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S.1 Definitions18

S.1.1 Mechanistic SOH Metric Definitions19

Name Definition

Cell-level performance metrics

EFC Equivalent Full Cycles to EOL. See SI Section S.4.1 for details.
QRPT,0.2C 0.2C rate-specific capacity
QRPT,1C 1C rate-specific capacity
QRPT,2C 2C rate-specific capacity
Rohm 0.01s-0s timescale discharge resistance. At 50% SOC unless otherwise noted. See SI Section

S.4.2 for details.
Rct 3s-0.01s timescale discharge resistance. At 50% SOC unless otherwise noted. See SI Section

S.4.2 for details.
Rp 30s-3s timescale discharge resistance. At 50% SOC unless otherwise noted. See SI Section

S.4.2 for details.
Rtot 30s-0s timescale discharge resistance. Can also be thought of as the summation of Rohm +

Rct +Rp See SI Section S.4.2 for details.

Electrode-specific capacities/SOCs

QNE Negative electrode capacity. Calculated from differential voltage fitting. See SI Section S.4.3
for calculation details.

QPE Positive electrode capacity. Calculated from differential voltage fitting. See SI Section S.4.3
for calculation details.

QLi Lithium inventory capacity. Calculated from differential voltage fitting. See SI Section S.4.3
for calculation details.

SOCNE,4.0V Negative electrode SOC taken at the full cell voltage of 4.0V. See SI Section S.4.3 for
calculation details.

SOCNE,2.7V Negative electrode SOC taken at the full cell voltage of 2.7V. See SI Section S.4.3 for
calculation details.

SOCPE,4.0V Positive electrode SOC taken at the full cell voltage of 4.0V. See SI Section S.4.3 for
calculation details.

SOCPE,2.7V Positive electrode SOC taken at the full cell voltage of 2.7V. See SI Section S.4.3 for
calculation details.

Trajectory Descriptors

Knee Capacity knee indicator. A higher value denotes the presence of a capacity knee. See SI
Section S.7.1 for details.

R” Resistance growth factor. The second derivative of the resistance values, with positive values
indicating accelerating resistance growth and negative values indicating decelerating growth.
See SI Section S.7.2 for details.

NP Ratio The ratio of QNE and QPE at EOL. See SI section S.7.3 for details.

Table S1: Definition table. Definitions of all mechanistic SOH metrics abbreviations that are used in
this study. See SI Sections S.4 and S.7 for details on how these metrics are calculated.

S.1.2 End of Life20

End of life (EOL) is estimated to be when QRPT,0.2C reaches 80% of the nominal capacity 3.87 Ah (80%21

of 4.84Ah). This value occurs between diagnostic cycles, so the QRPT,0.2C is linearly interpolated to find22

the EFCs (see SI Section S.4.1 for EFC definition) to reach this EOL criterion. All mechanistic SOH23

metrics at EOL are then calculated by linear interpolation to match this EFC.24
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S.2 Testing Conditions25

S.2.1 Data Cycling and Generation26

All cells in this study were harvested from a newly purchased 2019 Tesla Model 3. These 21700 cylindrical27

cells were manufactured by Panasonic and tested to have a low-rate capacity of 4.84Ah. The positive28

electrode is NCA (approximately 90-5-5 composition) and the negative electrode is a graphite-SiOx blend.29

Cells were cycled in CSZ ZP-16-2-H/AC environmental chambers at a chamber temperature set point30

of 25°C. These chambers were fit with 4-point contact cylindrical cell fixtures from Korea Thermo-Tech31

Co. Ltd. assembled by SpectraPower. The cells were cycled using two 96 channel Maccor Series 400032

battery cyclers.33

The cells are subject to two types of cycling: aging cycles and diagnostic cycles. The aging cycle34

consists of a multi-step CC-CV charge and a CC discharge. Information on cycling protocol, parameters35

varied and their distribution see SI Section S.2.3. The diagnostic cycle consists of three main portions: a36

reset cycle, a hybrid pulse power characterization (HPPC) cycle [1], and a rate performance test (RPT)37

sequence. The reset cycle, resets the transient kinetics due to the aging cycles, HPPC probes resistance at38

different SOC increments, and the RPT extracts rate-dependent capabilities (Fig. 1b). For information39

on diagnostic cycle protocol see SI Table S2. This cycling data is automatically backed up to an S340

bucket and subsequently processed through the BEEP processing pipeline for use in analysis [2].41
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S.2.2 Diagnostic Cycle Protocol42

Step Type Value Limit End Condition

Reset Cycle

1 Charge CCCV I = C/7 V ≥ 4.2V I ≤ C/35
2 Discharge CC I = −C/7 V ≤ 2.7

HPPC

3 Charge CCCV I = C/3 V ≥ 4.2V I ≤ C/20

Repeat:
4 Rest t = 1hr
5 Discharge CC I = 1C t = 30s
6 Rest t = 40s
7 Charge CC I = 0.75C t = 10s
8 Discharge CC I = −C/3 t = 18min

Go to step 9 if any discharge step has V ≤ 2.7V

9 Discharge CV V = 2.7V I ≤ C/20

RPT

10 Charge CCCV I = C/5 V ≥ 4.2V I ≤ C/20
11 Discharge CC I = −C/5 V ≤ 2.7V
12 Charge CCCV I = C/5 V ≥ 4.2V I ≤ C/20
13 Discharge CC I = −1C V ≤ 2.7V
14 Charge CCCV I = C/5 V ≥ 4.2V I ≤ C/20
15 Discharge CC I = −2C V ≤ 2.7V

Table S2: Diagnostic cycle protocol. The protocol consists of a Reset Cycle, HPPC, and RPT
portion. CC is constant current and CCCV is constant current followed by constant voltage. The limit
indicates the value which will not be exceeded. For example, in Step 1 a charging current of C/7 is applied
until the voltage reaches 4.2V. Once at 4.2V, the current does not exceed this value of voltage and instead
the current decreases until the end condition of current less than C/35 is reached. Step 8 corresponds
to discharging 10% of the nominal capacity. All cycling occurs within an environmental chamber set to
25°C. For the exact cycling protocol, see the Maccor procedure file attached in the data release.
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S.2.3 Aging Cycles43

Step Type Value End Condition

1 Charge CC I = CC1 Charge Capacity = 30% Qnominal

V ≥ Vcharge

2 Charge CC I = CC2 V ≥ Vcharge

3 Charge CV V = Vcharge t = tCV

4 Rest t = 5min
5 Discharge CC I = CCdischarge V ≤ Vdischarge

6 Rest t = 15min

Table S3: Aging cycle protocol. Details of each of the steps within the aging cycles. CC1, Vcharge,
etc. are variables that are modified depending on the testing condition. All cycling occurs within an
environmental chamber set to 25°C. For further details on the aging cycle protocol, see the Maccor
procedure file attached in the data release.

Cycling Protocol Parameter Parameter Values

Charge Current Step 1 (CC1) 0.2C, 0.3C, 0.5C, 0.75C, 1C, 2C

Charge Current Step 2 (CC2) 0.2C, 0.3C, 0.5C, 0.75C, 1C

Charge Cutoff Voltage (Vcharge) 3.7V, 4.0V, 4.1V, 4.2V

Charge Constant Voltage Time (tCV) 30min, 90min

Discharge Current (CCdischarge) 0.2C, 0.5C, 1C, 2C, 3C

Discharge Cutoff Voltage (Vdischarge) 2.7V, 3.2V, 3.3V, 3.4V, 3.5V, 3.7V

Diagnostic Cycle Interval 100 cycles, 200 cycles

Table S4: Aging cycle parameter space. Overview of cycling conditions tested. Each parameter that
was varied across different experiments and their values.
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Paper #Chemistries
#Charging
Protocols

#Discharging
Protocols

#SOC
Windows

#Temperatures
Total
#Protocols

Total
Cells

This Work 1 21 5 16 1 207 359
Li et al. [3] 1 39 36 58 1 64 225
Diao et al. [4] 1 2 3 1 4 24 192
Luh et al. [5] 1 3 4 3 4 60 180
Severson et al. [6]
+ Attia et al. [7]

1 117 1 1 1 117 169

Stroebl et al. [8] 1 10 21 32 4 40 147
Zhu et al. [9] 3 3 3 1 3 11 130
Wildfeuer et al. [10] 1 4 4 37 12 89 120
Hoog et al. [11] 1 3 3 17 6 36 116
Geslin et al. [12] 1 1 47 1 1 47 92
Preger et al. [13] 3 1 4 3 3 12 66
Keil and Jossen [14] 1 1 5 15 3 48 48
NASA [15] 1 1 5 4 3 34 34
Saxena et al. [16] 1 1 2 5 1 8 16

Table S5: Cycling dataset literature overview. Overview of literature battery cycling datasets
highlighting the number of distinct operating conditions tested. For this work, the diagnostic interval is
not considered a separate parameter.

Fig. S1: Distribution of cycling condition parameters. a-c) Charging and discharging current
histograms plotted in terms of C-rate. d,e) Charge and discharge voltage cutoffs plotted in terms of
voltage (V). f) CV hold time bar plot in terms of minutes. g) Diagnostic cycle interval bar plot in terms
of number of aging cycles until the next diagnostic cycle.

S.3 State of the Art Comparison44

The state-of-the-art methodology to test the influence of a cycling parameter (independent variable) is45

to fix all other cycling parameters (controlled variables) and vary a single parameter of interest. This46

methodology definitively gives the impact of the independent variable without the influence of the other47

controlled variables. However, at different fixed values of controlled variables, the trend of an independent48

variable can be quite different and non-linear (Fig. S3). To understand the importance of a parameter49
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then, one would need to understand how the parameter influences a metric of interest at all other50

values of controlled parameters of interest. Exhaustively testing every cycling condition given certain51

cycling parameters results in an exponentially large number of testing conditions, and is in many cases52

impractical. Although all testing conditions were not exhaustively tested in this dataset, we instead plot53

all single parameter trend lines where other cycling parameters are held constant present in this dataset54

and show these trend lines for three example parameters: Vcharge, CCdischarge, and CC1 (Fig. S3).55

The collective response of all of the trend lines provides the importance of a cycling parameter within56

the bounds of the conditions tested. Still, the trends are difficult to analyze due to the high dimensionality57

of the dataset (Fig. S3). Instead, we subtract the mean of a trend line (Fig. S3) to better visualize the58

influence of varying a cycling parameter, and to quantify it we take the mean absolute deviation of59

each trend lines at the measured data points to get the importance of that feature given a set of other60

constant parameters. Finally, by averaging all of the trend line’s mean absolute deviation we can get a61

metric for how influential across the dataset varying that cycling parameter is. This metric summarizes62

the importance of each cycling parameter for an SOH metric of interest within the bounds of the dataset63

using the data directly. We can then summarize these importance metrics in a matrix plot (Fig. S4a)64

similar to the random forest SHAP importance matrix plot (Fig. 4b, and Fig. S4b), but with a different65

metric and methodology. For the most part, both methodologies choose similar most important features66

with only slight discrepancies.67

One major drawback of the mean deviation trend line approach showcased here is that it does not68

work if it is not possible to hold all other variables of interest constant and selectively vary one parameter.69

This is the case for calculated/measured features such as using other EOL SOH metrics (Fig. 5) or BOL70

features (Fig. 6). In these cases, you must use a model to capture the landscape of SOH metric relation71

to features of interest before attributing feature importances. In this work, a random forest model is72

used to capture the SOH metric landscape dependence on features, and SHAP is used to interpret their73

feature importance. Other ML approaches and interpretable metrics could be used depending on what74

approximates the data best, but a comparison of models is outside the scope of this paper. To conclude,75

the comparison of our random forest model to an approach rooted in state-of-the-art experimentation76

of varying one parameter while holding others constant shows similar qualitative feature importances,77

giving confidence to SHAP value interpretations.78
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Fig. S2: Example Trend Lines. Examples of trend lines where other cycling parameters are held
constant and a single parameter is allowed to vary for a) Vcharge, b) CCdischarge, and c) CC1. Only
conditions where there are two or more values of the varied parameter of interest are plotted. There
are diverse trends based on the values of the other controlled parameters. d-f) Specific examples where
trend lines show divergent and non-linear trends are showcased for the same three varied parameters of
interest shown in a-c.
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Fig. S3:Mean Deviation Examples. Trend lines where the trend’s mean is subtracted for comparison.
A higher deviation from the mean value indicates a cycling parameter that is more influential given the
other cycling conditions.
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Fig. S4: Matrix Plot Comparison Comparison of feature importance derived from a) mean absolute
deviation of trend lines and b) SHAP analysis of RF models used in this paper. Mean absolute devia-
tion values are normalized so that the highest importance is 1 in each row. Both methodologies show
qualitatively similar results with some differences.

S.4 Diagnostic Cycle Feature Extraction79

S.4.1 Equivalent Full Cycles80

Equivalent full cycles (EFCs) are calculated by dividing the total discharge capacity throughput (not81

including the diagnostic cycles) for a cell by the nominal capacity (4.84 Ah) at a given point in the cell’s82

lifetime. EFCs to EOL is taken as the EFCs interpolated to the point in which the cell reached the EOL83

condition (QRPT,0.2C crossing 80% of the nominal capacity).84
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S.4.2 HPPC Resistance Calculation85

Fig. S5: HPPC resistance extraction. Three different time scales are chosen for both charge and
discharge resistances corresponding to the red dots in the plots: 0.01s, 3s and either 30s (duration of
discharge pulse), or 10s (duration of charge pulse) after applying the pulse. The discharge pulse comes
after an hour long rest, while the charge pulse comes after a 40s rest after the discharge pulse. Resistances
are calculated using Ohm’s Law, taking the overpotential relative to the open circuit voltage (blue dots)
before the pulse and dividing by the applied current. We use the 0s to 0.01s resistance as the ohmic
resistance (Rohm), 0.01s to 3s resistance to probe the charge transfer regime (Rct), and 3s to the end of
pulse to probe the polarization regime (Rp) [17]. The total resistance is taken to be 0s to end of pulse
(Rtot). Resistances reported in this study are from the 50% SOC discharge pulse unless otherwise noted.
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Fig. S6: Resistance vs. full cell SOC. Displaying the 10s resistance for charge and discharge plotted
against full cell SOC using an example cell (sequence number is 000220). The 10s resistance is chosen
since this is the longest time of the charge pulse, this timescale allows comparison of discharge and
charge. Color from lighter to darker indicates the progress of cell degradation. Resistance values are
higher at SOC extremes, in particular at lower SOC for discharge resistances and at high SOC for charge
resistances. Resistance asymmetry is observed at the SOC extremes.

S.4.3 Differential Voltage Fitting for Estimating Electrode Capacities and86

Offset87

Differential voltage fitting (DVF) is used in this work to match the measured C/5 full-cell voltage profile88

at various SOH to that of an emulated full-cell voltage profile. The emulated full-cell profile is created89

from reference profiles from the cathode and anode (SI Fig. S7 and SI Section S.5). These reference90

profiles are shifted and scaled by setting the cathode capacity (QPE), anode capacity (QNE), and their91

offset value (OFS), resulting in an optimization with three degrees of freedom. Furthermore, there is92

the need for a resistance correction, which causes a voltage offset between the emulated full cell and93

the measured full cell. We correct the emulated full-cell voltage by adding the mean voltage difference94

between the emulated and measured full-cell voltage. Therefore, this resistance correction does not add95

another degree of freedom to the optimization. These three parameters fully specify the construction of96

the emulated full-cell voltage profile (SI Fig. S8). Others have constructed algorithms similar to that97

used here (e.g., [18–21]).98

The DVF fitting procedure used in this work optimizes an objective function that combines the99

differences between the voltage and capacity derivatives (dV/dQ, dQ/dV) of the emulated and full cell.100

We found that an objective function that depends on the differential values is more sensitive and yields101

more reliable results than directly fitting the voltage vs capacity curve. However, we acknowledge that102

there are many possible objective functions suitable for solving DVF problems.103

Based on the solution obtained by the optimization (QPE, QNE, and OFS), we can calculate other104

metrics such as the SOC of each electrode at a particular full cell voltage. QPE and QNE are directly105
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obtained by the equally named electrode-scaling fitting parameters as shown in Fig. S8. Note that there106

might be an offset to the true electrode capacities due to the inaccessible lithium problem [22]. The107

lithium inventory capacity metric, QLi, is the difference between the maximum capacity value of the108

rescaled cathode half-cell in Fig. S8 and the minimum value of the rescaled anode half-cell, within109

capacity domain for which the two electrode curves overlap on the capacity axis. Fig. S8 shows that QLi110

≥ QFC, as the overlap of the cathode and anode curves extends further right than the vertical dotted111

line intersecting with the 2.7V on the full-cell curve.112

The electrode-specific utilization-window SOCs (SOCPE,2.7V, SOCNE,2.7V, SOCPE,4.0V, and113

SOCNE,4.0V) refer to the electrode-specific SOCs that match the voltage (2.7 or 4.0V) in the full cell.114

For example, SOCPE,2.7V is calculated by finding the discharge capacity at which the full cell is at 2.7V115

(blue dashed lines in SI Fig. S8), and then calculating the corresponding cathode SOC.116

While DVF allows accessing electrode-specific capacities and SOCs, there are several challenges and117

limitations. DVF only works when the algorithm can accurately reconstruct the measured full-cell voltage118

profiles with the provided reference half-cell voltage profiles. As the cell degrades, changes in underlying119

half-cell voltage vs. SOC curves, increased kinetic effects, multi-particle inhomogeneity changes, prefer-120

ential degradation (such as SiOx in graphite), and many other phenomena can cause this methodology to121

yield less reliable results. Additionally, this methodology works best near open circuit voltage conditions122

to minimize kinetic effects. Although we use C/5 full-cell measurements to shorten diagnostic cycle times,123

we find that C/5 DVF results correlate highly with C/40 DVF results. However, C/5 and C/40 results124

agree less well for SOH below 0.85. Further information and discussion can be found in SI Section S.6.125
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Fig. S7: Reference voltage profiles. Reference voltage profiles for the a) cathode and b) anode. SOC
from 0% to 100% is scaled to be the minimum and maximum capacity taken from the half cells. This
is defined based on the cycled voltage range: 2.8V–4.3V for the cathode and 0.01V–1.5V for the anode.
The half cells used are taken in the direction of discharging for the full cell, lithiation for the cathode
and delithiation for the anode. For details on half-cell measurements, see SI Section S.5.

Fig. S8: Illustration of emulated full cell construction. Construction of emulated full cell data
with QPE = 4.9 Ah, QNE = 4.6 Ah, and OFS = 0.5 Ah. The emulated full cell capacity, QFC, is the
capacity between the voltage limits of 2.7V and 4.2V, which are indicated by horizontal dotted lines. The
offset parameter, OFS, is the overhang capacity between what is defined as the fully lithiated cathode
and fully delithiated anode based on their voltages.
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S.5 Half-Cell Voltage Curve Extraction126

In order to harvest the electrode material, a 21700 cell was disassembled in an argon-filled glove box127

(H2O and O2 ≤ 0.5ppm). Prior to disassembly, the full cell was discharged to the lower voltage cutoff128

(2.7V) to decrease the safety risk in the event of a shorting event. The top cylindrical cell casing cap was129

removed with pipe cutters. Then a handheld rotary blade (Dremel) was used to score the length of the130

can to allow for the casing to be peeled open with pliers to extract the jelly roll. Similar cylindrical cell131

disassembly procedures have been reported in the literature [23, 24].132

The NCA and graphite-Si sheets were separated and soaked in dimethyl carbonate to remove residual133

electrolyte and salt crystals [25, 26]. A lollipop-shaped cutout of the electrode material was then made134

using a custom die with a manual die cutter (SI Fig. S9b). Due to different binder strength of the135

NCA and graphite, slightly different procedures were applied to remove the active material from the tab136

portion of the cutout. For graphite, the tab portion was mechanically delaminated with a plastic razor137

blade after applying NMP with a cotton swab. For NCA, tape was used to mechanically delaminate138

the majority of the electrode material followed by gentle cleaning with an NMP soaked cotton swab to139

prevent tearing of the tab. Care is taken to not remove active material from the active circular region,140

while removing all the material from the tab region.141

Once cleaned, the double-sided electrodes harvested from the full cells were incorporated into pouch142

cells. The stack geometry is shown schematically in SI Fig. S9a consisting of two shorted lithium metal143

counter electrodes placed on either side of the double-sided electrode. The electrode stack was then placed144

into rectangular aluminized pouch material (113PL pouch material, MTI), filled with 200 µl of LP40145

electrolyte (LiPF6 in 1:1 by wt. ethylene carbonate: diethyl carbonate from Gotion), and heat sealed on146

all 4 sides. Hot melt adhesive polymer tape (MTI) was used to create an airtight seal between the pouch147

material and the current collectors.148

Half-cell cycling was performed after a 24-hour rest to allow for sufficient electrolyte wetting. Pouch149

cells were cycled on Biologic BCS 815 cyclers between lightly hand-tightened pressure plates. These150

cells were cycled outside of an environmental chamber at room temperature (approximately 25°C). The151

nominal capacity of the half cell was determined by scaling the full cell nominal capacity by the ratio of152

the die cut punch out area and the total electrode area. Graphite was cycled at C/40 and 0.15C between153

0.01V and 1.5V, and NCA was cycled at C/40 and C/5 between 2.8V and 4.3V.154
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Fig. S9: Pouch cell preparation. a) Side view schematic of the half-cell stack with the two lithium
counter electrode disks externally shorted together. b) Image of a graphite lollipop cutout with the “tail”
portion scraped off while the circular active material is kept intact. c) Image of pouch cell that has been
fully assembled and then cut open to reveal contents.

S.6 Validation of Differential Voltage Fitting Estimates155

As explained in SI Section S.4.3, DVF was developed to estimate loss of electrode active material and156

loss of lithium inventory for quasi-OCV conditions [27]. These methods have been successfully validated157

experimentally for low C-rates on cells with limited degradation [20]. In our study, we apply the fit-158

ting on C/5 discharge voltage data on pristine and aged cells to recover electrode properties estimated159

throughout the lifetime of the cells. Due to increasing overpotentials, lithiation inhomogeneities, pref-160

erential degradation, and other aging induced effects, as the cell degrades DVF accuracy decreases due161

to an inability to accurately reconstruct the voltage curve [28–30]. Additionally, the collected discharge162

data at C/5 is significantly higher rate than what is normally used in literature (C/20 to C/40: e.g.,163

[22, 27, 31, 32]). Therefore, we compare DVF results from C/5 to C/40 data from BOL to EOL in this164

section.165

We removed 71 cells at different SOH from the cycling experiment to validate the C/5 DVF fitting166

with C/40 cycles (SI Fig. S10). We cycled these batteries at C/40 and C/5 before extracting electrode-167

specific capacities from each profile using the DVF algorithm. We observe a high correlation between the168

C/5 results for SOH > 0.85 (Fig. S11). However, some challenges remain for the SOH region from 0.85169

to 0.8 (Fig. S12). Further experimental validation on degraded batteries is needed to investigate these170

remaining issues further.171
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We note that the strong correlation between C/5 and C/40 results is more important than the172

absolute values, as the degradation trend analysis in this work will remain consistent. Furthermore, the173

inaccessible lithium problem (see [22]) is affecting both, C/5 and C/40 results.174

a b

Fig. S10: Validation cells. a) Histogram of validation cells SOH. The SOH used here is QRPT0.2C

divided by nominal capacity. b) Example C/40 and C/5 data for two cells in this validation dataset near
BOL and EOL.

Fig. S11: Validation of DVF algorithm for cells with SOH > 0.85. Parity plots with equal axes
showing a comparison of our methodology fitting on C/5 data with higher rate half cells vs. using C/40
data fit with C/40 half cells for QNE, QPE, QLi, and NP-offset (OFS). SOH plotted in the color bar
is QRPT0.2C divided by nominal capacity. The Pearson correlation coeffecient is plotted in the top left
corner of each plot along with a line of best fit.
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Fig. S12: Validation of DVF algorithm for cells with SOH > 0.8. Parity plots with equal axes
showing a comparison of our methodology fitting on C/5 data with higher rate half cells vs. using C/40
data fit with C/40 half cells for QNE, QPE, QLi, and NP-offset (OFS). SOH plotted in the color bar
is QRPT0.2C divided by nominal capacity. The Pearson correlation coeffecient is plotted in the top left
corner of each plot along with a line of best fit.

S.7 Degradation Trajectories Methodology175

S.7.1 Knee Indicator176

Similar to common observations in the literature [33], multiple cells in the dataset experience the “knee177

behavior”. Knee behavior is characterized by a capacity fade trajectory with a sudden onset of accelerated178

degradation. To express two regions of different degradation rates, we fit the capacity loss curve with two179

linear segments of different slopes with a Bacon-Watts fitting method [34]. This methodology can extract180

the onset (xt) of the knee as well as the severity of the knee (Fig. S13 and Equations S.1-S.3). The knee181

indicator is taken to be the knee angle difference to show the severity of the knee (Equation S.3).182

m1 =
yt − a0

xt
(S.1)

m2 =
af − yt
xf − xt

(S.2)

Knee Indicator = arctan(m1)− arctan(m2) (S.3)
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Fig. S13: Knee indicator fitting. Schematic depiction of Bacon-Watts fitting method to find the knee
onset and knee angle change. The knee angle change is used as the knee indicator with a positive value
indicating accelerated degradation.

S.7.2 Resistance Growth Metric183

Fig. S14: Resistance growth factor. Polynomial curve fitting of the 100% SOC discharge Rtot to find
the resistance growth factor.

In Fig. 2, we observe that, throughout the dataset, a bisection can be made between cells for which the184

resistance growth attenuates or accelerates with degradation. This second derivative of resistance can185



S20 Aging Matrix Visualizes Complexity of Battery Aging Across Hundreds of Cycling Protocols

be a characteristic of certain degradation mechanisms, as seen in various prior studies [35]. To capture186

this, we track the discharge Rtot at 100% SOC (Rd,30s,SOC100). We fit this resistance growth trajectory187

with a polynomial of the form ax2 + bx starting from the second diagnostic cycle. We start from the188

second diagnostic cycle because we typically observe an initial decrease of resistance in first few cycles189

of aging, likely due to electrode wetting or temperature conditioning (Fig. 2a). The resistance growth190

factor is the value of the a parameter where a > 0 indicates accelerating resistance growth and a < 0191

indicates attenuating resistance growth. We refer to this value a as the Resistance growth factor, or R”,192

throughout the paper.193

When analyzing the Resistance growth factor across the entire dataset, we observe that the majority194

of values for R” exist just above or below 0. This is as expected, as R” = 0 suggests linear resistance195

growth. Some cells however, experience accelerated resistance growth and sudden failure. These types196

of degradation inhibit the ability for the Resistance growth factor equation to capture the evolution of197

Resistance adequately, as they do not conform to the ax2 + bx description.198

Fig. S15: Resistance Growth Factor R sensitivity to number of datapoints”. Values of R”, i.e.
a in ax2 + bx, seem to fall in a range of -10 to 10, once there are 4 or more Diagnostic Cycle datapoints
to fit on.
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We are fitting a 2nd-order polynomial ax2 + bx, on the Rd,30s,SOC100 Resistance data starting from199

the second order diagnostic cycle. In order for the empirical data to adequately fit this polynomial, you200

need sufficient data. Theoretically, you’d need a minimum of 2 data points to fit in ax2+ bx. As is visible201

from figure S15 the cells that only have 2 or less diagnostic cycles to fit on will have R” values with202

a large spread. For cells that have at least 3 datapoints to fit on, we see a convergence of R” values203

between 10 and 10.204

Therefore, we apply a cut-off on the SHAP-analysis dataset, of R” = 10, as shown in figure S16. This205

cut-off rejects 41 cells from the dataset.206

Fig. S16: Downselection of SHAP dataset for Resistance Growth Factor R”. Values of R”,
i.e. a in ax2 + bx, that have a larger absolute value than 10 are rejected for the SHAP analysis dataset.
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S.7.3 N-P Ratio207

The N-P ratio is a metric that is commonly used to express the ratio between the capacity of the anode208

(N) and cathode (P). In battery cell design, the N-P ratio is designed such that the graphitic anode is209

slightly oversized, such that it has more capacity than the cathode. The ratio of QNE to QPE is therefore210

an indicator of the cell balance between both electrodes. When the N-P ratio deviates strongly from211

its initially designed value, the cell becomes unbalanced and could bring additional stress to one of the212

electrodes. We calculate the N-P ratio from the ratio of QNE and QPE at EOL.213

S.8 Variability from Beginning-of-Life to End-of-Life214

To quantify the variability of key health metrics at BOL and EOL, we present their distributions (Fig.215

S17). By presenting these SOH metrics, we decompose the variability in full cell performance into the216

variability of different mechanistic SOH metrics.217

BOL results prior to cycling aging are extracted from the first diagnostic cycle. The variability at218

BOL is narrow for most health indices, having a coefficient of variation in the range of 1% (Fig. S17a-e).219

Prior to BOL, the batteries spent different amounts of time at room temperature before starting cycling220

experiments, therefore the initial distributions contain a combination of fundamental manufacturing221

variability as well as calendar aging effects (SI Fig. S19). The calendar aging effects appear to be negligible222

compared to the cell-to-cell variability at BOL.223

The EOL distributions emphasize the need to report a more holistic view of the SOH of the batteries.224

At EOL, despite having the same QRPT0.2C, each battery has a very broad distribution of other mecha-225

nistic SOH metrics with several coefficients of variation increasing by an order of magnitude (Fig. S17f-j).226

This highlights the importance of reporting and tracking multiple metrics; while one metric might be227

identical, there are several other factors that make up the SOH of a battery. Even under identical cycling228

conditions, large standard deviations of capacities and resistances are seen at EOL (SI Fig. S18). These229

broad variabilities and shifting distributions indicate that a complex combination of cycling conditions230

and initial variability has led these batteries to follow a diverse range of SOH trajectories to EOL.231
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Fig. S17: Distribution of BOL and EOL mechanistic SOH metrics. Distribution of BOL (a-
e) and EOL (f-j) mechanistic SOH metrics. The means (µ) and coefficient of variations (σ) are placed
within the figure. The distributions are shown for a,f) discharge capacities, b,g) Rtot at 3 different SOCs,
c,h) electrode-specific capacities, d,i) anode electrode-specific SOCs at beginning of discharge (BOD)
and end of discharge (EOD), e,j) cathode electrode-specific SOCs at beginning of discharge (BOD) and
end of discharge (EOD). In f, QRPT0.2C is not plotted as it is used to determine the EOL condition.

Fig. S18: Variability of identical cycling conditions. Plots of the variability of cells cycled under
identical cycling conditions. a,b) Two example cycling conditions with ≥2 cells are shown. Scatter
markers show individual data points while the solid line is the mean trajectory. c) Histograms showing
the standard deviation of RPT capacities (top), and Rtot at different SOCs (bottom) at EOL. EOL here
is defined for a protocol as the point where the mean of the protocol’s QRPT0.2C crosses 80% of nominal
capacity and is not based on individual cells. Each count represents a cycling protocol with ≥2 cells at
EOL. Even under identical cycling conditions, there exists large variability in the cells’ EOL cell-level
performance metrics.
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Fig. S19: Influence of calendar aging on BOL. The influence of the start time on cell-level perfor-
mance metrics for a)QRPT0.2C, b) QRPT1C, c) QRPT2C, d) Rtot,SOC100%, e) Rtot,SOC50%, f) Rtot,SOC30%.
The batteries used in this study include initial cell-to-cell variability in combination with calendar aging
but, as shown here, the calendar aging has no clear observable trend on the distribution of the data.

S.9 Explanatory Models232

S.9.1 Input Parameter Correlation for Explanatory Models233

We visualize the Pearson correlation coefficients between input parameters using the heat map in Fig.234

S20 as highly correlated features can lead the model to report misleading feature importance. We note the235

high correlation between electrode capacities (∆QNE, ∆QPE, and ∆QLi), but since electrode capacities236

are not the top important features, this will not affect our conclusion. We point out the highest correlation237

is between ∆SOCNE,2.7V and ∆SOCPE,2.7V (Pearson coefficient of −0.93). As shown in Fig. S21, these238

two features can both appear as the most important, and we argue both in the main text and in Section239

S.9.2 that only ∆SOCPE,2.7V has a real effect on resistance growth and ∆SOCNE,2.7V has an artificial240

trend produced by the nature of its calculation.241
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Fig. S20: Explanatory model feature correlation. Pearson correlations between input parameters
in explanatory model. Correlation between ∆SOCNE,2.7V and ∆SOCPE,2.7V is the highest.
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S.9.2 Evidence of PE SOC Influence on Resistance242

a b

c

Fig. S21: Repeat model influence on feature importance. Three random models to predict ∆Rtot

generated with different top ranking feature importances. We can see that depending on the model built
∆SOCPE,2.7V or ∆SOCNE,2.7V can emerge as the most important feature.
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a b

Fig. S22: Feature importance without anode SOC. The explanatory model was built without
∆SOCNE,2.7V to observe what the feature importance would be. a) One example SHAP beeswarm plot
showcasing ∆SOCPE,2.7V as the top feature. b) Box plot of feature importance ranking made from
explanatory model with 10 different random seeds. Despite the variation in feature importance of other
input variables, ∆SOCPE,2.7V always shows up as the dominant feature (rank 1).
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(a)

(b) (c)

Fig. S23: Explaining resistance dependence on SOC. a) Schematic showing the sign of the shift
for more discharged/charged PE/NE. At 2.7V, more discharged NE/PE will display a negative shift. At
4.2V, more charged NE/PE will display a positive shift. b) Low SOC ∆Rtot plotted as a function of PE
and NE SOC shifts at full cell voltage of 2.7V at EOL. As PE gets further discharged resistance increases,
but as NE gets further discharged resistance decreases. c) Voltage and 30s discharge resistance taken
from a NCA/Li pouch cell (see SI Section S.5 for disassembly details). The resistance curve has a bowl
shape, where SOC extremes of NCA lead to higher resistance. From these observations we can conclude
that the origin of low SOC resistance increase is due to the PE moving to further SOC extremes.
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S.9.3 Further resistance exploration243

Fig. S24: Strong correlation between Rp at 50% SOC and EFC with a Spearman correlation coefficient
of -0.81.
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a

b

c

Fig. S25: Resistance timescale breakdown. Average mean shap values obtained for different input
feature sets for the explanatory model. a) Matrix plot built with electrode-specific capacities/SOCs and
cycling conditions. b) Matrix plot built only with cycling conditions. c) Matrix plot built only with
electrode-specific capacities/SOCs. By including ∆Rtot, ∆Rp, ∆Rct, and ∆Rohm on the same matrix
plot we can see how the important features for different timescale resistances come together to make the
feature importance ranking for ∆Rtot. The resistances predicted here are at 30% SOC.
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S.10 Model training and stability244

S.10.1 Model training procedures245

To ensure the random forest models are robust and do not overfit, we subject the models to a hyperpa-246

rameter tuning protocol. We first split the dataset in to a train and test set outlined in SI Section S.10.2.247

The train:test split is roughly 2:1 in size (in practice this is 160 train cells, and 79 test cells). The training248

set is further split into five equal subsets based on a random seed, four subsets are used for training and249

the remaining subset is used as a validation set. These subsets are subject to a cross-validation search to250

find the optimal hyperparameters from the set of hyperparameters in SI Table S6 using sk-learn Grid-251

SearchCV. Once these hyperparameters are optimized on the train and validation set, they are set and252

the model is deployed on the test set.253

Hyperparameter Model input in python sk.learn Parameter range
Number of Estimators (i.e. Random Forests) n estimators [160, 320, 640]
Minimum Number of Samples to be a Leaf min samples leaf [1,2,3,4]
Maximum number of features to be considered for each split max features [’sqrt’, ’log2’]
Minimum number of Samples to split a Node min samples split [2,3,4,5]

Table S6: Range of hyperparameters during Cross Validation Grid Search

S.10.2 Train/test split procedures254

When investigating the accuracy of a model, a train-test set split procedure needs to be employed that255

is representative of the intended application. For example, if the intended use of the model is for quality256

assurance in cell manufacturing, or R&D optimization for novel operating conditions, then the test set257

should be designed accordingly [36].258

In the design of our model training, we employed an inside-of-domain test scenario, which is schemat-259

ically depicted in Fig. S26. The inside-of-domain scenario constructs the test set by searching the dataset260

for cells that have identical cycling protocols. When a cycling protocol has more than 2 repeats, the sce-261

nario holds 2 random cells of that protocol in the training set and places the remaining repeats in the262

test set. As such, the test set will always be comprised of cells that are represented by at least 2 cells in263

the train set. This is representative of the quality assurance use case where we wish to predict an unseen264

cell, but previously tested protocols.265

An alternative is an out-of-domain test scenario. In this more stringent case, the test set is strictly266

composed of cells that have a protocol not present in the training set (Fig. S26). In this case, protocols267

and their subsequent cells would be randomly allocated to either the train set or test set until a certain268
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ratio between cells in the train and test is achieved. This would be representative of a R&D exploration269

of novel operating conditions use case, and is not analyzed in this study.270

The same inside-of-domain train-test split scenario is applied for training all early prediction models271

for accurate comparison (Fig. 4, Fig 6, Fig. S32). Additionally, the random seed to select the repeated272

cells going into the train set is fixed across all models shown in this dataset.273

In our dataset, this train-test scenario results in roughly a 67/33 train-test split ratio. Despite using274

the same train-test split scenario, not all models have been trained on exactly the same number of cells.275

Fig. S26: Schematic depiction of different testing scenarios. In our study, we trained models
based on the inside-of-domain test scenario. Here we used n=2, for the minimum number of identical
cycling protocol cells to be allocated to the train set, before allocating other cells of identical cycling
protocol into the test set.

S.10.3 Comparative evaluation between random forest and gradient276

boosting regressor aging matrices277

The aging matrices shown throughout this study have been built on underlying Random Forest models278

trained on the battery cell’s cycling protocol data or early cycling data. The Random forest models279

have proven to be robust and versatile, as demonstrated in SI Figure S21, with sufficient accuracy, while280

retaining model interpretability. However, other models including gradient boosting based models, or281

entirely different model architectures such as neural networks could have been used as the underlying282
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model to run the aging matrix analysis depending on what can best describe the data. For comparison we283

show that different model choices yields qualitatively similar results when they have similar prediction284

performance. SI Figure S27 compares the aging matrices constructed from a set of Random Forest models285

and a set of Gradient Boosting models as the underlying model type. The exact SHAP weights of the286

specific features vary slightly, but the overall trend and learning are identical.287

a b

Random Forest Gradient Boosting Regressor

Fig. S27: Comparative model evaluation between Random Forest and Gradient Boosting
Regressor aging matrices. a) Random Forest model-based aging matrix and b) Gradient Boosting
Regressor model-based aging matrix. These matrices show qualitatively similar feature importances.
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S.10.4 Early Prediction Pearson Correlation288

Fig. S28: Protocol-only model cycling parameter intercorrelation. The matrix shows the Pear-
son correlations between aging cycle parameters. The matrix has no high correlations (the maximum
magnitude is 0.32) between any of the input parameters varied during the aging cycles. While the random
forest regression prediction accuracy should not be significantly negatively affected by feature corre-
lations, highly correlated features can lead the model to report misleading feature importances. This
matrix allows us to more comfortably state that the relationships that we identify are not convoluted by
strong dependencies between input parameters.
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Fig. S29: Diagnostic-aided model feature intercorrelation. Model with early mechanistic SOH
metrics as inputs as well as cycling conditions. Correlation between all inputs are shown here. We can
observe typical trends such as a positive correlation between all three resistance-based features, and a
negative correlation between the resistance-based features and the capacity-based features.
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Fig. S30: Diagnostic-only model feature correlation. Model with early mechanistic SOH metrics
only as inputs. This plot is a subset of the correlations shown in the diagnostic-aided correlation plot
(Fig. S29).

S.10.5 Repeat Effect on Matrix Plot289

To test the effect of train/test split and retraining models, we generate the aging matrix for the protocol290

models but choose different random seeds. Three runs are shown in SI Fig. S31 for the protocol model291

where slight differences in feature importance are observed, but the overall trend is consistent. With this292

invariance to repetitions, we can confidently say that fixing the train / test seed splits should not affect293

the qualitative outcomes. For other aging matrices in this work, we adopt the strategy of fixing the train294

/ test seed partition to reduce complexity in the analysis.295
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Fig. S31: Protocol model repeat effect on matrix plot. Models are retrained with modified train
test split partitions and random seed.

S.10.6 Diagnostic-only model296

To uncover fundamental relationships between early cycle features and EOL mechanistic SOH metrics,297

we further developed a “diagnostic-only” model, which does not use cycling parameters as model inputs298

(SI Fig. S32). This model is important for cases where one is either not interested in the correlations to299

cycling parameters (to uncover more mechanistic correlations), or cycling parameters are not available.300

Comparing the diagnostic-aided models to this we are able to deconvolute the relative importance of301

early mechanistic SOH metrics and cycling conditions (SI Fig. S32). For example, the early prediction of302

Rct has Vcharge as the most important feature in the diagnostic-aided model (Fig. 6b) whereas the low303

and high voltage SOCPE changes are most important for early prediction in the diagnostic-only model304

(SI Fig. S32). Similarly, in the search of early indicators for the knee indicator the early Rct change is305

found to be a dominant early predictor only in the absence of the cycling conditions. Although this model306

should be made in principle to deconvolute early mechanistic SOH metrics and cycling conditions feature307

importance, the relative order of feature importances does not differ between the “diagnostic-only” model308

and “diagnostic-aided” models in this case.309
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Fig. S32: Diagnostic-only model. a) The architecture of the diagnostic-only model with only early
mechanistic SOH metrics as inputs. b) SHAP analysis degradation matrix showcasing the most important
features without the knowledge of cycling conditions. For full parity plots and SHAP plots see SI Section
S.10.7.

S.10.7 Parity Plots and SHAP Analysis for All Models310

This section shows the parity plots and SHAP analysis for the random forest models that are built for311

each mechanistic SOH metric for the protocol only, diagnostic aided, and diagnostic only early prediction312

models. Four error metrics are reported in parity plots, mean absolute percentage error (MAPE), mean313

absolute error (MAE), relative absolute error (RAE), and the R-squared (R2). MAPE and MAE metrics314

are less useful when comparing different models due to the difference in prediction scales. Instead RAE315

and R2 can be used to compare different models with RAE being the error metric chosen to present316

on the matrix plots. Errors are reported for both the train set and the test set (see SI Section S26 for317

train/test split).318
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