Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2024

Supplementary file

Table S1: Isotherm Equations.

Isotherm	Equation	Parameters
Langmuir	C_e (1)	$Q_m = \text{maximum adsorption capacity (mg/g)}$
	$\overline{Q_e} = (\overline{Q_m})^{C_e} +$	$Q_m = \text{maximum adsorption capacity (mg/g)}$ $K_L = \text{Langmuir constant (L/mg)}.$
	$\left(\frac{1}{K_L Q_m}\right)$	
Freundlich	$logQ_e = logK_f + \frac{1}{n}l$	K_F is the Freundlich constant (represents performance) $1/n$ is the heterogeneity factor (represents effectiveness).
Temkin	$Q_e = BlnK_T + BlnC$	B = RT/b, $T = temperature (K)$,
		$R = Gas constant (8.314 JK^{-1} mol^{-1}),$
		b = Temkin constant related to the heat of adsorption (J
		mol^{-1}), and $K_T = Equilibrium binding constant (L mg^{-1})$

Table S2: Physiochemical Characteristics of Seawater

S.No.	Physiochemical Characteristics	Quantity (Units)	
1.	Temperature	27±0.3°C	
2.	рН	8.1 ± 0.07	
3.	Salinity	35±0.1 ppt	
4.	Dissolved Oxygen	$7.17 \pm 0.3 \text{ mg/L}$	
5.	Conductivity	14.65±0.54 mS/cm	
6.	Total Hardness	100±2.3 mg/L	
7.	Calcium	400±1.2 mg/L	
8.	Magnesium	1300±15.2 mg/L	
9.	Potassium	$380\pm0.8~\text{mg/L}$	
10.	Sulphate	3708±23.5 mg/L	

Table S3: Zeta potential values of various PSNPs dispersed in Milli-Q and seawater

Particles	Zeta potential (mV)			
	In Milli-Q water	In Seawater		
MH	0.1±0.09	-0.98±0.04		
PS-100 nm	-47.3±1.2	-58.2±1.5		
PS-COOH	-64.5±1.0	-75.6 ± 0.8		
PS-NH ₂	-53.1±0.5	-66.3±1.4		
PS-500 nm	-47.3±0.9	-55.5±0.6		

Table S4: Hydrodynamic sizes of various PSNPs and PS-MH complexes dispersed in Milli-Q and seawater

Particles	Hydrodynamic Size (nm)		
	Milli-Q water	Sea water	
PS-100 nm	100±4	409±2	
PS-100 nm + MH	114±2	570±5	
PS-COOH	102±5	430±6	
PS-COOH + MH	120±5	620±3	
PS-NH ₂	100±7	415±7	
$PS-NH_2 + MH$	115±3	585±6	
PS-500 nm	501±9	895±2	
PS-500 nm + MH	560±8	954±3	

Table. S5 Independent action model for the PSNPs+MH complex

S.NO	Test samples	Concentration of Complex	RI value	Mode of action
		pollutants (µg/ml)		
1.	PS-100 + MH	2.5	1.10	Synergistic
2.		5	1.14	Synergistic
3.		10	1.20	Synergistic
4.		2.5	1.06	Synergistic
5.	PS-COOH+MH	5	1.14	Synergistic
6.		10	1.20	Synergistic
7.		2.5	1.06	Synergistic
8.	PS-NH ₂ +MH	5	1.12	Synergistic
9.		10	1.17	Synergistic
10.		2.5	1.00	Additive
11.	PS-500 +MH	5	1.68	Synergistic
12.		10	1.69	Synergistic

Fig. S1. Zeta potential of NPs, MH, and their corresponding complexes. [NPs], [MH], [NPs, MH -1:0.5] = 10mg/L, pH=7. Data were the mean of triplicate experiments with SD.

Fig. S2. A-D: EDX analysis of NPs before the adsorption process. (A) PS-100, (B) PS-COOH, (C) PS-NH₂, (D) PS-500. E-H: EDX analysis of NPs after adsorption of MH. (E) PS-100+MH, (F) PS-COOH+MH, (G) PS-NH₂+MH, (H) PS-500+MH.

Fig. S3: Developmental changes of *A. salina* on exposure to different NPs and MH complexes.

Fig. S4: Total protein content of A. salina on interaction with NPs and MH complexes (n=3). All values expressed as mean±SD. (***P<0.0001)