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Supplementary Note 1:
1. Basic theory for monolithic (series-connected) multijunction solar cells

In terms of the basic theory, for any monolithic (series-connected) multijunction (MJ) solar cell, in
the ideal case, the V¢ of the entire device, Vocmuii Can be approximated by summing the individual
Voc values of each subcell, Vg, as shown in equation (1). Note, this should not be confused with
simply adding the V¢ values of the single-junction solar cell equivalents because in a MJ solar cell

the subcells below the top subcell will receive less light (more details in the next section).

n
Vocmuiti = Z Voci (1)
=1

The final Js¢c of a monolithic MJ solar cell is determined by the subcell with the lowest current, as
shown in equation (2). This can typically be found by the standard J-V measurement of the device.
However, for a monolithic MJ solar cell it is not possible to obtain the Jsc of each individual subcell
directly from the J-V measurement because there are only 2-terminals (this is only possible in
mechanically stacked MJ solar cells where separate contacts for each subcell are available). In order
to find the individual Js¢ values of each subcell in a monolithic MJ solar cell, external quantum

efficiency measurements (EQE) are needed.

Jsemuiei = ?lirllfsa' (2)

Equation (3) shows the EQE; of a subcell in a MJ solar cell, which is the ratio between number of
electron-hole pairs generated versus the incident number of photons and is simply a ratio between
the Jsc of a subcell, Js(A) divided by the photon flux, ¢; (A). Thus, in terms of finding the Js of each
individual subcell, Jsg;, it is simply a matter of integrating the EQE curves with respect to the

wavelength, A.

A
Jsei) Joci = f qb,(M)EQE,(1)dA (3)
D) , Where M1

EQE,() =



The fundamental understanding of the physics theory of MJ solar cells is important in order to
optimise its performance. In general, there are a number of ways to optimise the performance in a
MJ solar cell, (1) finding the optimum bandgap absorbers in terms of thickness versus absorption
and extraction of the charges, (2) finding alternative materials that reduce the parasitic absorption
whilst still maintaining functionality, (3) reducing the bulk and surface recombination of the layers in
the stack, especially at the recombination/tunnel-junction interconnections (4) optimise the light
trapping through better photon management. This understanding aids us in the design of an
effective monolithic MJ solar cell. Other than improving the V¢ of each of the individual subcells, it
is important to make sure that the Jsc of each of the individual subcells match and are as high as
possible (this is firstly dictated by the bandgap of the bottom subcell). For example, our single-
junction Pb-Sn solar cell (around 800 nm in thickness) has a Jsc of just under 30 mA/cm?. This means
that if we make a monolithic tandem (two-junction) with a high-bandgap perovskite absorber as the
top subcell, the maximum current-matched device would have a Jsc of 15 mA/cm?, similarly for a
triple-junction that value would be 10 mA/cm?. In reality however, there would be parasitic optical
or resistive losses in many of the functional layers above the bottom Pb-Sn subcell such as
electron/hole transport, interconnection/recombination or tunnel-junction, and/or even passivation

layers.

2. Discussion on V¢ additions in multijunction solar cells.

For a solar cell, the open-circuit voltage, Vo is the maximum voltage available to it, which occurs
when the current is zero. The V¢ corresponds to the amount of forward bias on the solar cell due to
the bias of the solar cell junction with the light-generated current. Supplementary Fig. 1 shows the IV

curve with the V.



IV curve of the solar ceall
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Supplementary Fig. 1 | /-V and P-V curves of a solar cell showing the open-circuit voltage, Vo'

The equation for V¢ can be found by setting the net current equal to zero in the solar cell equation

(4) below:

nkT (11 (4)
Voe=—-Inx|—+1
q I,

where n is the ideality factor, k is the Boltzmann constant, T is the absolute temperature in Kelvin, g

is the elementary charge, /, is the light generated current, and /, is the dark saturation current.

Now, at 300 K, the prefix term kT/q = 25.85 mV (excluding the ideality factor, n), is known as the
"thermal voltage”. From the thermal voltage, it is known that for every order of magnitude increase
in 1, and given the 1 term in the second half of equation (4), the V, of the solar cell should increase

by approximately 60 mV.

Referring to the triple-junctions in the main text, subsequent subcells will receive less light versus
their single-junction equivalents under the same 1-sun illumination since light has to pass through
the higher subcell(s) above them first which will already have absorbed a portion of the incoming

light. For example, assuming in an ideal case of a perfect monolithic perovskite-perovskite-



perovskite (PPP) triple-junction solar cell (with no parasitic losses), where the bottom Pb-Sn single-
junction device yields a short-circuit current of approximately 30 mA/cm? and the EQE curves for
each subcell resemble a “top hat” profile with each of the top, middle, and bottom subcells receiving
an equal 10 mA/cm?. In the ideal case (without any light trapping, photon recycling, and other

effects), if the subcells had the same thickness as their single-junction equivalents, then:

1. the top cell single-junction equivalent should have the same V, as its subcell in the triple-

junction.

2. The middle cell single-junction equivalent however in the triple-junction would have lost
about 1/3 of its light to the top subcell first, meaning that its V¢ in the triple-junction as the

middle subcell would be approximately 11 mV lower.

3. The bottom cell single-junction equivalent in the triple-junction would have lost 2/3 of its
light to the top and middle subcells, meaning that its Vo in the triple-junction as the bottom

subcell would be approximately 29 mV lower.

Note, this is simply a rough calculation based the ideal case where there is no light scattering or
recycling effects and full ideal absorption profile case. In reality, there are many factors involved that
would govern the value of the final V¢ in a full device, especially one as complicated as a PPP triple-

junction solar cell.



Supplementary Note 2
1. Literature Review Comparison with Existing All-Perovskite PPP Triple-Junction Solar Cells

We conducted a literature review of existing monolithic (series-connected) triple-junction PPP solar
cells published since Aug 2018. So far there have been a total of 4 publications in PPP monolithic
triple-junction solar cells. What is interesting is the examination of the bandgap values (in some
cases authors used absorption edge values) of the top, middle, and bottom subcells in the stack. In
terms of transfer matrix modelling (TMM), Horantner et al.2 (2017) through heatmaps showed that
for PPP triple-junction solar cells, the optimum efficiency (33.0%) occurs when the top and middle
subcells are 2.05 and 1.59 eV (bottom subcell is fixed at 1.22 eV). The heatmaps suggest that from
the peak efficiency points there is vast room for bandgap variation without severe loss in efficiency
achievable. The model was done with the common perovskite absorbers and interlayer materials
used at the time (for example, hole/electron transport, transparent conductive oxide, and others),
although improvements in device design and new materials have been made since 2017. One
interesting outlook is that more recently, it was shown by Bowman et al.3 that luminescence
coupling or photon recycling, often associated with high external radiative materials like
perovskites*®, has added benefits such as increased flexibility in subcell thicknesses and tolerance to
different spectral conditions. Furthermore, this means that the wider bandgap of the top subcells
can in fact be lower meaning that unstable bandgap compositions prone to photoinduced halide

phase segregation (PIHPS)”'8 can be avoided.

Supplementary Fig. 2a shows a graph of all the bandgaps used for the subcells in the different
monolithic triple-junction PPP solar cells published since 2018. It is quite interesting to note that the
choice of the top cell perovskite bandgap across all devices have the largest range (2.00 to 1.73 eV,
highlighted in blue), whereas the middle (1.60 to 1.50 eV, highlighted in green) and bottom (1.34 to
1.22 eV, highlighted in red) have smaller ranges. The recent work from Wang et al.»® used inorganic

Cs-Rb top subcells to mitigate the effect of PIHPS, allowing V¢ values of over 1.3 V whilst



maintaining high Js. for the entire device. From Supplementary Fig. 2b, the integrated subcell EQE,
that is the EQE-Jsc values for each subcell from each reference is shown. What is interesting to note
is the spread between the three values, where the wider the spread, the more loss and wastage in
current in the series-connected monolithically stacked devices due to the current-mismatch. This is
typical of earlier PPP devices, it seems that there is clear improvement in terms of the spread since
the first device was demonstrated by McMeekin et al. in 2019%°, as perovskite processing and

deposition methods are improving as well as the research effort and resources.
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Supplementary Fig. 2 | Literature review of the bandgap and EQE-Js. values of existing perovskite-
perovskite-perovskite monolithic (series connected) triple-junction solar cells by date. a.

Bandgaps, and b. EQE-Js. of the top, middle, and bottom subcells plotted by date of publication.

Supplementary Fig. 3a-d shows the Vo, Js¢, FF, and PCE values respectively of all the published
monolithic PPP triple-junction solar cells since 2018. The Vin literature are all above 2.7 V,
whereas our champion device only had a V¢ of 2.38 V. The reasons for which have been outlined in
the main text. In terms of Jsc however, our device was able to achieve the second highest value of
9.3 mA/cm?, after the recent work by Wang et al.’®. We attribute this to our excellent bandgap and
thickness management that comes with the thermal co-evaporation process as well as the change

from ALD-SnO,/Au/PEDOT:PSS/PTAA to ALD-Sn0O,/GO/Me0O-2PACz (for the top-middle interconnect)



and ALD-SnO,/Au/PEDOT:PSS to ALD-Sn0,/GO/2PACz (for the middle-bottom interconnect). The FF
values from existing published triple-junction devices also showed a large range. Disregarding the
data point at 2018, all the monolithic PPP triple-junction solar cells had a FF of 68% or more, which is
promising to see. Of course, naturally MJ solar cells will allow for a higher FF given the larger
summed V- which affects the J-V curve geometrically. However, another explanation is that for M)J
solar cells, especially triple-junctions in some cases may have higher shunt resistances due to the
application of less conductive layers such as the ALD-SnO. On the contrary, if any local regions have
low shunt resistance, then this will affect the the triple-junction device far more than the single-
junction counterparts. More in depth theory on FF dependence in tandem/multijunctions is
discussed in the work by Boccard and Ballif?X. Wang et al.»® holds the efficiency record for monolithic
PPP triple-junction solar cells. They achieved this through the optimisation of their top subcell
consisting of an inorganic combination of Cs and Rb. Their Rbg 15Csg g5Pbl; 75Br1 55 single-junction
devices were able to achieve Vo >1.3 V and thus the entire triple-junction stack was able to achieve
a Vo> 3.2 V. In addition to careful bandgap and thickness management a high efficiency of 24.3%
could be achieved. Of course, there is still much more room for improvement as the triple-junction
solar cell efficiencies are still much lower than the record PP or PS tandem solar cells reported, even

though their theoretical efficiencies are higher.
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Supplementary Fig. 3 | Literature review of the J-V parameters of existing PPP triple-junction solar

cells by date. a. Vo, b. Js, c. FF, and d. PCE.

In terms of the active area, in our case we fabricated devices with a circular copper contact area of
0.146 cm? with a diameter of 4.32 mm and a measurement active area of 0.118 cm? using a circular
metal mask with diameter of 3.88 mm. Even though our champion efficiency here is not the highest
reported at a modest 15.8%, to our knowledge our measurement active area of 0.118 cm? is the
largest active area reported to date for all PPP triple-junction solar cells, the data of which is plotted

in Supplementary Fig. 4.
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Supplementary Fig. 4 | Literature review of the measurement area of perovskite-based triple-

junction solar cells.
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Supplementary Table 1 | Literature Review of PPP monolithic triple-junction solar cells.

Voc Jsc PCE Area Date
High Bandgap Interface Middle Bandgap Interface Bottom Bandgap (v) (mA/cm?) FF (%) (%) (cm?) Accepted
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Supplementary Fig. 5. | Photographs of the thermally co-evaporated FAPbI; films on
glass/ITO/MeO-2PACz over time. a. initial t =0 h, b. t = 10 mins, c. 1 hour, d. 24 hours, e. 1 week in

air with the humidity and temperature shown by the hygrometer on the right.
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Supplementary Fig. 6. | Photothermal deflection spectroscopy data and analysis. Tauc plot and

Urbach edge fits for the a, d, 0.9 A/s, b,e, 1.2 A/s, and ¢,f, 1.5 A/s FAI rates respectively. The Pbl, rate

was fixed at 0.6 A/s.
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Supplementary Fig. 7 | Scanning electron microscopy images of the thermally co-evaporated FAPbI; samples on glass/ITO/MeO-2PACz. a, b, c top view
(field of view (FOV): 8.5 um), d, e, f top view (FOV: 2.8 um), g, h, i, cross-sectional view for the 0.9 (FOV: 2.8 um), 1.2 (FOV: 4.1 um), and 1.5 (FOV: 4.1 um)

FAI rate samples (where the Pbl, rate was fixed at 0.6 A/s).
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Supplementary Fig. 8 | Thickness measurement of thermally co-evaporated FAPbI; films on glass.
Dektak profilometry of the FAPbl; samples on glass for various FAI rates where Pbl, is fixed at 0.6 A/s
a.0.9A/s,b.1.2A/s,and c. 1.5 A/s. The average across six measurements taken for each sample 0.9

A/s, 1.2A/s, and 1.5 A/s was 490, 512, and 552 nm respectively.
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Supplementary Table 2 | Series and shunt resistances of thermally co-evaporated FAPbI; solar

cells made with varying FAI evaporation rates (includes statistical analysis)

FAl evaporation | Series Resistance Standard Shunt Resistance Standard
rate (A/s) (Q-cm?) Deviation (Q-cm?) (Q-cm?) Deviation (Q-cm?)
0.6 15.5 1.2 543.8 145.3
0.9 11.8 3.9 503.4 272.5
1.2 24.1 34 59.5 15.5
1.5 88.2 51.5 97.0 64.7
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Supplementary Note 3

Optical transfer matrix modelling and complex refractive index (dielectric function) data

Complex refractive index determination. We developed a model based on the transfer matrix method
boosted by a genetic algorithm, that allowed us to extract the complex refractive index (n + ik) of the
halide perovskite films of interest. We first extracted the complex refractive index of each composition
by simultaneously fitting the ellipsometry data of three perovskite films of different thicknesses (using
Forouhi-Bloomer??> model) to ensure robustness. Then, we refined the calculated constants by fitting
the experimental EQE of the perovskite solar cells in a single-junction configuration to account for
variations in the response of the material when grown within a device architecture. The complex
refractive index data for the three perovskite absorber films used in the monolithic PPP triple-junction
solar cell can be found in Supplementary Fig. 11 on the next page. For the more general layers, such

as the C60?3, ALD-Sn0O,?*, ITO?>, Cu?® and GO?” complex refractive indices were taken from literature.

Optical design of the triple-junction device. Pareto statistics were utilised to minimise the difference
between experimental and fitting curves by modifying the perovskite thicknesses while
simultaneously maximising the current of each perovskite subcell. The calculated Js¢ is determined by

weighting the EQE by the AM 1.5 solar spectrum.
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Supplementary Fig. 11 | Complex refractive index data. Real, n (solid line) and imaginary, k (dashed
line) parts of the complex refractive index of a. Csy 3FAy7Pb(lp56Broas)s (top) b. FAPbI; (middle), and c.

Csp.25FAg 75Pbg 5SNg sls (bottom) perovskites.
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Supplementary Fig. 12 | Single-junction solar cell characteristics. a. J-V curves with the
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corresponding reverse J-V parameters shown in b, and c. EQE for the single-junction top, middle, and

bottom solar cell equivalents, for use in the final monolithic PPP triple-junction solar cell.
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Supplementary Fig. 13 | Optical modelling of the experimentally demonstrated monolithic PPP
triple-junction solar cell. a. Schematic diagram of the entire stack with thicknesses of the individual
layers and the optical modelling optimisation ranges for the top and middle subcells. b. EQE for the

maximum optically modelled point in the heatmap shown in Fig 2c of the main text.
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Supplementary Fig. 15 | Testing of various hole transport layers for thermally co-evaporated
FAPbI; solar cells. Four different HTLs or HTL combinations were tested MeO-2PACz, PEDOT:PSS,
PTAA, and PEDOT:PSS/PTAA for thermally co-evaporated FAPbI; onto glass/ITO substrates, where a.

Voo, b. Js¢, €. FF, d. PCE, and e. representative J-V curves with corresponding reverse J-V parameters

shown in f.

One of the first issues that needed to be tackled was the type of HTL available for the middle subcell,
since the MeO-2PACz which we used for single-junction FAPbI; devices was not compatible with the
ALD-SnO,/Au interconnection between subcells in the MJ stack. MeO-2PACz or 2PACz cannot be
deposited directly on top of the thin ohmic Au layer as it does not have any anchoring groups such as
-OH in ITO%. Thus, we had to use an alternative form of HTL, we found that (poly[bis(4-
phenyl)(2,4,6-trimethylphenyl)amine (PTAA) works reasonably well with the thermally co-
evaporated FAPbI; process except for the higher parasitic absorption of around 15% versus the
monolayer MeO-2PACz more which in turn lowers the Jsc as shown in Supplementary Fig. 15b. The
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) by itself did not work well with
the co-evaporated FAPbI; recipe, which could potentially be due to the hydrophobicity?® or surface

property of PEDOT:PSS itself which could affect the adhesion or “sticking capability” of the FAI

24



during the evaporation process as well as the way the FAPbI; crystallises. It is likely that further
optimisation would be required for the co-evaporated FAPbI; to work well with PEDOT:PSS. Another
possibility could be due to energy band misalignment, although this often manifests as an S-shaped
curve, which is not the case here as shown in Supplementary Fig. 15e. From the results, we thus
adopted the bilayer combination of PEDOT:PSS/PTAA303! 3s the third alternative. This bilayer
PEDOT:PSS/PTAA indeed worked well, however it came at the expense of higher parasitic absorption
of around 25% compared to MeO-2PACz as seen in Supplementary Fig. 15b where the average Js for

the MeO-2PACz vs PEDOT:PSS/PTAA was around 20 vs 15 mA/cm? respectively.
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Supplementary Fig. 16 First monolithic PPP triple-junction solar cell batch results. a. Schematic
illustration of the device stack, b. J-V (Voc = 2.68 V, Jsc = 1.69 mA/cm?, FF = 55.9%, PCE = 2.54%, and

c. EQE of the subcells including the integrated EQE-Jsc values.

The first batch of triple-junction PPP devices was clearly middle subcell limited with a Jsc of only 1.7
mA/cm? as shown in Supplementary Fig. 16b,c both in J-V and EQE. This was mainly due to the thin
unoptimized middle subcell thickness, but also reduced slightly due to the heavily parasitically

absorbing PEDOT:PSS/PTAA layer.
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Supplementary Fig. 17 | Second monolithic PPP triple-junction solar cell batch results. a. Schematic
illustration of the device stack, b. J-V (Voc = 2.51V, Jsc = 2.39 mA/cm?, FF = 49.6%, PCE = 2.97%, and

c. EQE of the subcells including the integrated EQE-Jsc values.

This batch had a significantly reduced top cell thickness from 180 nm to 90 nm, which improved the
Jsc from the middle device. Representative devices showed that the EQE-Jsc was boosted from 1.7 to
3.2 mA/cm?2. This is still far from an ideal current-matched PPP triple-junction solar cell, but does
demonstrate the importance of perovskite absorber thickness management in the design of triple-

junction devices.
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Supplementary Fig. 18| Third monolithic PPP triple-junction solar cell batch results (fabricated in
May 2023). a. Schematic illustration of the device stack, b. J-V (Voc = 2.37 V, Joc = 6.61 mA/cm?, FF =

69.38%, PCE = 10.88%, and c. EQE of the subcells including the integrated EQE-Jsc values.

Supplementary Fig. 18 shows results for the third monolithic PPP triple-junction device batch. Here
we exchanged the interconnection for the top-to-middle subcells from the thin 1 nm of Au to
spincoated graphene oxide (GO) nanoparticles. Thus the overall interconnect structure evolved from
ALD-SnO,/Au/PEDOT:PSS/PTAA to ALD-Sn0O,/GO/Me0-2PACz (top-middle) subcell and ALD-
Sn0O,/Au/PEDOT:PSS to ALD-Sn0,/GO/2PACz (middle-bottom) subcell, to reduce the parasitic
absorption of light passing through the device stack. What is more important to point out is that we
were able to optimise the absorber thickness by thermally co-evaporating the top middle subcells so
that they had thicknesses of 110 and 700 nm respectively as shown in Supplementary Fig. 18a. This
result, although not perfect, demonstrated a significant improvement compared to the suboptimal

devices shown in the two earlier batches. In the ideal case, the aim is to achieve a current-matched
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maximum of approximately 9.5-10 mA/cm?, given that our best single-junction Pb-Sn perovskite

solar cells could achieve a Jsc of around 30.5 mA/cm? as shown in Supplementary Fig. 12a.
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Supplementary Table 3 | Summary of the monolithic PPP triple-junction solar cell photovoltaic

characteristics fabricated from Aug 22 to Jul 23

Date Best Device J-V Parameters EQE-Jsc (mA/cm?)
Voc Jsc(mA/cm?) FF (%) PCE (%) Top Middle Bottom
Aug-22  2.68 1.69 55.88 2.54 9.4 1.7 8.1
Apr-23 251 2.39 49.60 2.97 4.9 3.2 8.5
May-23  2.37 6.61 69.38 10.88 7.5 111 9.3
Jul-23 2.38 9.27 71.56 15.77 9.6 9.3 9.0
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Supplementary Fig. 19 | Stability test. MPP tracking of the all-perovskite triple-junction solar cell

with encapsulation for 100 h in air under full simulated AM1.5 solar illumination (100 mW cm) held

at 25 °C without ultraviolet filter.
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Supplementary Fig. 20 | Simulated complex refractive index data. Real, n (solid line) and imaginary,
k (dashed line) parts of the complex refractive index of the a. top subcell b. middle subcell, and c.
Csp25FAg 75Pbg sSNg sls (bottom) perovskites used in modelling of the simulated fully optimised

perovskite triple-junction solar cell in Fig. 3a-c of the main text.
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