

Table S9. Capacities at six voltage points for five virtual training datasets. 

 

  



 

 

 

 

Figure S30. Scatter plot of the weights (scores) for Principal Component 1 and Principal 

Component 2 for each sample, derived from the scores matrix U. 

  



 

 

 

Figure S31. Visualization of the principal component for each voltage point, derived from 

the principal component loading matrix VT. 

 

 


