Supplementary Information:

Secondary organic aerosol formation from photooxidation of acyclic terpenes in an oxidation flow reactor

Authors: Shan Gu¹, Farzaneh Khalaj¹, Veronique Perraud² and Celia L. Faiola^{1, 2,*}

¹ Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA

² Department of Chemistry, University of California Irvine, Irvine, CA, USA

*Corresponding author: cfaiola@uci.edu

Text S1: Oxidation Flow Reactor OH Exposure Calibration

Off-line calibration of the OH exposure in the OFR was performed by changing the UV light intensity through stepping the lamp voltage on the computer software. This experiment was performed under a similar range of relative humidity and O₃ concentration used in formal SOA experiments. Toluene was selected as an OH tracer gas since the fate of toluene reacting with O₃ is negligible compared to the reaction with OH. The toluene mixing ratio at the OFR inlet and outlet was measured each time the lamp setting was changed and are presented in the table S1. The OH exposure was calculated by applying the known reaction rate constant of OH with toluene ($k_{OH,toluene}$ = 5.63e-12 cm³ molec⁻¹ s⁻¹)¹ as:

$$OH \text{ exposure } = \frac{-1}{k_{OH, \text{ toluene}}} \times \ln\left(\frac{\left[VOC_{f}\right]}{\left[VOC_{i}\right]}\right)$$
(Equation S1)

where VOC_{inlet} and VOC_{outlet} represents inlet VOC and outlet VOC mixing ratio, respectively.

Text S2: VOC sample collection at the OFR inlet

For SOA mass yield experiments, duplicate VOC samples were collected onto stainless steel absorbent cartridges (multibed Carbograph/Tenax TA; Markes International, Inc.) at OFR inlet. All acyclic terpenes investigated in this study are expected to be fully reacted in the OFR when the inlet mixing ratio is less than 400 ppb at the OH exposure corresponding to the highest SOA mass yield. We have tested this hypothesis by increasing the inlet mixing ratio around 400 ppb and collected duplicate VOC samples both at OFR inlet and outlet. Results collected at the OFR outlet were carefully checked to make sure no VOC were detected in the cartridges analyzed with the TD-GC-MS. For all acyclic terpenes experiments, the inlet mixing ratio remained smaller than 99 ppb.

Text S3: Volatility and viscosity prediction

S

The volatility distribution for each SOA system is calculated based on the method developed by Li et al.⁶⁶ The equation is shown below:

$$\log_{10} C_0 = (n_C^0 - n_C) b_C - n_O b_O - 2 \frac{n_C n_O}{n_C + n_O} b_{CO}$$
(Equation
2)

where n_C^0 is the reference carbon number, and n_c and n_o refer to the number of C and O element, respectively, obtained from HRMS data. The values for parameters n_c^0 , b_c , b_o , and b_{co} are 22.6, 0.4481, 1.656, and -0.779, respectively, which is estimated for reference CHO compounds from Li et al.⁶⁷

The viscosity for each SOA was determined following the methods from DeRieux et al.⁶⁸ In brief, the glass transition temperature $({}^{T}g_{,i})$, defined as a temperature range where phase transition between amorphous solid and semisolid states happens,⁶⁹ can be estimated based on the molecular composition from HRMS data by using the following equation:

$$T_{g,i} = (n_C^0 + \ln(n_C))b_C + \ln(n_H)b_H + \ln(n_C)\ln(n_H)b_{CH} + \ln(n_O)b_O + \ln(n_C)\ln(n_O)b_{CO}$$
(Equation S3)

where n_c , n_H , and n_0 are the numbers of carbon, hydrogen, and oxygen atoms, respectively. The values of parameters n_c^0 , b_c , b_H , b_{CH} , b_0 , and b_{CO} were 12.13, 10.95, -41.82, 21.61, 118.96, and -24.38, respectively, for reference CHO compounds.⁶⁸ Based on the Gordon–Taylor equation, the glass transition temperature of the SOA under dry conditions ($T_{g,org}$) are predicted by assuming the Gordon–Taylor constant (κ_{GT}) as 1 ⁷⁰ for each organic component as the equation shown below:

$$T_{g,org} = \sum \omega_i T_{g,i}$$
 (Equation

S4)

where ω i represents the mass fraction of an organic compound I from HRMS data. The water content in SOA is determined using the effective hygroscopicity parameter (κ).⁷¹ Based on Zhao et al.,⁷² the κ values is derived from cloud condensation nuclei measurements of 0.15. Following the Gordon–Taylor equation, Tg of organic–water

mixtures $({}^{T}g_{,mix})$ is estimated using a Gordon–Taylor constant $({}^{k}GT)$ of 2.5 69,73 :

$$T_{g, \text{mix}} = \frac{\left(1 - w_{org}\right)T_{g,H_2O} + \frac{1}{k_{GT}}w_{org}T_{g,ORG}}{\left(1 - w_{org}\right) + \frac{1}{k_{GT}}w_{org}}$$
(Equation

S5)

where T_{g,H_20} and $T_{g,org}$ refer to the glass transition temperatures of water and SOA organics and W_{org} denotes the mass fraction of the organic compound. The W_{org} could be calculated by the mass concentration of water $\binom{m_{H_2O}}{2}$ and SOA $\binom{m_{SOA}}{2}$ as $w_{org} = \frac{m_{SOA}}{(m_{SOA} + m_{H_2O})}$. The m_{H_2O} can be estimated using the effective hygroscopicity

factor (κ) ⁵⁷ with the following equation:

$$m_{H_2O} = \frac{\kappa \rho_w m_{SOA}}{\rho_{SOA} \left(\frac{1}{a_w} - 1\right)}$$
(Equation

S6)

where the density of water ($^{\rho}_{W}$) is 1 g cm⁻³; the density of SOA is set to 1.3 g cm⁻³;^{57–59} and the water activity, a_w , is calculated as $a_w = RH/100.^{74}$ The temperature-dependence of viscosity is estimated with Vogel-Tammann-Fulcher

(VTF) equation as function of $T_{g,mix}$:

$$\log(\eta) = -5 + 0.434 \frac{T_0 D_f}{T - T_0}$$
 (Equation

S7)

where T_0 is the Vogel temperature calculated as $T_0 = \frac{39.17T_g}{D_f + 39.17}$, assuming viscosity of 10^{12} Pa s at the glass transition temperature.⁷⁵ The fragility parameter (^{D}f) is set to 10⁷⁵ for representing deviation of the temperature dependence of viscosity from the Arrhenius behavior 68,76 and the T is the temperature at which measurements were conducted, 291K.

Figure S1. Fate of RO₂ and HO₂ radicals determined in OFR experiments for β -myrcene, β -ocimene and linalool. RO₂ and HO₂ mixing ratios were estimated by OFR RO₂ Fate Estimator v1.0.²

Figure S2. Relationship between the number of peaks and accumulated normalized intensities for α -pinene, β -myrcene, β -ocimene and linalool SOA based on HR-MS data analysis.

Figure S3. Gas-phase oxidation schemes for β -myrcene from GECKO-A model simulation. Note: this is not the full reaction mechanism but only include up to fourth generation oxidation products.

Figure S4. Gas-phase oxidation schemes for β -ocimene from GECKO-A model simulation. Note: this is not the full reaction mechanism but only include up to fourth generation oxidation products.

Figure S5. Gas-phase oxidation schemes for linalool from GECKO-A model simulation. Note: this is not the full reaction mechanism but only include up to fourth generation oxidation products.

Figure S6. Elemental composition and volatility distribution for α -pinene, β -myrcene, β -ocimene and linalool SOA based on HR-MS data analysis. The sizes of the points correspond to the intensity of signal.

Table S1. OFR condition, inlet and outlet toluene mixing ratios for OH exposure calibration experiments at a constant RH with three lamp settings.

Irradiance	RH	Initial VOC	Final VOC	OH _{exp}
$(\mu W/cm^2)$	(%)	(ppb)	(ppb)	(molec s cm ⁻³)
1.48		641	73	3.87e+11
12.15	60	655	22	5.99e+11
51.17		782	10	1.01e+12

Experiment	Precursor	Introduced	OH exposure	RH	O ₃	SOA mass	RO ₂ /HO ₂
		VOC (ppb)	(molec s cm ⁻³)	(%)	(ppm)	concentration	ratio
						(µg/m³)	
SOA filter	α-pinene		5.5 ×10 ¹¹	60±3	6.5	50	
collection	β-myrcene	29	4.3 ×10 ¹¹	61±2	2.5	45	0.67
	β-ocimene	70	4.1 ×10 ¹¹	62±2	2.1	48	0.77
	linalool	95	4.06 ×10 ¹¹	61±2	1.8	49	0.77

Table S2. Summary of experimental condition for SOA filter collection experiments.

Sample	MW (Da)	Formula	Molecular structure
			from GECKO-A
β-myrcene	170.09	C9H14O3	ОНОН
			НОСНО
	124.05	C7H8O2	OHC
			ОНС
			онс
			оон онс он
	160.07	C7H12O4	НОО
			НОСНОСНО
			НО
			ООН
			ОН

Table S3. Oxidation products detected by HR-MS from both ESI (-) and ESI (+) mode, and the corresponding chemical structure from GECKO-A for SOA formed from α -pinene, β -myrcene, β -ocimene and linalool.

	112.05	C6H8O2	ОНС
	188.07	C8H12O5	
β-ocimene	140.08	C8H12O2	
	158.06	C7H10O4	HOO HOO O
	128.05	С6Н8О3	НОСНО
	130.06	С6Н10О3	ООН НО ОН ООН
			онс ОН

116.05	С5Н8О3	НОСОН
148.07	C6H12O4	ООН ↓СНО ОН
		ОН ↓ СНО ООН
216.10	C10H16O5	
218.12	C10H18O5	но оон о
		о он
172.07	C8H12O4	онс о оон
		ООН

Linalool	202.12	C10H18O4	O OOH OOH
	142.06	C7H10O3	онс он
	186.13	C10H18O3	
			ОН
	114.07	C6H10O2	онс // / / / / / / / / / / / / / / / / /
	162.05	C6H10O5	о <u>о</u> он Сно Он
			о — О — О СНО ООН
	160.07	C7H12O4	оон он
			ноо Ноо ОН

			ОН ОНС СНО ОН
			но Сно ОН
			ООН ОНС
	176.07	C7H12O5	о — О — О — О — О — О — О — О — О
	146.06	C6H10O4	ООН НОСНО
	142.10	C8H14O2	
α-pinene*	170.10	С9Н14О3	HO OHC O
			но

		о — Сно О ООН
216.10	C10H16O5	сно осно
		Сно ООН
		ОНООН
		ООН СНО ОСНО
		ОНОН
140.08	C8H12O2	СНО
158.06	C7H10O4	о — Сно ОН О
		о сно он

		Introduc	K _{OH+VOC}	K _{03+VOC}	Lifetime_OH	Lifetime_O ₃
Experiment	Precursor	ed VOC	(10^{-10} cm^3)	(10^{-16} cm^3)	(s)	(s)
		(ppb)	molec ⁻¹ s ⁻¹)	molec ⁻¹ s ⁻¹)		
	α-pinene	99	52.3	1.07	0.1	4.47
SOA filter	β-myrcene	29	3.34	4.44	0.9	37.2
collection	β-ocimene	70	3.03	4.44	1	37.2
	linalool	95	1.70	4.30	0.01	55.1

Table S4. Summary of the fate of each VOC precursors from reactions with OH and O_3 for SOA filter collection experiments. ^{1,3-6}

References

- 1 R. Atkinson and J. Arey, Chem. Rev., 2003, 103, 4605–4638.
- 2Z. Peng and J. L. Jimenez, Chem. Soc. Rev., 2020, 49, 2570-2616.
- 3 R. Atkinson and J. Arey, Atmospheric Environment, 2003, 37, 197–219.
- 4D. Kim, P. S. Stevens and R. A. Hites, J. Phys. Chem. A, 2011, 115, 500-506.
- 5US EPA, Estimation Programs Interface Suite[™] for Microsoft® Windows, v 4.11 or insert version used]. United States Environmental Protection Agency, Washington, DC, USA. 2023.
- 6F. Bernard, V. Daële, A. Mellouki and H. Sidebottom, J. Phys. Chem. A, 2012, 116, 6113–6126.