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FT-ICR MS analysis of oils

Sample Preparation: For negative-ion electrospray ionization (neg-ESI) FT-ICR MS analysis,
oil samples were dissolved in toluene to yield stock solutions (1 mg/mL) and further diluted in
toluene with equal parts (v/v) methanol spiked with 0.25% (by volume) tetramethylammonium
hydroxide (TMAH) to final concentration (10-50 pg/mL) before analysis.

9.4 T FT-ICR Mass Spectrometer: Whole and burned Surrogate crude oils were analyzed with a
custom-built FT-ICR mass spectrometer equipped with a modular ICR data station.! Sample
solutions were infused via a micro-electrospray source (50 um i.d. fused silica emitter) at 0.5
pL/min by a syringe pump. Conditions for negative ion formation were emitter voltage, -2.7 kV;
heated metal capillary -250V and heated to 110 °C. Ions generated by the ESI source were
transferred from atmospheric pressure to the first pumping stage of the mass spectrometer
through a home-built dual ion funnel assembly, developed initially at Pacific Northwest National
Laboratory to increase ion transmission efficiency. The dc voltages applied on funnel 1 are -100
V and -70 V, and on funnel 2 are -40 V and -10 V. Positive ion formation occurred at the same
conditions as for negative ions, but with positive values.

ICR time-domain transients were collected from a 7-segment open cylindrical cell with
capacitively coupled excitation electrodes based on the Tolmachev configuration. Seventy-five
individual acquisitions of 5.6 — 6.1s transient for each WSO sample were averaged, Hanning
apodized, and zero-filled once before fast Fourier transformation. Broadband phase correction
was applied to all mass spectra to increase resolving power by a factor of up to 2 to the
conventional magnitude-mode resolving power.

ICR frequencies were converted to ion masses based on the quadrupolar trapping

potential approximation. Each m/z spectrum was internally calibrated based on an abundant



homologous alkylation series differing in mass by integer multiples of 14.01565 Da (mass of a
CH, unit) confirmed by isotopic fine structure based on the “walking” calibration equation.
Experimentally measured masses were converted from the International Union of Pure and
Applied Chemistry (IUPAC) mass scale to the Kendrick mass scale to identify homologous
series for each heteroatom class. Peak assignments were performed by Kendrick mass defect
analysis as previously described.! For each elemental composition, CcHhNnOoSs, the
heteroatom class, type (double bond equivalents, DBE = number of rings plus double bonds
involving carbon), and carbon number, ¢, were tabulated for the subsequent generation of
heteroatom class relative abundance distributions and graphical DBE vs. carbon number images.
Formula assignments and spectra calibration were performed with in-house Predator software
provided by Florida State University.!-? EnviroOrg software was used to assign molecular
formula. Four van Krevelen plots were constructed from FT-ICR MS-derived data to observe the
changes in the molecular-level composition of the non-dispersed and dispersed oil.>* Python

software to construct van Krevelen diagrams was provided by Hemingway.’
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Figure S2: Fluorescence excitation emission matrix (EEMs) plots for fluorescent components 1-
4 (C1-C4) determined using parallel factor analysis (PARAFAC) deconvolution.
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Figure S3: Percent relative contribution of fluorescent components C1-C4 in water
accommodated fractions (WAF) of oil samples. The letters associated with each component (a-f)
signify the treatments that are statistically different - a, b, d -1 (p <0.001) and ¢ (p < 0.05).
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Figure S4: Bar graph of molecular formula classifications for water accommodated fractions
data derived from neg-ESI FT-ICR MS. Standard deviation (SD) for the darks was propagated
based on the mean SD of all replicates for each class and treatment. The letters associated with
each component (a-m) signify the treatments that are statistically different - b, c, e, f, h, 1, m (p <

0.001)and a, d, g, j, k, 1 (p <0.05).
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Figure S5: H/C versus molecular weight plots of molecular compositions compared based on
burning (top panels) and sunlight exposure (bottom panels). Plotted formulas are only the unique
ones per each sample among the two being compared.




Molecular Level Characterization of burned and unburned oil
2.0

CHON
CHOS
CHONS

UHO

F===="9¢000

— Aromatic

[ ] o
Condensed ==
Aromatic

. (-) ESI Unique to oil

—

H/C

of‘o"i‘h.a.'olnnu’.)

p 9@
8 O

0.0 0.2 04 0.60.0 0.2 04 0.6

Figure S6: van Krevelen plots of H/C vs. O/C derived from FT-ICR MS showing assigned
formulae for a) unburned oil, b) formulas unique to oil (in comparison to burned oil), ¢) burned
oil, and d) formulas unique to burned oil (in comparison to unburned oil).
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Figure S7. van Krevelen plots (top panels) and H/C vs. Molecular Weight plots (bottom panels)
of CHOS formulas Dark Burned (red markers) and Light Unburned (blue markers). The right

panels contain only the unique formulas, i.e., the 660 commonly shared formulas among the two
samples are not shown for clarity.



Table S1: Classifications of WAF data derived from neg-ESI FT-ICR MS. Percentages are
reported as relative abundances (RA %). Standard deviation (sd) for the darks was propagated
based on the mean sd of all replicates for each class. CA = condensed aromatics, CRAM =
carboxyl-rich alicyclic molecules, UHO = unsaturated high oxygen, ULO = unsaturated low
oxygen.

Treatment Aliphatic Aromatic CA CRAM UHO ULO
Dark unburned 25.3+2.2 2.68+0.98 0.41+191 476+54 174+14 6.65+29
Light unburned 16.1+2.5 16.4+1.1 1.25+0.41 444+3.0 1.02+0.38 20.8+3.1

Dark burned 43.9+2.2 0.77+0.98 0.04+191 424+54 559+1.407.35+2.90

Light burned 10.5+2.0 10.8+09 4.32+3.42 56.7+7.8 6.96+2.50 10.8+2.

Table S2: Classifications of oil data derived from FT-ICR MS. Data were collected at the
National High Magnetic Field Laboratory on a 9.4 T FT-ICR MS.

Aliphatic Aromatic CA UHO ULO Average Molecular
Sample

(%) (%) (%) (%) (%) Weight
ol 16.9 19.5 2.4 0 612 448.2
Burned 17.0 213 2.8 0 58.9 >01.0
Oil
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