
Page S1 of S25

Electronic Supplementary Information (ESI)

Predicted Losses of Sulfur and Selenium in European Soils Using Machine 
Learning: A Call for Prudent Model Interrogation and Selection

Gerrad D. Jones,a* Logan Insinga,a Boris Droz,b,c Aryeh Feinberg,d Andrea Stenke,e,g Jo Smith,f 

Pete Smith,f Lenny H. E. Winkel e,g*

a. Department of Biological & Ecological Engineering, Oregon State University, Corvallis, 
Oregon, 97331, United States.

b. School of Biological, Earth and Environmental Sciences, University College Cork, Cork, 
Ireland.

c. Water and Environment Research Group, Environmental Research Institute, Lee Road, 
University College Cork, Cork, Ireland.

d. Institute for Data, Systems, and Society, Massachusetts Institute of Technology, 
Cambridge, MA 02139, United States.

e. Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, 
Switzerland.

f. Institute of Biological and Environmental Sciences, School of Biological Sciences, University 
of Aberdeen, Aberdeen AB24 3UU, United Kingdom.

g. Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, 
Switzerland.

* Corresponding author. e-mail: gerrad.jones@oregonstate.edu, lwinkel@ethz.ch

This ESI includes 25 pages with texts, 2 tables and 13 Figures.

Supplementary Information (SI) for Environmental Science: Processes & Impacts.
This journal is © The Royal Society of Chemistry 2024

mailto:gerrad.jones@oregonstate.edu
mailto:lwinkel@ethz.ch


Page S2 of S25

SUPPLEMENTARY MATERIALS AND METHODS

Predictive variables and data processing

Table S1. Predictive variables (n = 46) governing S and Se concentrations in soil collected for 
the purpose of the study.

Variable Unit Scenario Year 
coverage

Res. 
(km) Ref.

Vegetation variables
Canopy height m 2004 0.5 1

Maximum green 
vegetation fraction unitless 2012 1 2

Soil physical/chemical properties
Sand, silt, & claya,b % 1990-2016 0.25 3

Bulk density kg/m3 1990-2016 0.25 3

Soil pHa,b unitless 1990-2016 0.25 3

Cation exchange 
capacity (CEC) cmol/kg 1990-2016 0.25 3

Soil chemical properties
current 19902000Soil organic 

carbona,c t C/ ha
future (A1FI) 2080

1 4

Climate
current 19712000Average daily 

precipitation 
(Precip)a,c

mm/yr
future (RCP 8.5) 20712100

12.5 5

current 19712000Average daily 
evapotranspiration 

(ET)a,c
mm/yr

future (RCP 8.5) 20712100
12.5 5

current 19712000Current and future 
aridity index (AI = 

PET/Precip)a,c
unitless

future (RCP 8.5) 20712100
12.5 5

current 19712000Current and future 
evaporative index 
(EI = ET/Precip)a,c

unitless
future (RCP 8.5) 20712100

12.5 5

Other
Bedrock depth m 1990-2016 0.25 3

Lithology (14 var.)d class 111 6

Population density 2000 1 7

Elevationd m 2 8

Aspect, sloped degree 2
derived 

from 
elevation
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Mineralogy
Chemical index of 
alteration (CIA)a,b,c % point 9

Soil metal oxide 
content (10 var.; 

SiO2,TiO2,Al2O3,…)c

wt % or 
mg/kg point 9

Emission/deposition
current 2005–2009

Total S and Se 
depositiona,d

mg S 
/(m2 yr) future 

(SSP58.5)
2095–2099

~310 10

a indicates variables retained for modeling, b indicates variables that were held constant in 

future predictions, c indicates variables collected/modeled specifically from Europe and d 

indicates when original data were in degree and converted to the equivalent in km at the 

equator. Res. and Ref. stand for resolution and references, respectively.
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The GEMAS dataset was originally divided into grazing and plowed soils, these two 

designations were test as predicting variables. However, these designations were 

defined as not important for describing S and Se element concentrations during the 

selection of the most relevant predictive variable. Therefore, the soil data were pooled 

in the final analyses.

All element data and predictive variables within a 111 km pixel centered at the 

nearest 55.5 km were averaged in ArcMap 10.6 using the “Resample” tool to reduce 

the influence of errors and/or outliers within the datasets. Consequently, pixels 

containing <3 data points were removed from the analysis. All data were tested for 

normality by assessing skew. If |skew| <1, then the variables were considered 

normally distributed.11 Without transformation, skew ranged from 0 to 14. Sulfur 

concentration was the most positively skewed variable, and following log10 

transformation, the skew for S was 1.6, which was an improvement and deemed 

suitable for analysis. Although many ML techniques do not need normal distributed 

data, normalizing the data reduces the influence of outliers and can increase prediction 

efficiency and function convergences.12 Finally, because support vector machines are 

sensitive to variations in scale,13 all predictive variables were z-score transformed (i.e., 

z = (xx̄)/stdev, where x is the sample observation, x̄ is the sample mean, and stdev is 

the sample standard deviation). This normalized the data such that the mean and 

standard deviation were 0 and 1, respectively. For variables with future data, the 

future data were also scaled based on the mean and standard deviation of the current 

conditions.
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We strove to select only the most relevant predictive variables using various methods to 

improve interpretability and reduce overfitting. We used linear support vector regression 

(Lin-SVR) analysis to pre-screen variables with low explanatory power. SVR models were set 

up as described below in “Machine learning analysis”. The coefficient weight 

(estimator.coef_) of all variables was retained, and those with coefficients near 0 were 

removed. Additionally, model sensitivity analyses were used to evaluate the independent 

effect of each variable in the Lin-SVR analysis (see “Machine learning analysis” below). 

Predictive variables with disproportionately low importance or eliciting a small response in 

soil element concentrations were removed from analyses. Variables with low coefficient 

weights also exhibited little change in the sensitivity analyses.

Mechanistically, all retained variables are known to govern the retention of S and Se. 

These mechanisms are largely sources, sink, and transport mechanisms. Total deposition are 

sources of both elements to soils.10 As AI increases, soils become drier and thus oxidizing.14, 

15 Oxidized species of S and Se are more mobile,16, 17 so we expect a negative relationship 

between AI and both elements. Increases in clay content are known to increase S and Se 

sorption.18, 19 Increases in pH are known to decrease S and Se sorption.18, 20 ET could influence 

soil element concentrations through multiple mechanisms. For example, ET reduces water 

from the soil column, which thus reduces the potential for transport.21 Furthermore, ET can 

contribute to the removal of trace elements from the soil through plant uptake.22 It is even 

possible that plants can pump trace elements from the subsurface to the surface through root 

uptake,23, 24 incorporation into leaf tissues,25 and deposition and decomposition of leaves.25 

Finally, precipitation is likely the most complex variable and can influence trace element 

concentrations in soils through multiple mechanisms. For example, precipitation influences 

evapotranspiration,26 soil organic matter development,27 soil pH,28 pedogenesis,29 as well as 
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deposition to the soil surface and transport (i.e., leaching) away from the surface.30 While 

Jones et al.31 found a total positive effect driven by precipitation, the independent effect was 

negative, which is potentially an indication that precipitation is a driver of leaching. In general, 

we expect positive relationships between S and Se with deposition, clay, CIA, and SOC, and 

negative relationships with AI and pH. ET and precipitation are difficult to predict a priori, but 

based on Jones et al.,31 we expect a positive relationship with ET and a negative relationship 

with precipitation.

Machine-learning analysis

Our objective was not to compare the performance of the different machine-learning 

(ML) techniques to identify the technique with the highest performance but to develop 

models that generate soil S and Se predictions that are consistent with literature regarding 

known mechanisms. Because we did not know which technique s would perform well, we 

chose four technique s for their diversity. Each technique has a variety of settings and tuning 

parameters. The values and ranges of tuning parameters for each model are documented in 

the code and Fig. S1 to S4 below. For any adjustable parameter not listed, default values were 

used. Figures illustrate how sensitive model performance (RMSE) was to changes in each 

parameter. In some instances, the model performance was irresponsive to changes in a 

particular variable. Cross validation was performed using a 80%:20% split for training and 

testing datasets. Each split was selected randomly for each iteration (n = 100 for each model). 

The tuning parameters that resulted in the lowest RMSE were chosen as the best values. The 

top 10 values were colored cyan (best value) and red (top 2-10 values). The same ranges of 

values used for both S and Se models, but only results for Se are illustrated below.
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Neural network/multilayer perceptron parameters

neural_network.MLPRegressor((hidden_layer_sizes=hidden_layer_sizes, activation='tanh', 
solver='adam', alpha=alpha, batch_size='auto', learning_rate='constant', 
learning_rate_init=0.001, power_t= power_t, max_iter=5000, shuffle=True, 
random_state=None, tol=0.001, verbose=False, warm_start=False, momentum=0.9, 
nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, 
beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, n_iter_no_change=2)

Parameter ranges for all tuning variables
hidden_layer_sizes = np.linspace(1,51,50,endpoint=True, dtype=int)
alpha = np.geomspace(0.00000001, 100,num=1000, endpoint=True)
power_t = np.geomspace(0.00000001, 100,num=1000, endpoint=True)
beta_1 = np.geomspace(0.00000001, 0.99999999, num=1000, endpoint=True)
beta_2 = np.geomspace(0.00000001, 0.99999999, num=1000, endpoint=True)
epsilon = np.geomspace(0.0000000001, 100, num=10000, endpoint=True)

Fig. S1. With the Se data illustrated above, the MLP model performance was most sensitive 
to changes in epsilon. 
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Support vector regression (linear kernel) parameters

svm.SVR(kernel='linear', C=C, epsilon=epsilon, gamma=1, tol=0.001, shrinking=True, 
cache_size=200, verbose=False, max_iter=-1)

Parameter ranges for all tuning variables 
C = np.geomspace(0.0001, 10,num=1000,endpoint=True)
epsilon = np.geomspace(0.00001, 200, num=1000, endpoint=True)

Fig. S2. With the Se data, the Lin-SVR model was performance was most sensitive to changes 
in epsilon. C values below 10-2 resulted in the best performance.
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Support vector regression (radial basis function kernel) parameters

svm.SVR(kernel='rbf', gamma=gamma, tol=0.001, C=C, epsilon=epsilon, shrinking=True, 
cache_size=200, verbose=False, max_iter=-1)

Parameter ranges for all tuning variables 
C = np.geomspace(0.0001, 10,num=1000,endpoint=True)
gamma = np.geomspace(1,1,num=1000,endpoint=True)
epsilon = np.geomspace(0.00001,200, num=1000, endpoint=True)

Fig. S3. With the Se data, the RBF-SVR model was performance was equally sensitive to 
changes in epsilon, C, and gamma.
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Random forest regression parameters

ensemble.RandomForestRegressor((n_estimators=n_estimators, criterion='mse', 
max_depth=max_depth, min_samples_split=min_samples_split, 
min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=0.0, 
max_features='sqrt',max_leaf_nodes=None, min_impurity_decrease=0.0, 
bootstrap=True, oob_score=False, n_jobs=1, random_state=None, 
verbose=0,warm_start=False)

Parameter ranges for all tuning variables 
n_estimators = np.arange (10,1000,1)
max_depth = np.arange (2,100,2)
min_samples_split_ = np.arange (2,50,1)
min_samples_leaf_ = np.arange (2,50,1)

Fig. S4. With the Se data, the random forest model performance was most sensitive to 
min_samples_leaf. To a lesser extent, max depth and min_samples_split were also drivers of 
importance.
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Model overfitting, accuracy, and precision calculations

Once the optimum tuning parameters were identified, the models were iterated 100 

times to evaluate overfitting and to generate an average (i.e., ensemble) and standard 

deviation of the final models. Like model tuning, the training and testing datasets were chosen 

at random during each iteration. The average training and testing performance (R2) was 

recorded, and for each iteration, our prediction was made for all pixels. While there is no 

threshold to indicate the presence of overfitting, an optimal model presents the lowest 

difference, close to zero, between the training and testing performance (i.e., R2 = R2
train  

R2
test). Overfitting could be considered when R2 is high, here an arbitrary threshold of ≥0.2is 

considered. Inversely underfitting is observed when the R2 is negative (< 0.2). Accuracy is 

a measure of how close the modeled estimate is from the observed value, and precision is a 

measure of the variability around a modeled estimate. Some pixels were over or under 

predicted, which is potentially the result of specific sources or mechanisms that operate 

locally (e.g., mining activity). A limitation of any modeling is not having all variables to fully 

describe all processes controlling element concentrations, and for continental-scale 

modeling, some data are simply not available (e.g., specific anthropogenic sources). Thus, we 

felt it necessary to interpret only those pixels that were well characterized by the model. 

Although we excluded pixels from interpretation, these data points were not excluded from 

the model development to avoid influence data bias, which could artificially skew the 

mathematical relationships during model development. Pixels that failed accuracy and 

precisions filters were not interpreted for future analyses, but the data were retained within 

the model to make future predictions. 



Page S12 of S25

Sensitivity analyses and partial dependence plots

After each model iteration during the final run, the models predicted element 

concentrations for a hypothetical set of predictive variable values whereby one predictive 

variable was allowed to vary across the entire domain of the dataset while all others were 

held constant at their mean value.31 Because each predictive variable was transformed to z-

scores, the mean value of each variable was 0. Across all predictive variables, the spread of 

the dataset ranged from approximately 4.4 to +6.1 standard deviations of its mean. This 

range was divided into 26 intervals each with a difference of 0.4 standard deviations (i.e., 

4.8, 4.4, 4.0,..., 6). The output of the univariate sensitivity analysis was trimmed such that 

predictions did not extend beyond the domain of any predictive variable. By varying a single 

parameter and holding all others constant, we were able to evaluate the independent effects 

of each variable by accounting for the effects of the others. Partial dependence plots were 

created using sklearn.inspection.PartialDependenceDisplay.from_estimator. All default 

settings were used. As expected, the results of the sensitivity and partial dependence analyses 

were similar.
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SUPPORTING RESULTS AND DISCUSSION

Model residuals

Fig. S5. Residual of the model for sulfur (S) and selenium (Se) prediction. Abbreviations include 

linear support vector regression (Lin-SVR) and multilayer perceptron (MLP).

Poor model performance 

Table S2. Average performance (R2) of machine-learning (ML) models. Regression models 
include support vector regression (SVR) with a radial basis function (RBF) and linear kernels, 
multilayer perceptron (MLP), and random forest. Cross validation was performed using a 
80%:20% split for training and testing datasets. Each split was selected randomly for each 
iteration (n = 100 for each model).

 S Se
Model Train Test R2 Train Test R2

RBF-SVR 0.66 0.57 0.09 0.70 0.66 0.04
Lin-SVR 0.52 0.55 0.03 0.64 0.62 0.02

MLP 0.61 0.57 0.04 0.66 0.64 0.02
RFR 0.80 0.60 0.20 0.84 0.63 0.21

R2 = R2
train  R2

test
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Fig. S6. Observed vs predicted concentrations of all four machine-learning (ML) models for S 
and Se (gray box). All data are based on average values (n = 100). Abbreviations include sulfur 
(S), selenium (Se), support vector regression (SVR), multilayer perceptron (MLP), root mean 
squared error (RMSE). The RMSE was calculated based on the final average prediction 
(illustrated in Fig. S6) instead of the average of each prediction (as presented in Table S1).

Fig. S7. Geographic distribution of observed (Obs) and modeled soil S and Se (gray box) 
concentrations and relative residuals (i.e., % change). Panels in each column correspond to 
their heading. Abbreviations include sulfur (S), selenium (Se), radial basis function kernel for 
support vector regression (RBF-SVR), linear kernel for support vector regression (Lin-SVR), 
multilayer perceptron (MLP), and random forest regression (RFR). Pixels that exceed 
accuracy and precision thresholds were excluded. The pixel resolution of each panel is 111 
km.
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Mechanistic and Model Evaluation

In the univariate sensitivity analyses, the element response to changes in each 

predictive variable was helpful for determining whether the model is capturing expected 

element fate and transport mechanisms in the model. While some predictive variables have 

multiple mechanisms that can affect element fate and transport (e.g., precipitation),31 modal 

relationships between predictive variables and elements are unlikely on broad scales because 

it implies that the importance of one mechanism overtakes that of a second in the middle of 

the variable’s gradient. Therefore, modal patterns may be a sign of overfitting within a model. 

S and Se were most sensitive to changes in SOC (Fig. S7, S10 & S11), which is not surprising 

given that SOC strongly increases soil retention of both elements.18, 20 In the RBF model, the 

relationship between S and SOC is unimodal. For aridity index (AI), we expect S and Se 

concentrations to be negatively related to AI because long term warming will decrease the 

redox capacity of soil organic matter,32 which might reduce soil S and Se sequestration. 

Therefore, we expect monotonic decreases in S and Se concentrations with high AI, however, 

unimodal patterns were observed for RBF-SVR for both elements and the MLP model for S, 

indicating that these models are inconsistent with our mechanistic expectations. Similarly, we 

expect increased S and Se sorption with increased CIA, resulting from increased binding sites 

of weathered soils, and increased clay. This trend was mostly observed for clay, but was not 

observed for CIA in the RBF-SVR, MLP, and RFR models for S. Both elements were largely 

invariant to changes in pH for all models. We expected increased element concentrations with 

increased deposition, which was observed for the RBF-SVR, Lin-SVR, and MLP models for Se 

and the Lin-SVR model for S. 
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Fig. S8. machine-learning (ML) model sensitivity analyses for soil S and Se (gray box). All data 
are based on average values (n = 100). Panels in each column correspond to their heading. 
Abbreviations include sulfur (S), selenium (Se), radial basis function kernel for support 
vector regression (RBF-SVR), linear kernel for support vector regression (Lin-SVR), multilayer 
perceptron (MLP), and random forest regression (RFR), chemical index of alteration (CIA), 
soil organic carbon (SOC), aridity index (AI), evapotranspiration (ET), precipitation (Precip), 
and deposition (Dep). 
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Fig. S9. Bivariate sensitivity analyses between SOC and all other predictor variables for S (left 
panels) and Se (right panels). 
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Finally, the element responses to changes in predictive variables were highly irregular 

in the RFR model. For example, elements were invariant to predictive variable changes across 

their domain, particularly for Se. The lack of a consistent relationship between the predictive 

variables and either element suggests that the RFR model developed highly non-linear and 

nuanced relationships between elements and variables, which further suggests that the RFR 

model is inconsistent with the expected mechanistic pattern. Overall, while all models have 

similar performance, the Lin-SVR models for both elements and the MLP model for Se are 

most mechanistically consistent with our expectations.

Future changes

For each model iteration, ML models were used to predict future changes in trace 

element concentrations based on projected changes in deposition, climate, and SOC 

throughout the 21st century. In general, there was some agreement between the four 

models. For example, S and Se concentrations in northern Europe were predicted to increase 

while concentrations in southern Europe were predicted to decrease; however, there are 

distinct differences in the maps, which are explained by some of the anomalous behavior 

observed in the sensitivity analyses. For example, we expect largely monotonic relationships 

between predictive variables, namely AI, and element concentrations; however, for the RFR 

model for S and the RBF-SVR models for S and Se, the models predicted increases in element 

concentrations at either AI extreme (Fig. S7). This explains why element concentrations are 

increasing in southern Spain despite our expectation that concentrations should drop with 

increasing aridity in the region (Fig. S8). Particularly for the RFR models, the predicted 

concentrations in the sensitivity analysis are irregular and nuanced (Fig. S7), which likely 

explains the lack of any broad-scale pattern and the highly variable predictions in the future 

data (Fig. S8). Qualitatively, we expect smooth transitions in element concentrations across 
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the continent, like shifts in broad scale changes in precipitation, SOC, and deposition. While 

our data aggregation on a 111 km scale can create discontinuities, the RFR model, particularly 

for Se, is the most discontinuous. Based on evidence of overfitting (Table S2), poor fitting (Fig. 

S5), and mechanistic discontinuities (Fig. S7 & S8), we argue that the RBF-SVR, MLP, and RFR 

models are least appropriate for S, and the RBF-SVR and RFR models are least appropriate for 

Se. The Lin-SVR models for S and Se and the MLP model for Se match our mechanistic 

expectation best of all the models. Furthermore, these maps best represent our expectation 

of relatively smooth changes in change across continental scales.

Fig. S10. Geographic distribution projected changes (i.e., (future modeled – current 
modeled)/current modeled) in Soil S and Se (gray box) by 2100 (c). Abbreviations include 
sulfur (S), selenium (Se), radial basis function support vector regression (RBF-SVR), linear 
support vector regression (Lin-SVR), multilayer perceptron (MLP), and random forest 
regression (RFR). Pixels that exceed accuracy and precision thresholds (all panels) or with 
missing data (c) were excluded. Projected changes are a result of changes in climate, 
deposition, and soil organic carbon. The pixel resolution of each panel is 111 km. Climate 
scenarios include A1FI for SOC, RCP 8.5 for climate, and SSP58.5 for S and Se emissions.
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Fig. S11. Partial dependence plots for the Sulfur (S) linear-support vector regression (Lin-
SVR) model. Data normalized center? We just need to better descriebe this graph.
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Fig. S12. Partial dependence plots for the Se linear- support vector regression (Lin-SVR) 
model (upper panels) and MLP (lower panels). See FigS11 comment
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Fig. S13. Predicted percent change in soil Se concentrations by 2100 assuming an extreme 
climate change scenario (A1FI for SOC, RCP 8.5 for climate, and SSP58.5 for S and Se 
deposition). The independent effect of individual predictive variables are illustrated in each 
panel. In each panel, all other variables were modeled at their current values. Abbreviations 
include aridity index (AI), evapotranspiration (ET), precipitation (Precip), deposition (S or Se 
Dep), and soil organic carbon (SOC). Only results from the multilayer perceptron (MLP) for 
Se are illustrated. Results for linear support vector regression (Lin-SVR) are illustrated in Fig. 
3. The pixel resolution of each panel is 111 km.
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