Supplemental information

Efficient rigid and flexible perovskite solar cells using strongly adsorbed molecules for lattice repair and grain boundary mitigation

Xi Fan,^{*a,‡} Jiwen Chen,^{a,‡} Jinzhao Wang,^b Jing Wang,^c Jixi Zeng,^a Feng Wei,^a Shuai Gao,^a Jia Li,^a Jing Zhang,^c Feng Yan^d and Weijie Song^{*a,e,f}

^aNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China.

^bSchool of Material Science and Engineering, Hubei University, Wuhan 430062, P.R. China.

^cSchool of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China.

^dDepartment of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China.

^eCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

^fResearch Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou, Zhejiang 311121, P.R. China.

*Correspondence: e-mail: fanxi@nimte.ac.cn; weijiesong@nimte.ac.cn

Figure S1. Optimized structures of perovskite (001) surface with the N1 (a), N2 (b), and N3 (c) in TD molecule, respectively. The arrow describes the bond length of Pb-N.

DFT Calculations:

Density functional theory (DFT) calculations were performed using the Vienna *ab initio* simulation package (VASP)¹. Projector augmented wave (PAW) pseudopotentials² were used to evaluate the interactions between valence electrons and cores. The generalized gradient approximation (GGA)³ of the Perdew-Burke-Ernzerhof (PBE) functional with DFT-D3 correction proposed by Grimme⁴ was used for the exchange correlation functional. The cubic-phase FAPbI₃ (α -FAPbI₃) was optimized for its lattice constants and atomic coordinates by using 450 eV cutoff energy and Γ -centered 6X6X6 Monkhorst-Pack (MP) mesh⁵, and its convergence criteria of total energy and force were set to be less than 10⁻⁵ eV and 0.02 eV/Å, respectively. Our optimized lattice constant for α -FAPbI₃ was 6.36 Å, excellent agreement with the previous theoretical and experimental value^{6, 7}.

To study the relationship between the additive and perovskite surfaces including (001) and (110) surfaces, and microscopic mechanism behind surface orientation regulation, we constructed 2X2 for (001) surface and 3X2 for (110) surface with the seven atomic layers to simulate the material surface. For supercell surface structures, we use a single Gamma point for the MP mesh. To avoiding the coulomb interaction between periodic surfaces, the thickness of vacuum layer was set to 15 Å. At the same time, we fixed the atoms in the two lower atomic layers to be regarded as the bulk structures, and the remaining atoms were fully relaxed to act as the perovskite surface. The adsorption energy is defined as $E_{ad}=E_{molecule@surface}-E_{molecule}-E_{surface}$. The structural visualizations were obtained by using the VESTA⁸ software.

References:

1. Kresse, G., Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 54, 11169 (1996).

2

2. Kresse, G., Joubert, D. From ultrasoft pseudopotentials to the projector augmentedwave method, Physical review b 59, 1758 (1999).

3. Perdew, J. P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple, Physical review letters 77, 3865 (1996).

4. Grimme, S., Antony, J., Ehrlich, S., Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of chemical physics 132, 154104 (2010).

5. Monkhorst, H. J., Pack, J. D. Special points for Brillouin-zone integrations, Physical review B, 13, 5188 (1976).

6. Weller, M. T., Weber, O. J., Frost J. M., Walsh, A. Cubic perovskite structure of black formamidinium lead iodide, α -[HC(NH₂)₂]PbI₃, at 298 K, The journal of physical chemistry letters, 6, 3209-3212 (2015).

7. Wang, J., Yin, W.-J. Effect of alloying on the carrier dynamics in high-performance perovskite solar cells, Journal of Energy Chemistry, 68, 267–274 (2022).

8. Momma K., Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data, 44, 1272–1276 (2011).

Figure S2. ¹H NMR full spectra of TDH, FAI, and TDH and FAI complex.

Figure S3. FTIR spectra of TDH, FAI (control), and TDH + FAI complex.

Figure S4. Topographic morphologies of the TDH perovskite films on flexible PET substrates. Scale bar: 2 μ m, and 1 μ m, respectively.

Figure S5. XRD spectra showing (100) (**a**) and (110) (**b**) shifts of the perovskite films with the TDH treatments.

Figure S6. Absorption spectra of the control and TDH perovskite films.

Figure S7. The TDH concentration optimization for a better device.

1.17

1.18

0.5

1.0

25.99

26.02

85.94

83.68

26.15

25.61

Figure S8. *J*–*V* curve of the rigid PSCs with the TDH passivation showing the maximum FF up to 86.03%.

Figure S9. Performance comparison of the optimized rigid (a) and flexible (b) PSCs.

Figure S10. Mechanical flexibility of the flexible PSCs at a bending radius of 5.0 mm.

Figure S11. GIWAXS images of control (**a**) and TDH (**b**) perovskite films at an incidence angle of 0.1°, 0.3°, 0.5°, 0.7°, 0.9°, and 1.0°.

Table S1. Bond energy (eV) and Bader charge transfer (e) at the Pb-X (X=I and CI) on theFAPbI3 surface.

Atoms	I	Cl
Bond energy (eV)	3.24	4.16
Bader charge transfer (e)	0.19	0.28

V _{oc}	J _{SC}	FF	PCE	Publication	Rofor
[V]	[mA cm⁻²]	[%]	[%]	rubication	Nerei
1.16	24.74	86.07	24.68	Here	
		81.9	23.4	Nat. Photon. 2024, 18, 379	1
1.19	25.28	82.1	24.71	Energy Environ. Sci. 2024, 17, 2621	2
1.19	25.0	82.4	24.51	Joule 2024, 8, 1120	3
1.18	25.14	80.1	23.70	Energy Environ. Sci. 2024, Advance Article. doi.org/10.1039/D4EE02925A	4
1.17	24.96	83.51	24.45	Adv. Mater. 2024, 36, 2405572	5
1.15	25.49	83.31	24.48	Adv. Mater. 2024, 36, 2403531	6
1.17	23.0	83.42	22.61	Adv. Mater. 2024, 36, 2401236	7
1.16	24.4	78.2	22.1	Adv. Funct. Mater. 2024, 2404686	8
1.14	25.36	83.57	24.08	Energy Environ. Sci. 2023, 16, 5423	9
1.14	24.96	80.5	23.13	Adv. Mater. 2023, 35, e2302752	10
1.17	24.8	81	23.68	Adv. Mater. 2023, 35, 2206387.	11
1.13	24.9	82	23.0	Adv. Funct. Mater. 2022, 32, 2204880	12
1.15	22.55	80.50	20.90	Adv. Funct. Mater. 2022, 32, 2205009	13
1.19	22.21	82.33	21.76	Energy Environ. Sci. 2022, 15, 3439	14
1.11	23.50	80.76	21.08	Adv. Mater. 2022, 34, 2201840	15
1.19	22.2	82.33	21.76	Energy Environ. Sci. 2022, 15, 3439	16
1.11	23.50	80.756	21.08	Adv. Mater. 2022, 34, 2201840	17
1.13	24.8	77.68	21.73	Adv. Mater. 2021, 33, 2105539	18
1.07	23.59	81.22	20.50	Angew. Chem. Int. Ed. 2021, 61, e202116602	19
1.13	22.05	81.3	20.27	Adv. Funct. Mater. 2021, 31, 2103252	20

Table S2. The summarized photovoltaic parameters of the champion flexible PSCs published recently.

References:

1. Xu, W., Chen, B., Zhang, Z., Liu, Y., Xian, Y., Wang, X., Shi Z., Gu, H., Fei, C., Li, N., Uddin, M. A., Zhang, H., Dou, L., Yan, Y., Huang, J. (2024) Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and Minimodules. Nat. Photon. 18, 379–387.

2. Xue, T., Fan, B., Jiang, K., Guo, Q., Hu, X., Su, M., Zhou E., Song Y. (2024) Self-healing ionconducting elastomer towards record efficient flexible perovskite solar cells with excellent recoverable mechanical stability. Energy Environ. Sci. 17, 2621–2630. 3. Wang, Y., Meng,Y., Liu, C., Cao, R., Han, B., Xie, L., Tian, R., Lu, X., Song, Z., Li, J., Yang, S., Lu, C., Ge, Z. Utilizing electrostatic dynamic bonds in zwitterion elastomer for self-curing of flexible perovskite solar cells, Joule 8, 1120–1141 (2024).

4. Liu, P., Wang, H., Niu, T., Yin, L., Du, Y., Lang, L., Zhang, Z., Tu, Y., Liu, X., Chen, X., Wang, S., Wu, N., Qin, R., Wang, L., Yang, S., Zhang, C., Pan, X., Liu, S., Zhao, K. Ambient scalable fabrication of high-performance flexible perovskite solar cells, Energy Environ. Sci. (2024), Advance Article. https://doi.org/10.1039/D4EE02925A.

5. Gong, C., Wang, C., Meng, X., Fan, B., Xing, Z., Shi, S., Hu, T., Huang, Z., Hu, X., Chen, Y. An Equalized Flow Velocity Strategy for Perovskite Colloidal Particles in Flexible Perovskite Solar Cells. Adv. Mater. 2405572 (2024).

6. Wu, Y., Xu, G., Shen, Y., Wu, X., Tang, X., Han, C., Chen, Y., Yang, F., Chen, H., Li, Y., Li, Y. Stereoscopic Polymer Network for Developing MechanicallyRobust Flexible Perovskite Solar Cells with an Efficiency Approaching 25%, Adv. Mater. 2403531 (2024).

7. Liu, J., Zhao, Z., Qian, J., Liang, Z., Wu, C., Wang, K., Liu, S., Yang, D. Thermal Radiation Annealing for Overcoming Processing Temperature Limitation of Flexible Perovskite Solar Cells, Adv. Mater. 36, 2401236 (2024).

8. Sun, Q., Meng, X., Liu, G., Duan, S., Hu, D., Shen, B., Kang, B., Silva, S. Ravi P. SnO₂ Surface Modification and Perovskite Buried Interface Passivation by 2,5-Furandicarboxylic Acid for Flexible Perovskite Solar Cells, Adv. Funct. Mater. 2404686 (2024).

9. Xie, L., Du, S., Li, J., Liu, C., Pu, Z., Tong, X., Liu, J., Wang, Y., Meng, Y., Yang, M., Li, W., Z. Ge. Molecular dipole engineering-assisted strain release for mechanically robust flexible perovskite solar cells. Energy Environ. Sci. 16, 5423–5433 (2023).

10. Xie, L., Liu. J., Li, J., Liu, C., Pu. Z., Xu. P., Wang, Y., Meng, Y., Yang, M., Ge, Z. A Deformable Additive on Defects Passivation and Phase Segregation Inhibition Enables the Efficiency of Inverted Perovskite Solar Cells over 24%, Adv. Mater. e2302752, (2023).

11. Gao, D., Li. B., Li, Z., Wu, X., Zhang, S., Zhao. D., Jiang, X., Zhang, C., Wang, Y., Li, Z., Li, N., Xiao, S., Wallace C.H., et al. Highly Efficient Flexible Perovskite Solar Cells through Pentylammonium Acetate Modification with Certified Efficiency of 23.35%. Adv. Mater. 35, 2206387 (2023).

12. Cheng, H., Liu, C., Zhuang, J., Cao, J., Wang, T., Wong, W., Yan, F. KBF₄ Additive for Alleviating Microstrain, Improving Crystallinity, and Passivating Defects in Inverted Perovskite Solar Cells. Adv. Funct. Mater. 32, 2204880 (2022).

13. Liu, S., Guan, X., Xiao, W., Chen, R., Zhou, J., Ren, F., Wang, J., Chen, W., Li, S., Qiu, L., Zhao, Y., Liu, Z., Chen, W. Effective Passivation with Size-Matched Alkyldiammonium Iodide for High-Performance Inverted Perovskite Solar Cells. Adv. Funct. Mater. 32, 2205009, (2022). 14. Kang, Y., Li, R., Wang, A., Kang, J.J., Wang, Z., Bi, W., Yang, Y., Song, Y., Dong, Q. Ionogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy Environ. Sci. 15, 3439–3448 (2022).

15. Fan, B., Xiong, J., Zhang, Y., Gong, C., Li, F., Meng, X., Hu, X., Yuan, Z., Wang, F., Chen, Y. A Bionic Interface to Suppress the Coffee-Ring Effect for Reliable and Flexible Perovskite Modules with a Near-90% Yield Rate. Adv. Mater. 34, 2201840 (2022).

16. Kang, Y., Li, R., Wang, A., Kang, J. J., Wang, Z., Bi, W., Yang, Y., Song, Y., Dong, Q. Ionogelperovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy Environ. Sci. 15, 3439–3448 (2022).

17. Fan, B., Xiong, J., Zhang, Y., Gong, C., Li, F., Meng, X., Hu, X., Yuan, Z., Wang, F., Chen, Y. A Bionic Interface to Suppress the Coffee-Ring Effect for Reliable and Flexible Perovskite Modules with a Near-90% Yield Rate. Adv. Mater. 34, 2201840 (2022).

Wu, S., Li, Z., Zhang, J., Deng, X., Liu, Y., Zhou, J., Zhi, C., Yu, X., Zhu, Z., et al. Low-Bandgap
 Organic Bulk-Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Adv. Mater.
 33, 2105539 (2021).

19. Ge, C., Liu, X., Yang, Z., Li, H., Niu, W., Liu, X., Xong, Q. Thermal Dynamic Self-Healing Supramolecular Dopant Towards Efficient and Stable Flexible Perovskite Solar Cells. Angew. Chem. Int. Ed. 61, e202116602 (2021).

20. Li, J., Dewi, H.J., Wang, H., Zhao, J., Tiwari, N., Yantara, N., Malinauskas, T., Getautis, V., Savenije, T., Mathews, N., et al. Co-Evaporated MAPbl₃ with Graded Fermi Levels Enables Highly Performing, Scalable, and Flexible p-i-n Perovskite Solar Cells. Adv. Funct. Mater. 31, 2103252 (2021).

Table S3. q values of the (100) planes of perovskite films.

16

	Grazing incidence angle (°)	q (Å ⁻¹)
	0.1	0.99268
	0.3	0.99260
Control	0.5	0.99062
Control	0.7	0.98981
	0.9	0.98923
	1.0	0.98915
	0.1	0.98488
	0.3	0.98488
TUD	0.5	0.98488
IHD	0.7	0.98488
	0.9	0.98488
	1.0	0.98488

Table S4. The lifetimes of the control and TDH perovskite films coated on glass substrates.

	A ₁	τ1 (μs)	A ₂	τ ₂ (μs)	τ _a (μs)
Control	13.25	0.13	0.51	3.59	1.92
TDH	0.56	0.66	0.71	4.27	3.87