Supporting Information

Closing the Carbon Cycle: Challenges and Opportunities of CO₂ Electrolyser Designs in Light of Cross-Industrial CO₂ Source-Sink Matching in the European Landscape

Muhammad Tayyab^{†,b}, Maximiliane Dreis^{†,a}, Dennis Blaudszun^{†,a}, Kevinjeorjios Pellumbi^{†,a}, Urbain Nzotcha^{†,b}, Hermann Tempel^{†,b},Muhammad Qaiser Masood^a, Henning Weinrich^b, Kai junge Puring^a, Sebastian Stießel^a, Rüdiger-A. Eichel ^{b,c,d *}, and Ulf-Peter Apfel^{a,e *}

a. Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, Germany

b. Forschungszentrum Jülich, Institute of Energy Technologies, Fundamental Electrochemistry (IET-1), Jülich, Germany

- c. RWTH Aachen University, Institute of Physical Chemistry, Aachen, Germany
- d. RWTH Aachen University, Faculty of Mechanical Engineering, Aachen, Germany
- e. Ruhr University Bochum, Inorganic Chemistry I, Bochum, Germany

† These Authors contributed equally to the work.

* Corresponding authors:

Table of Contents

I.	Search Term strategy
II.	References Analysis4
III.	Source and CO2 emissions analysis
IV.	High Temperature CO ₂ Electrolysis to CO8
V.	Low Temperature CO ₂ Electrolysis to CO
VI.	CO ₂ Electrolysis to Formic Acid / Formate9
VII.	${\sf CO}_2$ Electrolysis to Ethylene & Alcohols10
VIII.	CO_2 to CO technologies (Supplementary Note 1)10
IX.	Methodology for the carbon source-sink matching (Supplementary Note 2)12
A.	General remarks12
В.	Unavoidable CO ₂ sources and sinks in Europe13
C.	CO ₂ source/sink matching-Chemical demand14
Х.	References

I. Search Term strategy

 Table S1 Search terms used for the employed SciFinder investigation in this work.

Level	1	2	3
Terms	Scope	Process	Products
			Formate formic acid HCOO*
		Electroreduction	CO Carbon monoxide Syngas Synthesis gas
		Electrochemical reduction	Ethanol C₂H₅OH
Alter	Carbor	Electrolysis	Ethylene C₂H4
Alternatives	CO2 Carbon Dioxide	Electrocatalytic reduction Power to X	Methane CH ₄
		P2X	Ethane C ₂ H ₆
		Electrocatalysis Electrochemical conversion	Formaldehyde CH₂O
			Methanal CH₂O
			Methanol CH₃OH

II. References Analysis

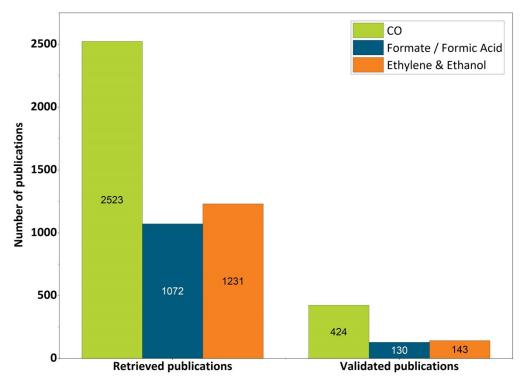


Fig. S1 : Comparison between the numbers of retrieved publications through the search term analysis and the final number of publications containing all the targeted KPIs

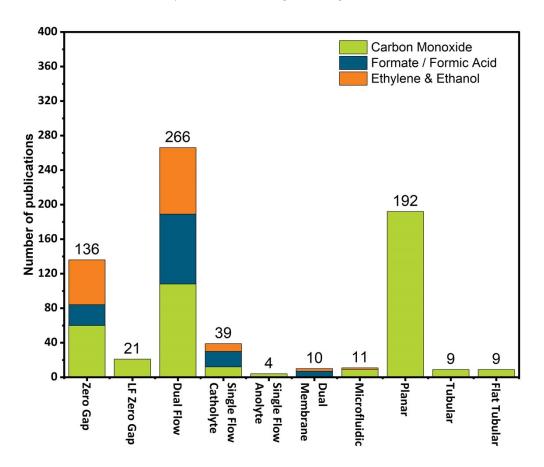
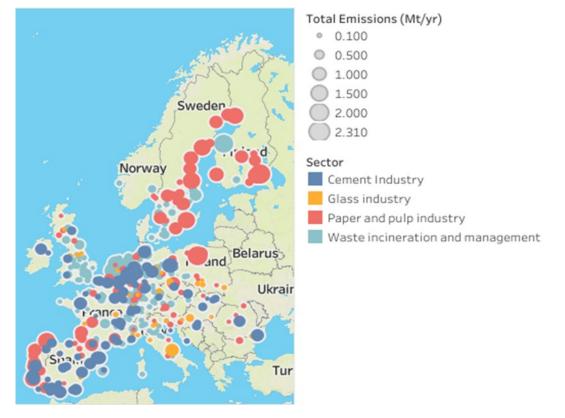



Fig. S2 Segmented analysis of the number of publications featuring an investigated reactor type (both for the low and high temperature CO₂ electrolysis) for the different CO₂R products

III. Source and CO2 emissions analysis

Fig. S3 Source and CO₂ emission analysis in Europe from the four different industries that were analysed in this work. Data from: European Pollutant Release and Transfer Register (EPRTR) – Dataset 2017 Data from: European Pollutant Release and Transfer Register (EPRTR) – Dataset 2017

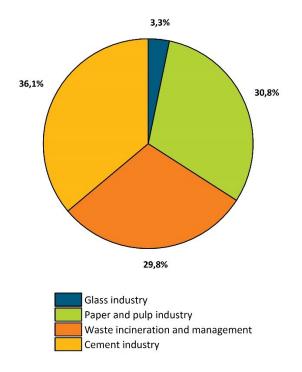


Fig. S4 Distribution of unavoidable CO₂ emissions of the four industrial sectors investigated in this work

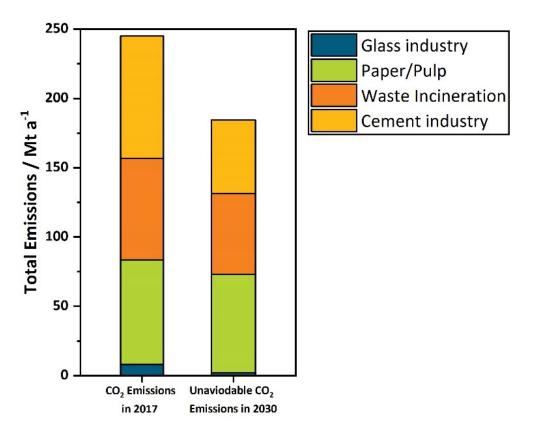


Fig. S5 Distribution of \mbox{CO}_2 emissions in 2017 and 2030 per industrial sector

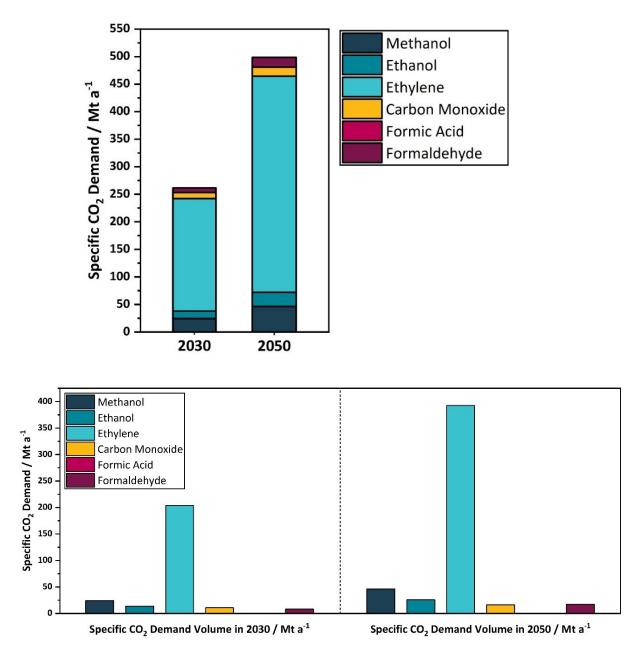
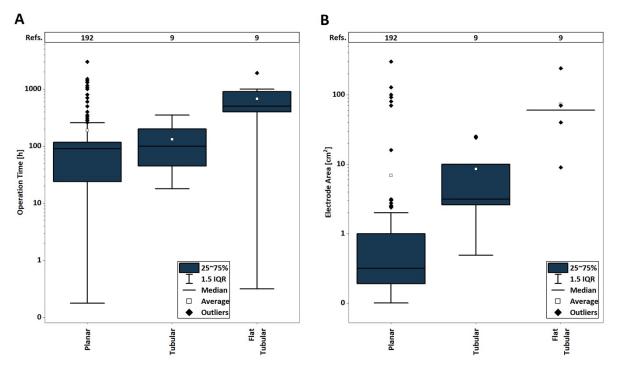
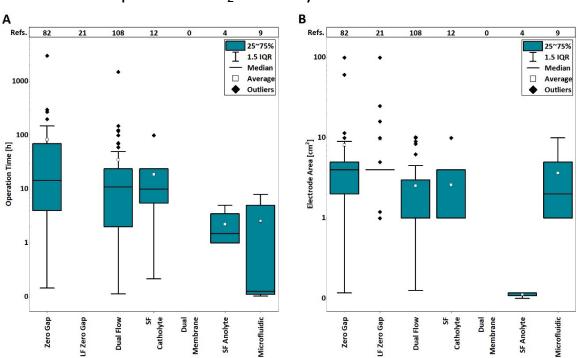




Fig. S6 Cumulative and specified CO2 demand for different carbon products in 2030 and 2050.

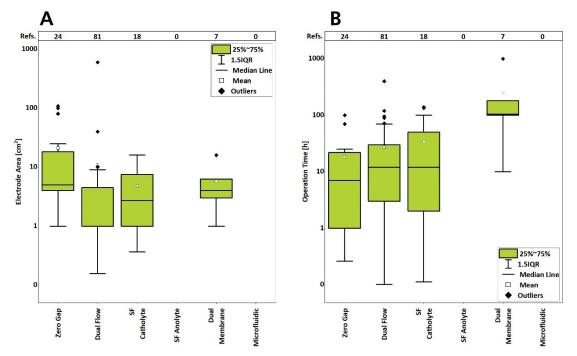

IV. High Temperature CO₂ Electrolysis to CO

Fig. S7 Electrolysis experiment durations (A) and electrode active area (B) of high temperature CO₂ electrolysis to CO through various reactor technologies, reported by 210 references.

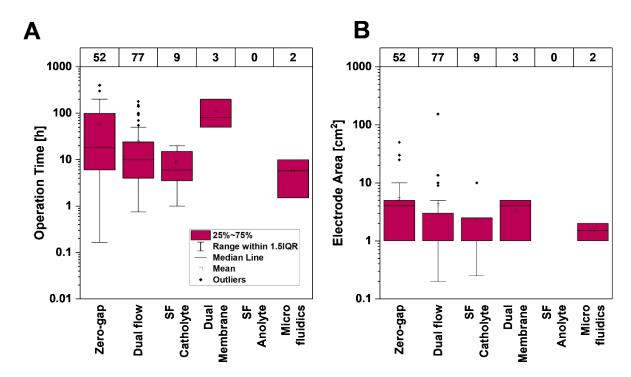

V. Low Temperature CO₂ Electrolysis to CO

Fig. S8 Electrolysis experiment durations (A) and electrode active area (B) of low temperature CO₂ electrolysis to CO through various reactor technologies, reported by 249 references.

VI. CO₂ Electrolysis to Formic Acid / Formate

Fig. S9 Electrolysis experiment durations (A) and electrode active area (B) of low temperature CO₂ electrolysis to formate/formic acid through various reactor technologies, reported by 130 references.

VII. CO₂ Electrolysis to Ethylene & Alcohols

Fig. S10 Statistics of experiment durations (A) and electrode active areas (B) of low temperature electrolysis of CO₂ to ethylene and ethanol using different reactor technologies, reported by 143 references.

VIII. CO₂ to CO technologies (Supplementary Note 1)

Table S2 Summarizing table of the strong and weak point of each technology (HT and LT) for the conversion of CO2

Aspect	High-Temperature (HT) CO ₂ Electrolyzers	Low-Temperature (LT) CO ₂ Electrolyzers
Operating Temperature	500–1000°C	Room temperature to ~80°C
Performance	 High reaction kinetics and faster CO₂ conversion rates. High efficiency for CO and syngas production. 	 High selectivity for liquid products like alcohols. Moderate reaction rates.
Materials	 Requires ceramic-based materials (e.g., solid oxide cells) that can withstand high temperatures. Material degradation due to thermal cycling is a concern. 	 Use of polymer or aqueous electrolytes. Corrosion-resistant metals and cost-effective catalysts can be employed.
Catalyst Requirements	- Ni-based catalysts for CO2 splitting are robust but require high stability under thermal stress.	 Ag,Cu-based and molecular catalysts for gaseous and liquid products. Catalyst poisoning (e.g., by impurities, oxygen) can be an issue. -Ir is currently necessary in the

		anode.
Energy Efficiency	 High thermodynamic efficiency due to thermal energy integration with electrical energy. Less overpotential required for reactions. 	 - Lower energy efficiency due to higher overpotentials and ohmic losses. - Energy cost increases with product concentration.
Product Spectrum	- Primarily CO and syngas (CO+H ₂), which are precursors for fuels and chemicals.	 Flexible product range including CO, hydrocarbons and alcohols. High selectivity possible for specific products.
Durability	- Ceramic components are stable over long- term operation, but sensitive to thermal cycling and redox cycling.	- Membrane durability is moderate but can degrade over time, especially in highly acidic or alkaline conditions.
Scalability	 - Limited by high-temperature reactor designs and thermal management requirements. - Suitable for centralized, large-scale facilities. 	 Highly scalable for distributed and modular systems. Easier to integrate with renewable energy sources.
Startup/Shutdown	- Long startup and cooldown times Not suitable for intermittent operation.	 Rapid startup and shutdown. Well-suited for intermittent operation with renewables.
CO ₂ Utilization Efficiency	- High conversion rates, but product diversity limited to CO and Syngas	 Moderate conversion rates with potential for diverse and value- added products.
Cost	 High capital cost due to materials, reactor design, and thermal energy requirements. Maintenance costs related to thermal stress. 	 Lower capital cost compared to SOEC. Necessary time to exchange stacks currently unclear.
Industrial Applications	- Well-suited for CO ₂ conversion in industrial syngas applications (e.g., Fischer-Tropsch synthesis).	- More ideal for producing alcohols and other organics for decentralized applications.
Challenges	 Thermal management and material durability under extreme conditions. Integration with renewable energy sources is complex. 	 Catalyst development for high selectivity and durability. Mitigating mass transport limitations in zero-gap designs.

IX. Methodology for the carbon source-sink matching (Supplementary Note 2)

A. General remarks

Unavoidable CO ₂ Emissions
CO ₂ emitters have been selected based on processes, which cannot be eliminated due to
an inherent CO $_2$ emission from the process chemistry (Cement, Glass) or lack of alternative
technologies (Paper/Pulp, Waste incineration)
Two scenarios are deduced from data:
1. Business as usual based on the current market size / emission data and expected
market growth rates
2. Progressive Scenario, where the CO ₂ emissions per unit produced is reduced over
time based on individual factors; market growth rates are similar
The CO ₂ emissions in the manuscript are given with a capture (87 %) and utilization factor
(70 %) as presented in [1] ¹ ; Data in the following tables are quoting the total CO2 emissions
excluding the capture and utilization factor
CO ₂ R Product Demand
Product scope based on technical analysis
> Data for the products based on market reports with the scope Europe (only ethylene is
scoped to EU due to data availability)
\succ The growth is according to market studies with a typical scope of \sim 5-10 yrs and
extrapolated to 2050
Two scenarios are deduced:
1. Data extrapolated as is \rightarrow higher boundary
2. Compensation of certain product value chains, which interfere with each other
(i.e., MtO synthesis of ethylene) $ ightarrow$ Lower boundary

CO₂ Demands are calculated from the specific kg CO₂ need per kg of product and the product demand from market studies

B. Unavoidable CO₂ sources and sinks in Europe

Cement industry

- Cement production in 2021 from a market study for Europe and is extrapolated with a CAGR of 1.9% [2]
- > CO2 emissions are estimated based on an IEA study (0.6 t_{CO2}/t_{Cement}) [3]
- Progressive scenario is based on a linear weighting factor for the prior "business as usual" and an ideal case assuming complete reduction any non-raw material (limestone) connected from cement production (60 % from current CO2 emissions are from raw materials) [4]

Glass Industry

- Base case for CO₂ emissions is from 2017 based on Europe [5]
- Growth rate based on European flat glass market study (CAGR: 3.0%) [6]
- Progressive scenario is based on a linear weighting factor for the prior "business as usual" and an ideal case assuming a total reduction of 75 % (25% remaining) from today's CO₂ emissions [7]

Paper/Pulp Industry

- Base case for CO₂ emissions is from 2017 based on Europe [8]
- Growth rate based on market history from CEPI (European Paper/Pulp Association) (CAGR: 0.8%) [9]
- Progressive scenario is based on a linear weighting factor for the prior "business as usual" and an ideal case assuming a total reduction of 63 % (37 % remaining) from today's CO₂ emissions [10]

Waste Incineration

- CO₂ emissions based on waste/capital [10], UN population development prediction [11] for Europe and the balance of Energy and CO₂ emissions per ton of waste [1]
- "Business as usual" scenario assumes a recycling factor of 48 %; an ideal 73% [12]
- Progressive scenario is based on a linear weighting factor for the prior "business as usual" and the ideal case

C. CO₂ source/sink matching-Chemical demand

Carbon monoxide							
	Global market volume for in USD for 2022 and projected market growth of 4.4 % CAGR [13]						
	Conversion into global CO tonnage demand with the market price of CO [14] (CO price (adj. by 1.5 % inflation/year) and Europe market share)						
>	Market share of Europe based on the market share of European chemical industry on the global market (20 %)						
	Formic Acid						
۶	Global formic acid demand is known for 2021 from [15] along with the CAGR (4.45 %) for market development based on a forecast until 2035						
>	The European share of the formic acid market is reported to be 21% of the global market. [16]						
Ethylene							
4	European Ethylene market demand and projected growth rates are relatively precisely projected until 2030 [17]						
4	For further projection, the CAGR was averaged for the data from 2023-2030 \rightarrow -1.38 %						

Projection to 2050 based on the average CAGR

Methanol

- European market development in Mt/a is projected until 2030 [18]
- Methanol market includes the production of ethylene and formaldehyde based on [19]. 10.16-12.92 % of global methanol is used for ethylene production via MtO (28.79 %) and 24.01 % is used for formaldehyde production.
- The ratio for Ethylene from MtO was derived from [20] these were subtracted from the total market demand for Methanol

Ethanol

- EU Ethanol market demand and projected growth rates are relatively precisely projected until 2030 [21]
- CAGR data on Europe level was not available, but total market size & market prize (=ethanol demand) are known from [22]
- > For further projection, the CAGR was averaged for the data (EU) from 2023-2030 \rightarrow +1.35 %
- Projection to 2050 based on the average CAGR on the Europe demand

Formaldehyde

- Global formaldehyde demand is known for 2021 from
 [23] along with the CAGR (3.39%) for market development based on a forecast until 2035
- The European share of the formaldehyde market is reported to be 14% of the global market in 2020. [24]

References

[1] T. Galimova, M. Ram, D. Bogdanov, M. Fasihi, S. Khalili, A. Gulagi, H. Karjunen, T. N. O. Mensah and C. Breyer, Global demand analysis for carbon dioxide as raw material from key industrial sources and direct air capture to produce renewable electricity-based fuels and chemicals, *Journal of Cleaner Production*, 2022, **373**, 133920.

[2] https://www.expertmarketresearch.com/reports/europe-cement-market

[3] https://www.iea.org/energy-system/industry/cement

[4] https://civildigital.com/co2-emissions-from-cement-production/

[4] https://www.mordorintelligence.com/industry-reports/europe-flat-glass-market

[5] <u>https://ww3.rics.org/uk/en/modus/natural-environment/renewables/the-75-percent-problem-making-greener-glass.html</u>

[6] European Pollutant Release and Transfer Register (EPRTR) - Dataset 2017

[7] https://www.cepi.org/wp-content/uploads/2022/07/Key-Statistics-2021-Final.pdf

[8] European Pollutant Release and Transfer Register (EPRTR) - Dataset 2017

[9] <u>https://op.europa.eu/en/publication-detail/-/publication/0575cc7f-c13a-11e8-9893-01aa75ed71a1/language-en</u>

[11] https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/908

[12] <u>https://www.statista.com/statistics/1315956/waste-reduction-target-scenarios-in-european-union/</u>

Carbon Monoxide:

[13] https://www.fortunebusinessinsights.com/carbon-monoxide-market-105343

[14] P. de Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo and E. H. Sargent, What would it take for renewably powered electrosynthesis to displace petrochemical processes?, Science (New York, N.Y.), 2019, 364. DOI: 10.1126/science.aav3506

Formic acid:

[15] https://www.chemanalyst.com/industry-report/formic-acid-market-688

[16] https://www.precedenceresearch.com/formic-acid-market

Ethylene:

[17] Ethylene Market Report: Current Industry Trends, Insights, (globenewswire.com)

Methanol:

[18] <u>https://www.marketresearch.com/ChemAnalyst-v4204/Europe-Methanol-Plant-Capacity-</u> Production-14810176/

[19] Methanol Price|Methanol Institute|https://www.methanol.org/methanol-price-supply-demand/

[20] P. Tian, Y. Wei, M. Ye and Z. Liu, Methanol to Olefins (MTO): From Fundamentals to Commercialization, ACS catalysis, 2015, 5, 1922–1938.

Ethanol:

[21]: <u>https://www.marketresearch.com/ChemAnalyst-v4204/Europe-Methanol-Plant-</u> Capacity-Production-14810176/

[22] https://www.databridgemarketresearch.com/reports/europe-ethanol-market

Formaldehyde:

[23] https://www.chemanalyst.com/industry-report/formaldehyde-market-627

[24] https://www.statista.com/statistics/1323629/distribution-of-formaldehyde-demand-worldwide-by-region/