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Section S1. Calculation of molecular properties

Formulae applied for the calculation of double bond equivalents (DBE), aromaticity index (Al, modified for
high oxygen content),%? saturation vapour pressure (C*, Table S1).2 Calculations are based on the assigned
neutral sum formulae C.HyN,OoSs.

DBE:c—§+§+1 (1)

1+¢—-0.50-s-0.5h
Al = ~tcUo07570-0 (2)

c—0.50-s—n
Almog > 0.5 indicates aromatic structures and Almod > 0.67 indicates condensed aromatic structures.

log1o C* = (nd = )b — 0by — 2 == b, — by, — sb; (3)

Organic aerosol compounds can be classified into five groups, based on their saturation vapor pressure
(C"): volatile organic compounds (VOC; C* > 3x10° ug m=3), intermediate volatility OC (IVOC; 300 < C" <
3x10° ug m3), semi volatile OC (SVOC; 0.3 < C* < 300 pg m?3), low-volatile OC (LVOC; 3x10™* < C* <
0.3 ug m3), and extremely low-volatile OC (ELVOC; C" < 3x10* pug m™3). °

Table S1: Compound classes and their respective nc and b values from Li et al. 3 obtained by least-
squares optimization using compounds from the NCI database.

Compound class n’c b. bo beo bn bs

CH 23.8 0.4861

CHO 22.66 0.4481 1.656 -0.7790

CHN 24.59 0.4066 0.9619

CHNO 24.13 0.3667 0.7732 -0.07790 1.114

CHOS 24.06 0.3637 1.327 -0.3988 0.7579
CHNOS 28.5 0.3848 1.011 0.2921 1.053 1.316
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Table S2: Absolute number of assigned elemental compositions in each compound class.
number of assignhed compounds

ionization

ESI negative APPI

ESI positive

sample
Car fresh
Car short
Car medium
Wood fresh
Wood short
Wood medium
ESP Wood fresh
ESP Wood short
Car fresh
Car short
Car medium
Wood fresh
Wood short
Wood medium
ESP Wood fresh
ESP Wood short
Car fresh
Car short
Car medium
Wood fresh
Wood short
Wood medium
ESP Wood fresh
ESP Wood short

ESP: electrostatic precipitator

CH
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750

1160
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551
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CHNO
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Table S3: Absolute intensity of assigned elemental compositions in each compound class.

ionization

ESI negative APPI

ESI positive

sample
Car fresh
Car short
Car medium
Wood fresh
Wood short
Wood medium
ESP Wood fresh
ESP Wood short
Car fresh
Car short
Car medium
Wood fresh
Wood short
Wood medium
ESP Wood fresh
ESP Wood short
Car fresh
Car short
Car medium
Wood fresh
Wood short
Wood medium
ESP Wood fresh
ESP Wood short

CH
1.20E+09
1.33E+08
2.39E+08
2.94E+09
1.30E+09
3.86E+08
5.28E+09
2.71E+08

O O O O O o o o o o

4.76E+07
4.75E+07
4.99E+07
0
6.41E+07
0

ESP: electrostatic precipitator

intensity of assigned compounds [a.u.]

CHO
6.55E+09
1.58E+09
3.74E+09
1.85E+10
1.59E+10
1.90E+10
2.81E+10
7.11E+09
5.07E+09
1.72E+09
5.48E+09
5.10E+09
7.47E+09
6.80E+09
1.40E+10
6.25E+09
3.55E+09
1.27E+09
2.39E+09
1.34E+09
3.66E+09
3.12E+09
4.29E+09
2.38E+09

CHNO
6.93E+08
4.70E+09
2.29E+10
8.96E+08
4.19E+09
1.04E+10
2.36E+09
2.58E+09
5.49E+08
4.86E+09
1.60E+10
1.00E+09
9.23E+09
4.47E+09
2.24E+09
9.01E+09
1.21E+09
5.02E+09
1.02E+09
4.92E+08
3.76E+09
4.61E+09
4.56E+09
4.23E+09
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CHOS
0
0
3.98E+07

O O ©o o o

1.34E+09
1.02E+07
3.80E+08
6.48E+08
4.15E+08
4.83E+08
7.86E+08
3.91E+08

O O O ©O O o o o

CHNOS

O O O O o o o o

4.50E+07
2.98E+08
1.28E+09
9.96E+07
1.76E+08
2.01E+07
1.95E+08
4.18E+08

O O O O O o o o

CHN

0

0
6.88E+07
1.52E+08
4.71E+07
2.65E+07
2.33E+08
2.24E+07

O O O © O o o o

5.67E+07
1.11E+07
1.67E+08
5.48E+07
9.92E+07
4.42E+07
2.34E+08
6.10E+07

total
8.44E+09
6.41E+09
2.71E+10
2.25E+10
2.15E+10
2.98E+10
3.60E+10
9.99E+09
7.00E+09
6.89E+09
2.31E+10
6.86E+09
1.73E+10
1.18E+10
1.72E+10
1.61E+10
4.81E+09
6.30E+09
3.63E+09
1.94E+09
7.57E+09
7.78E+09
9.15E+09
6.67E+09



Table S4: Arithmetic mean of parameters calculated from the elemental composition for each dataset.

ionization

ESI negative APPI

ESI positive

sample

Car fresh

Car short

Car medium
Wood fresh
Wood short
Wood medium
ESP Wood fresh
ESP Wood short
Car fresh

Car short

Car medium
Wood fresh
Wood short
Wood medium
ESP Wood fresh
ESP Wood short
Car fresh

Car short

Car medium
Wood fresh
Wood short
Wood medium
ESP Wood fresh
ESP Wood short

number

620
1637
3784
1135
2127
2824
1718
1614

366
1554
3358
1055
2614
2050
1282
2703

797
1721
1125

454
1672
1714
1578
1654

OSc

-1.12
-0.59
-0.55
-0.62
-0.42
-0.26
-0.64
-0.43
-1.34

0.21

0.27
-0.51

0.27

0.48
-0.33

0.25
-1.33
-0.65
-0.76
-0.49
-0.44
-0.23
-0.61
-0.57

DBE

6.9
5.9
6.3
12.9
12.5
12.6
13.5
10.8
31
6.0
6.8
11.4
10.9
9.7
12.7
10.5
3.7
3.8
8.6
123
9.6
9.1
10.7
73

Almod

0.31
0.22
0.21
0.59
0.55
0.53
0.57
0.51
0.07
0.12
0.14
0.48
0.43
0.36
0.53
0.41
0.11
0.06
0.33
0.57
0.45
0.41
0.46
0.33
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H/C
1.40
1.39
1.39
0.87
0.91
0.90
0.90
0.97
1.84
1.32
1.28
1.04
0.91
0.95
0.92
0.94
1.77
1.66
1.26
0.90
1.06
1.08
1.07
1.28

o/c
0.15
0.41
0.43
0.15
0.26
0.33
0.15
0.28
0.25
0.77
0.77
0.26
0.59
0.72
0.29
0.59
0.23
0.51
0.27
0.22
0.32
0.43
0.25
0.36

O/N
2.86
4.11
4.14
2,51
4.66
5.62
2.88
4.56
3.76
6.47
6.45
4.29
7.70
9.31
5.32
7.48
2.93
4.56
3.93
4.76
4.01
5.17
371
4.12

C

21.8
14.8
15.5
21.1
20.0
19.7
22.3
18.3
20.6
12.6
13.8
20.8
16.7
15.4
20.7
16.5
18.7
13.2
18.7
19.7
16.6
15.8
19.1
15.5

H

31.8
20.9
21.8
18.8
17.6
16.7
19.9
17.3
37.4
16.6
17.5
21.2
14.3
14.0
18.6
14.8
324
221
22.8
17.1
16.5
15.8
19.5
19.1

N

0.1
1.1
1.4
0.2
0.4
0.6
0.3
0.5
0.3
13
1.5
0.3
0.8
0.5
0.6
0.8
0.3
1.1
0.6
0.3
0.5
0.5
0.7
0.6

(o)

2.7
5.0
5.7
2.3
4.1
5.5
2.6
4.2
4.6
9.2
10.1
4.9
8.8
10.1
55
8.8
3.7
6.1
4.3
3.5
4.5
5.9
4.0
4.8

m/z
338.6
296.3
320.8
313.5
331.1
349.4
333.7
3111
367.2
334.9
370.5
357.3
367.7
370.9
367.0
367.9
340.2
302.3
344.0
3335
305.4
316.8
341.6
301.9
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Figure S1: OH exposure during the experiments, assessed from the consumption of externally
input d9-butanol. For the car experiments, d9-butanol was monitored only for one 1h cycle (short
aging, d) experiment or for one 4 h experiment, consisting of four repetitive cycles (medium aging,

e).
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Figure S2: Ratio of photolysis (F2s4, exp) to OH exposure (OHexp) during the experiments. Ratios of
4x10°cm s and 1x107 cm st are shown as the lower limits for ‘risky’ and ‘bad’ oxidative flow
reaction conditions, respectively, as defined by Peng and Jimenez.®
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Figure S3: Examples of LVOC lifetimes regarding the particulate condensation sinks (Taer)
downstream the PEAR, and the fraction of LVOCs estimated to have condensed onto particles
within their residence in the PEAR (Faer) in short and medium aged wood combustion experiments
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Figure S4: Upset plots of assigned elemental compositions from fresh, short aged and medium
aged residential wood combustion emissions with indicated compound class, detected in (a)
APPI (b) ESI- and (c) ESI+. Upset plots are used to visualize the number as well as chemical
composition within each intersect of a Venn diagram. The black squares underneath each plot

indicate which intersection of datasets is addressed by the respective bar. TIC (set size) is
indicated in brackets behind the respective number of compounds in each dataset.
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Figure S5: Overview of total assigned mass spectra of each emission source (gasoline car, wood

combustion) and intensity of photochemical aging (fresh, short, medium) in each applied
ionization technique (APPI: black, ESI-: red, ESI+: blue).
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Figure S6: Van Krevelen diagrams of residential wood combustion emissions (a) ESI+ and (b) ESI- data with
fresh organic aerosol indicated in black (left) and compounds newly formed during short aging (center)
indicated in blue and compounds only formed during medium aging (right) displayed in red. The dot size
indicates the number of oxygen atoms in the sum formula.
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Figure S11: Upset plots of assigned elemental compositions from fresh, short aged and medium
aged gasoline car emissions with indicated compound class, detected in (a) APPI (b) ESI- and (c)
ESI+. TIC (set size) is indicated in brackets behind the respective number of compounds in each dataset.
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Figure S12: Distribution of compound classes (number) in separated volatility bins (log(C*)) for each
ionization technique, emission source and intensity of photochemical aging. Organic compound volatility
ranges of intermediate volatile (IVOC), semi volatile (SVOC), low-volatile (LVOC) extremely-low volatile
(ELVOC) and ultra-low volatile (ULVOC) are indicated by dotted vertical lines.
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Figure S13: (a) Mass spectra (ESI-) of assigned sulfur-containing elemental compositions (CHOS: green,
CHNOS: orange) in fresh, short aged and medium aged gasoline car emissions. The grey area indicates the
signal-to-noise threshold for peak picking. (b) Contour plot of double bond equivalent (DBE) versus carbon
number plot of the CHNOS (top) and CHOS (bottom) compound class in short and medium aged ESI(-) data

of gasoline car emissions.
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Figure S14: Upset plots of the comparison of gasoline car and residential wood combustion emission aging
after a) short and b) medium aging. Relative compound class number distribution indicated by color. TIC
(set size) or relative intensity (intersection size) is indicated in brackets behind the respective number of
compounds in each intersection or the total number of compounds in each dataset.
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