Modelling Indoor Radical Chemistry during the HOMEChem Campaign Supplementary Information

Freja F. Østerstrøm,^{‡a,b,c} Toby J. Carter,^{‡a} David R. Shaw,^a Jonathan P. D. Abbatt,^d Andrew Abeleira,^e Caleb Arata,^{f,g} Brandon P. Bottorff,^h Felipe J. Cardoso-Saldaña,ⁱ Peter F. DeCarlo,^j Delphine K. Farmer,^e Allen H. Goldstein,^{g,k} Lea Hildebrandt Ruiz,ⁱ Tara F. Kahan,^{l,m} James M. Mattila,^e Atila Novoselac,ⁿ Philip S. Stevens,^{h,o} Emily Reidy,^h Colleen Marciel F. Rosales,^o Chen Wang,^d Shan Zhou^{l,p} and Nicola Carslaw^a*

- * Corresponding email: nicola.carslaw@york.ac.uk
- \ddagger These authors contributed equally to this work
- ^a Department of Environment and Geography, University of York, York, United Kingdom
- ^b Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- ^c Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- ^d Department of Chemistry, University of Toronto, Toronto, Canada
- ^e Department of Chemistry, Colorado State University, Fort Collins, CO, USA
- ^f Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
- ^g Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
- ^h Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
- ⁱ McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
- ^j Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
- ^k Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, USA
- ¹ Department of Chemistry, Syracuse University, Syracuse, NY, USA
- ^m Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
- ⁿ Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, TX, USA
- ^o O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, USA
- ^p Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA

Table S1: Species and rates input into the model as per measured values.

Inorganic compounds	Nitric oxide (NO), Nitrogen dioxide (NO ₂), Ozone (O ₃), Outdoor NO
and physical parameters	(NO_{out}) , Outdoor NO_2 $(NO_{2,out})$, Outdoor O_3 $(O_{3,out})$, Water (H_2O) ,
(9)	Temperature, Humans
VOCs (45)	Carbon monoxide (CO), Methane (CH ₄), Ethane (C_2H_6), Propane
	(C_3H_8) , n-butane $(n-C_4H_{10})$, i-Butane (C_4H_{10}) , n-Pentane (C_5H_{12}) ,
	n-Hexane (C_6H_{14}) , n-Heptane $(n-C_7H_{16})$, n-Octane (C_8H_{18}) , n-
	Nonane (C_9H_{20}) , n-Decane $(C_{10}H_{22})$, Ethene (C_2H_4) , Propene
	(C_3H_6) , 1-Butene (C_4H_8) , cis-2-Butene (C_4H_8) , trans-2-Butene
	(C_4H_8) , 2-Methyl-1-propene (C_4H_8) , 2-Methyl-1-butene (C_5H_{10}) , cis-
	2-Pentene (C_5H_{10}) , i-Pentene (C_5H_{12}) , Ethyne (C_2H_2) , Isoprene
	(C_5H_8) , Benzene (C_6H_6) , Toluene (C_7H_8) , Styrene (C_8H_8) , m-Xylene
	(C_8H_{10}) , o-Xylene (C_8H_{10}) , p-Xylene (C_8H_{10}) , Ethylbenzene (C_8H_{10}) ,
	1,2,3-Trimethylbenzene (C ₉ H ₁₂), $1,3,5$ -Trimethylbenzene (C ₉ H ₁₂),
	o-Ethyltoluene (C_9H_{12}) , m-Ethyltoluene (C_9H_{12}) , p-Ethyltoluene
	(C_9H_{12}) , Limonene $(C_{10}H_{16})$, α -pinene $(C_{10}H_{16})$, β -pinene $(C_{10}H_{16})$,
	Acetaldehyde (CH_3CHO), Acetone (CH_3COCH_3), Methyl ethyl ketone
	(MEK, C_4H_8O), Methyl nitrate (CH_3NO_3), Ethyl nitrate ($C_2H_5NO_3$),
	n-Propyl nitrate ($C_3H_7NO_3$), 2-Butyl nitrate ($C_4H_9NO_3$)
Cl-containing com-	Molecular chlorine (Cl_2) , Hypochlorous acid $(HOCl)$,
pounds (6)	Trichloromethane (CHCl ₃), $1,1,2,2$ -tetrachloroethane (C ₂ H ₂ Cl ₄),
	Chloroformic acid (ClCO ₂ H), Chlorine nitrite (ClNO ₂),
Photolysis rates (11)	J_{NO_2} (J4), J_{O_3} (J1), $J_{NO_3 \to NO_2}$ (J5), $J_{NO_3 \to NO}$ (J6), J_{HONO} (J7), $J_{H_2O_2}$
	$(J3), J_{Cl_2} (J70), J_{HOCl} (J74), J_{ClNO_2} (J71), J_{ClOOCl} (J77), J_{OClO} (J75)$