Supplementary Information (SI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2025

1

Supplemental Materials

2 Details and formulas in 2.3. Study Methods

- 3 The single-pollutant model:
- 4 $\log(\mu_t) = \alpha + \beta X_{t,t} + ns(Temp_t, df) + ns(RH_t, df) + ns(Time_t, df) + Dow + Holiday$

5 where α is the intercept, μ_t denotes outpatient visits to the URTI on day t, $X_{t,l}$ indicates the cross-basis matrix of each pollutant adopted by applying the DLNM, β is 6 the regression coefficient for $X_{t,l}$, ns is the natural cubic spline function, df represents 7 the degree of freedom. Temp_t is daily temperature on day t, RH_t is daily RH on day t, 8 *Time*₁ is a time variable that controls long-term trends and seasonality. *Dow* and *Holiday* 9 are categorical variables reflect days of the week and holiday effects, respectively. 10 Based on previous literature studies, we used Quasi-Poisson Akaike Information 11 Criterion (Q-AIC) minimization principle to determine the df for related confounding 12 factors.³⁸ In this study, we specified 3 df for both temperature and RH, and set a df of 13 7/year for the time variable $Time_t$.^{11,39-40} 14

15 The DLNM model of ambient temperature is shown below:

16 $\log(\mu_t) = \alpha + \beta \operatorname{Temp}_{t,t} + ns(Pollutant_t, df) + ns(RH_t, df) + ns(Time_t, df) + Dow + Holiday$

Where *Temp_{t1}* refers to the DLNM cross basis matrix of ambient temperature, we 17 selected a natural cubic spline for the space of temperature with two internal knots at 18 equally spaced temperature percentiles and another natural cubic spline with two 19 internal knots at equally spaced \log_{10} -values of lags (plus intercept). Pollutant_t is the 20 daily concentration of PM_{10} , SO_2 , NO_2 on day t, other variables are defined with the 21 previous formula. The Q-AIC was used to assess the model fit and ensure the optimal 22 df for different variables, we specified 3 df for both Pollutant, and RH_t , and set a df of 23 7/year for the time variable $Time_t$.²⁰ 24

25 The model fitting the impact of RH on outpatient visits for URTI is as follows:

26 $\log(\mu_t) = \alpha + \beta R H_{t,l} + ns(Pollutant_l, df) + ns(Temp_t, df) + ns(Time_t, df) + Dow + Holiday$

Where $RH_{t,l}$ is cross basis matrix produced by DLNM to model the RH, we selected a natural cubic spline for the space of RH with two internal knots at equally spaced RH percentiles and another natural cubic spline with two internal knots at equally spaced log₁₀-values of lags (plus intercept). *Pollutant*_t is the concentration value of each air pollutant on *t*, other variables are defined with the previous formula. Similarly, the df for related variables were chosen based on the Q-AIC, we specified 3 *df* for both *Pollutant*_t and *Temp*_t, and set a *df* of 7/year for the time variable *Time*_t.⁴²

34 The formula for the interaction effect model between air pollutants and 35 temperature is shown below:

36
$$\log(\mu_t) = \alpha + Te(AP_{t,l}, Temp_t) + ns(RH_t, df) + ns(Time_t, df) + Dow + Holiday$$

37 The formula for the interaction effect model between air pollutants and RH is38 provided below:

39 $\log(\mu_t) = \alpha + Te(AP_{t,l},RH_t) + ns(Temp_t,df) + ns(Time_t,df) + Dow + Holiday$

In the above two formulas, Te() is the tensor product smooth function, $AP_{t,l}$ is the l-day moving average of air pollutants on day t, and other variables are defined with the previous formula. Based on the Q-AIC minimization principle, the *df* of *Temp*_t and *RH*_t is set to 3, and the *df* of *Time*_t is set to 7/year.

44 The following shows the formula for the temperature stratification model:

45 $\text{Log}(\mu_t) = \alpha + \beta_1 Pollutant + \beta_2 Temp_k + \beta_3 (Pollutant_t: Temp_k) + ns(RH_t, df) + ns(Time_t, df) + Dow$ 46 + Holiday

47 The following shows the formula for the RH stratification model:

48 $\text{Log}(\mu_t) = \alpha + \beta_1 Pollutant + \beta_2 RH_k + \beta_3 (Pollutant_t: RH_k) + ns(Temp_t, df) + ns(Time_t, df) + Dow + ns(Temp_t, df) + ns(Temp_t$

49 Holiday

50 $Temp_t$ is the daily mean temperature level on t, RH_t is the RH level on t, which are

51 categorical variables. β_1 , β_2 , and β_3 reflect the main effect of air pollutants, the main 52 effect of temperature or RH, and the effect of the interaction term between air pollutants 53 and the daily mean temperature or RH, respectively. And other variables are defined 54 with the previous formula. Based on the Q-AIC minimization principle, the *df* of *Temp*_t 55 and *RH*_t is set to 3, and the *df* of *Time* is set to 7/year.

We tested for differences in effect estimates between categories of potential effect
modifiers by calculating the 95% confidence interval. as shown below,

$$Z = \frac{\hat{Q}_1 - \hat{Q}_2}{\sqrt{S\hat{E}_1 + S\hat{E}_2}}$$

58

59 where Z is the z score, Q_1 and Q_2 are the effect estimates in the two subgroups; 60 and SE_1 and SE_2 are their respective standard errors.²⁶

BKMR is a machine learning approach that can be used to best simulate the mixed
effects of exposure mixtures by using kernel functions. In this study, we performed a
hierarchical variable selection method with 10,000 iterations via the Markov chain
Monte Carlo algorithm. Comprehensive descriptions of the model are available in prior
literature.^{47,48}

66

City	Variable	Mean±SD	Min	P ₂₅	P_{50}	P ₇₅	Max
Jiuquan	Outpatient Visits of URTI	105±60	0	61	105	146	315
	Male	56±37	0	38	58	135	206
	Female	49±22	0	23	46	101	114
	0-14 years	43±27	0	23	47	73	124
	15-64 years	27±16	0	15	25	42	99
	≥65 years	35±13	0	21	32	53	136
Dingxi	Outpatient Visits of URTI	99±53	0	58	96	136	298
	Male	59±33	0	36	57	71	187
	Female	40±22	0	20	38	66	117
	0-14 years	49±29	0	29	47	67	161
	15-64 years	26±14	0	12	24	34	78
	≥ 65 years	24±16	0	15	25	35	60
Tianshui	Outpatient Visits of URTI	70±59	0	32	68	115	441
	Male	44±24	0	25	42	76	296
	Female	26±18	0	8	21	50	145
	0-14 years	37±32	0	19	38	64	180
	15-64 years	14±8	0	6	11	23	106
	≥65 years	19±11	0	7	18	31	126

68 Table S1 Basic profile of URTI outpatient visits in the three municipalities during the

69 study period.

Variable	City	Mean±SD	Min	P ₂₅	P_{50}	P ₇₅	Max	F	Р
PM _{2.5} (µg/m ³)	Jiuquan	31.00±26.00	7.00	17.00	24.00	36.00	325.00	1.051	0.350
	Dingxi	33.97±22.61	6.00	18.00	27.00	45.00	243.00		
	Tianshui	33.51±22.91	4.00	18.00	26.00	46.00	224.00		
$PM_{10} (\mu g/m^3)$	Jiuquan	113.00±43.00	11.00	54.00	78.00	116.00	1727.00	27.427	< 0.05
	Dingxi	77.82±59.83	8.00	40.00	60.00	94.00	1059.00		
	Tianshui	69.22±51.08	8.00	36.00	58.00	90.00	761.00		
$SO_2 (\mu g/m^3)$	Jiuquan	12.00±6.00	2.00	8.00	10.00	14.00	36.00	3.235	< 0.05
	Dingxi	16.36±11.81	2.00	5.00	8.00	23.00	86.00		
	Tianshui	15.20±13.07	5.00	8.00	10.00	16.00	95.00		
$NO_2 (\mu g/m^3)$	Jiuquan	24.00±9.00	4.00	17.00	23.00	30.00	64.00	15.679	< 0.05
	Dingxi	26.43±10.17	4.00	18.00	26.00	34.00	59.00		
	Tianshui	31.53±13.75	2.00	21.00	28.00	40.00	83.00		
$O_{3}8h (\mu g/m^{3})$	Jiuquan	93.00±26.00	32.00	73.00	95.00	112.00	168.00	1.567	0.213
	Dingxi	93.33±27.95	7.00	72.00	91.00	114.00	173.00		
	Tianshui	86.72±33.60	6.00	63.00	87.00	110.00	261.00		
CO (mg/m ³)	Jiuquan	0.57±0.23	0.18	0.40	0.50	0.70	1.80	5.678	< 0.05
	Dingxi	0.63±0.40	0.10	0.40	0.50	0.80	2.40		
	Tianshui	0.70 ± 0.44	0.20	0.40	0.60	0.90	3.30		
lean temperature (°C)	Jiuquan	8.80±5.70	-21.00	-1.10	10.00	19.30	29.50	10.235	< 0.05
	Dingxi	7.82±4.36	-13.60	-0.50	9.05	16.20	26.10		
	Tianshui	11.93±8.90	-8.90	3.90	12.80	19.61	29.10		
Relative humidity (%)	Jiuquan	44.88±15.80	13.00	33.00	43.00	55.00	99.00	35.679	< 0.05
	Dingxi	63.14±16.55	18.33	50.54	64.00	76.00	100.00		
	Tianshui	65.63±13.30	17.42	57.00	67.00	75.00	95.00		

72 Table S2 Basic daily air pollutants and meteorological factors in three cities during the

73 study period.

75

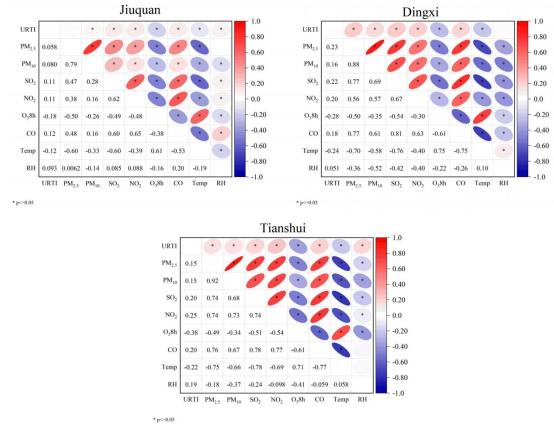


Figure S1 Spearman's correlation analysis of URTI outpatient visits, air pollutants and

79 meteorological factors in three cities of Gansu Province.

81 Table S3 Relative risk and 95% CI of outpatient visits for URTI associated with a 10

 $82 \mu g/m^3$ increase in pollutants concentrations (each $1mg/m^3$ increase in CO

83 concentration)^a by gender, age and season in three cities analyzed.

	PM _{2.5}	PM ₁₀	NO_2	СО
Jiuquan				
Gender				
Male	1.134(1.055,1.219)	1.056(1.025,1.076)	1.129(1.030,1.238)	2.502(1.876,2.911)
Female	1.122(1.020,1.233)	1.044(1.025,1.063)	0.941(0.839,1.056)	1.844(0.712,4.775)
Age(years)				
0-14	1.142(1.094,1.191)	1.035(1.024,1.046)	1.171(1.005,1.366)	3.336(2.190,5.081)
15-64	0.851(0.760,0.953)	0.972(0.936,1.010)	0.745(0.667,0.833)	0.829(0.681,1.213)
≥65	1.008(0.903,1.127)	1.013(0.986,1.041)	1.093(1.036,1.152)	1.501(0.844,2.143)
Season				
Cold	1.126(1.001,1.267)	1.093(1.056,1.130)	1.694(1.331,2.155)	2.307(1.521,3.126)
Warm	0.936(0.821,1.066)	0.993(0.963,1.024)	1.052(0.945,1.170)	1.455(0.743,2.850)
Dingxi				
Gender				
Male	1.132(1.076,1.191)	1.014(0.999,1.030)	1.072(1.006,1.142)	2.650(1.852,3.792)
Female	1.113(1.064,1.164)	1.010(0.992,1.028)	1.046(0.988,1.107)	2.214(1.597,3.070)
Age(years)				
0-14	1.156(1.021,1.308)	1.042(1.001,1.085)	1.153(1.063,1.288)	3.039(1.306,5.067)
15-64	1.109(1.056,1.164)	1.012(0.996,1.028)	1.021(0.965,1.081)	2.102(1.474,2.997)
≥65	1.131(1.080,1.184)	1.013(0.996,1.030)	1.053(0.989,1.120)	2.546(1.834,3.533)
Season				
Cold	1.193(1.117,1.273)	1.029(0.991,1.068)	1.245(1.154,1.344)	2.396(1.664,3.451)
Warm	0.994(0.922,1.072)	1.017(0.994,1.042)	1.030(0.918,1.155)	1.543(0.689,3.453)
Tianshui				
Gender				
Male	1.028(0.988,1.069)	1.017(0.999,1.034)	1.163(1.109,1.221)	1.912(1.522,2.402)
Female	0.948(0.897,1.003)	1.011(0.984,1.038)	1.144(1.075,1.218)	1.470(1.079,2.004)
Age(years)	. ,		. ,	
0-14	1.092(0.991,1.203)	1.065(1.019,1.113)	1.197(1.137,1.260)	2.574(2.012,3.292)
15-64	0.991(0.936,1.049)	1.002(0.983,1.022)	0.945(0.846,1.056)	0.861(0.758,0.933)
≥65	1.012(0.969,1.056)	1.027(1.000,1.054)	1.110(1.039,1.185)	1.644(1.202,2.250)
Season	. ,	. , ,		. ,
Cold	1.042(0.986,1.101)	1.032(1.001,1.064)	1.276(1.193,1.364)	2.115(1.318,2.805)
Warm	0.917(0.859,0.980)	0.993(0.964,1.022)	1.146(0.990,1.326)	1.455(1.028,2.060)

 $84~^a$ Concentration of $PM_{2.5}$ at lag014, PM_{10} at lag014, NO_2 at lag011, and CO at lag014 were

85 analyzed.

Table S4 Associations of each 10 μ g/m³ increase in pollutants (each 1mg/m³ increase

in CO concentration) ^a with relative risk of outpatient visits for URTI using single and

two pollutant mod	els in three	cities.
-------------------	--------------	---------

Pollutants and Models	PM _{2.5}	PM_{10}	NO_2	СО
Jiuquan				
Single-pollutant model	1.134(1.057,1.218)	1.045(1.026,1.064)	1.118(1.022,1.224)	5.433(2.818,10.475)
+ PM _{2.5}	-	-	1.112(1.043,1.151)	5.399(2.859,10.460)
$+ PM_{10}$	-	-	1.124(1.081,1.237)	5.408(2.818,10.160)
+ SO ₂	1.115(1.037,1.200)	1.045(1.023,1.064)	1.096(1.008,1.189)	5.417(2.881,10.969)
$+ NO_2$	1.122(1.037,1.214)	1.042(1.023,1.061)	-	5.411(2.818,10.448)
$+ O_3 8h$	1.144(1.065,1.229)	1.051(1.032,1.071)	1.117(1.016,1.228)	5.448(2.848,11.609)
+ CO	1.159(1.071,1.254)	1.035(1.016,1.054)	0.914(0.794,1.052)	-
Dingxi				
Single-pollutant model	1.118(1.069,1.168)	1.014(0.999,1.029)	1.050(0.993,1.111)	2.289(1.659,3.156)
$+ PM_{2.5}$	-	-	1.040(0.982,1.102)	2.088(1.499,2.909)
$+ PM_{10}$	-	-	1.059(0.993,1.131)	2.483(1.730,3.563)
+ SO ₂	1.099(1.056,1.151)	1.016(0.993,1.032)	1.060(0.993,1.031)	1.921(1.366,2.842)
$+ NO_2$	1.110(1.056,1.167)	1.010(0.993,1.027)	-	2.262(1.730,3.074)
$+ O_3 8h$	1.142(1.092,1.194)	1.013(0.997,1.028)	1.043(0.966,1.093)	1.980(1.348,2.923)
+ CO	1.107(1.058,1.159)	1.019(0.994,1.034)	1.060(0.995,1.120)	-
Tianshui				
Single-pollutant model	1.012(0.972,1.053)	1.016(0.998,1.035)	1.158(1.104,1.215)	1.836(1.453,2.295)
$+ PM_{2.5}$	-	-	1.179(1.115,1.246)	1.831(1.434,2.338)
$+ PM_{10}$	-	-	1.170(1.103,1.242)	1.809(1.393,2.349)
+ SO ₂	1.015(0.914,1.059)	1.012(0.973,1.031)	1.129(1.103,1.192)	2.061(1.599,2.658)
$+ NO_2$	1.059(0.914,1.007)	1.093(0.973,1.015)	-	1.894(1.393,2.218)
$+ O_3 8h$	1.009(0.969,1.050)	1.016(0.998,1.035)	1.163(1.102,1.226)	1.778(1.407,2.246)
+ CO	1.000(0.959,1.043)	1.013(0.996,1.032)	1.110(1.053,1.171)	-

 $^{\rm a}$ Concentration of $PM_{2.5}$ at lag014, PM_{10} at lag014, NO_2 at lag011, and CO at lag014 were analyzed.

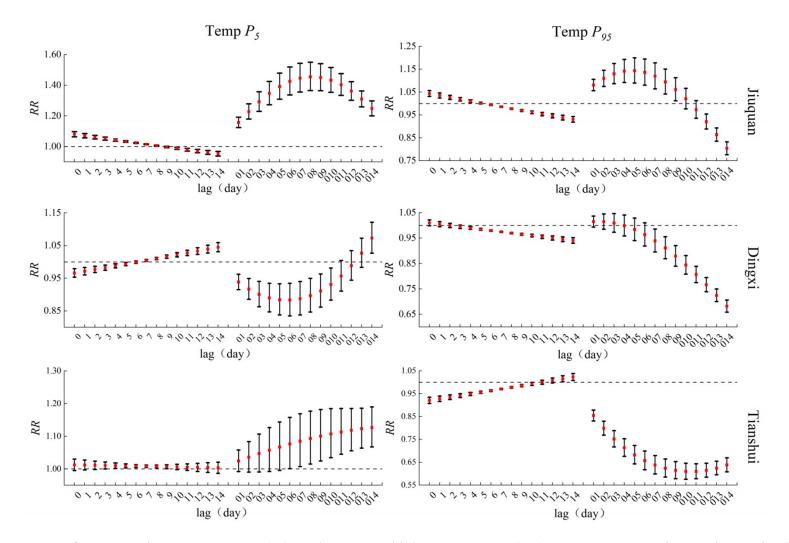
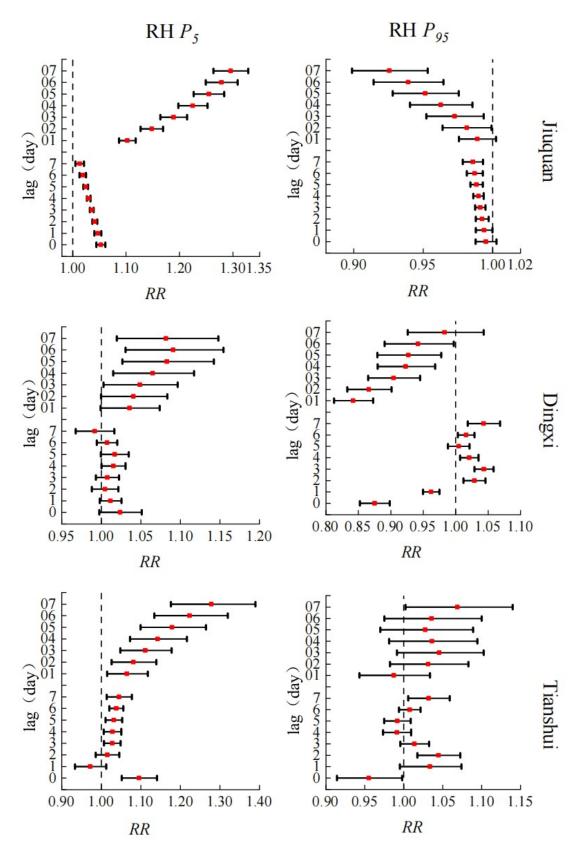


Figure S2 Impact of extreme low temperature (P_5) and extreme high temperature (P_{95}) on URTI outpatient volumes in three cities.



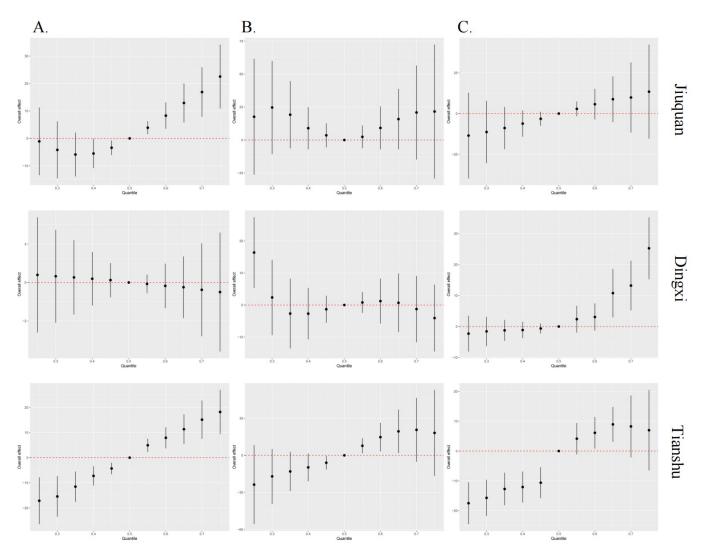

Figure S3 Impact of extreme low RH (P_5) and extreme high RH (P_{95}) on URTIoutpatientvolumesinthreecities

Table S5 Relative risk and 95% CI of outpatient visits for URTI associated with

	Low temperature	High temperature	Low RH	High RH	
Jiuquan	-				
Gender					
Male	1.276(1.225,1.330)	1.161(1.030,1.293)	1.113(1.059,1.170)	0.974(0.751,1.261)	
Female	1.114(0.970,1.279)	0.867(0.723,1.018)	1.049(1.019,1.079)	0.904(0.859,1.052)	
Age(years)					
0-14	2.042(1.138,3.676)	1.012(0.957,1.071)	1.929(1.871,1.988)	0.810(0.753,0.872)	
15-64	0.816(0.780,0.955)	0.612(0.451,0.831)	1.345(1.226,1.527)	0.530(0.478,0.587)	
≥65	1.490(1.417,1.567)	0.693(0.662,0.726)	1.928(1.855,2.008)	0.854(0.655,0.981)	
Season					
Cold	1.333(1.251,1.420)	-	1.350(1.278,1.427)	0.560(0.528,0.593)	
Warm	-	0.579(0.539,0.621)	0.585(0.547,0.625)	0.797(0.748,0.849)	
Dingxi					
Gender					
Male	1.268(1.150,1.399)	0.641(0.591,0.695)	1.088(1.020,1.162)	0.966(0.835,1.117)	
Female	1.028(0.978,1.081)	0.691(0.665,0.719)	1.044(0.905,1.204)	0.987(0.924,1.054)	
Age(years)					
0-14	1.821(1.453,2.283)	0.664(0.637,0.693)	1.181(1.099,1.268)	1.084(1.010,1.164)	
15-64	1.234(1.086,1.386)	0.687(0.640,0.737)	0.941(0.838,1.058)	0.728(0.646,0.819)	
≥65	1.402(1.286,1.528)	1.144(0.963,1.358)	1.067(1.007,1.179)	1.303(0.975,1.741)	
Season					
Cold	1.263(1.181,1.351)	-	1.245(1.157,1.339)	0.842(0.784,0.904)	
Warm	-	0.762(0.718,0.809)	0.537(0.504,0.573)	1.952(1.745,2.183)	
Tianshui					
Gender					
Male	1.162(1.048,1.290)	0.731(0.658,0.811)	1.710(1.387,2.109)	1.155(1.094,1.213)	
Female	1.134(1.065,1.207)	0.616(0.584,0.651)	1.205(1.100,1.320)	1.047(0.975,1.124)	
Age(years)					
0-14	1.319(1.237,1.406)	0.592(0.558,0.629)	1.888(1.231,2.545)	1.693(1.479,1.907)	
15-64	1.156(1.064,1.215)	0.675(0.615,0.740)	1.072(0.969,1.186)	0.852(0.784,0.925)	
≥65	1.214(1.079,1.366)	0.413(0.314,0.543)	1.226(1.038,1.449)	1.066(1.006,1.121)	
Season					
Cold	1.184(1.092,1.284)	-	1.323(1.191,1.471)	1.275(1.181,1.377)	
Warm	-	0.627(0.571,0.689)	0.929(0.853,0.010)	1.334(1.234,1.442)	

meteorological factors ^a by gender, age and season in three cities analyzed.

^a Concentration of Low temperature at lag08, High temperature at lag05, Low RH at lag07, and High RH at lag04 were analyzed.

Figure S4 Mixed effect of air pollutants and meteorological factors (temperature and RH) on URTI outpatient visits according to the BKMR. A air pollutants and temperature. **B** air pollutants and RH. **C** air pollutants model

Authors (Year)	Model	Study Period	Location	Admission Type	N	Exposure	Lag (Days)	RR/OR
1. Wang et al.(2023)	GAM	2019-2021	Kunshan, China	Outpatient visits	93,4180	PM _{2.5}	lag05	1.065 (1.055, 1.076)
						PM_{10}	lag05	1.045 (1.037, 1.052)
						NO ₂	lag05	1.098 (1.085, 1.111)
2. Nguyen et al.(2024)	Time-stratified Case-crossover	2007-2019	Hanoi, Vietnam	Hospital admissions among children	66,893	PM _{2.5}	lag02	1.008 (1.003, 1.013)
						PM ₁₀	lag02	1.003 (1.000, 1.006)
						NO ₂	lag02	1.011 (1.004, 1.019)
						СО	lag02	1.023 (1.004, 1.043)
3. Yang (2018)	Time-stratified Case-crossover	2013-2014	Shenyang, China	Outpatient visits	1,091	PM _{2.5}	lag4	1.002 (1.000, 1.004)
						PM_{10}	lag4	1.001 (1.000, 1.003)
						NO ₂	lag4	1.009 (1.004, 1.013)
						СО	lag2	1.199 (1.088, 1.321)
4. Li et al.(2017)	Time-stratified Case-crossover	2013-2014	Beijing, China	Outpatient visits	36,615	PM _{2.5}	lag5	1.001 (1.001, 1.001)
						PM ₁₀	lag5	1.001 (1.000, 1.001)
						NO ₂	lag5	1.003 (1.002, 1.003)

 Table S6 Previous studies on air pollutants and URTI

						CO	lag5	1.095 (1.071, 1.118)
5. Tam et al.(2014)	GAM	2008-2010	Hongkong, China	Outpatient visits	817,240	PM ₁₀	-	1.005 (1.002, 1.009)
						NO_2	-	1.010 (1.006, 1.013)

Note:

- 1. H. Wang, G. H. Qian, J. Shi, W. J. Lu, Y. C. Chen, K. Fang, Y. Shen, H. Rong, X. H. Huangfu, Y. Feng, W. Zhang and K. Zhang, Association between short-term exposure to ambient air pollution and upper respiratory tract infection in Kunshan, *Int. J. Biometeorol.*, 2024, **68**(2), 189-197. https://doi.org/10.1007/s00484-023-02582-5
- 2. T. T. N. Nguyen, T. D. Vu, N. L. Vuong, T. V. L. Pham, T. H. Le, M. D. Tran, T. L. Nguyen, N. Künzli and G. Morgan, Effect of ambient air pollution on hospital admission for respiratory diseases in Hanoi children during 2007-2019, *Environ. Res.*, 2024, **241**, 117633. https://doi.org/10.1016/j.envres.2023.117633
- 3. Q. Yang, *Study on the effect of air pollutants on respiratory disease outpatients in Shenyang during the heating period*, University of Science and Technology of China, 2018.
- 4. R. Li, N. Jiang, Q. C. Liu, J. Huang, X. B. Guo, F. Liu and Z. C. Gao, Impact of air pollutants on outpatient visits for acute respiratory outcomes, *Int. J. Environ. Res. Public. Health.*, 2017, **14**(1), 47. https://doi.org/10.3390/ijerph14010047
- W. W. S. Tam, T. W. Wong, L. Ng, S. Y. S. Wong, K. K. L. Kung and A. H. S. Wong, Association between air pollution and general outpatient clinic consultations for upper respiratory tract infections in Hong Kong, *PLoS. One.*, 2014, 9(1), e86913. https://doi.org/10.1371/journal.pone.0086913

Authors (Year)	Study Period	Location	Admission Type	Conclusion
1. Hong et al.(2020)	2015-2016	Shenyang, China	Respiratory diseases outpatient visits	PM _{2.5} , PM ₁₀ , and NO ₂ were most significantly affected by the presence of an interaction between low temperature and high concentration conditions
2. Ji (2021)	2016-2019	Fuzhou, China	Respiratory diseases deaths	At lower temperatures, the number of deaths from respiratory diseases among residents increases as the concentration of particulate matter rises.
3. Gao (2023)	2019-2021	Hohhot, China	Respiratory diseases outpatient visits	There were remarkable interaction effects between air pollutants and temperature on outpatient visits for respiratory diseases, while the extent of the effects varied among the pollutants. $PM_{2.5}$ and PM_{10} had more significant impacts on respiratory disease outpatient visits in high temperature-high concentration scenarios, while NO ₂ and CO were more harmful in low temperature-high concentration conditions.
4. Li (2021)	2013-2018	5 cities in China	Respiratory diseases outpatient visits among children	The interaction effects between temperature and different pollutants on respiratory diseases in children were inconsistent across the cities.

Table S7 Previous studies on interaction effects between air pollutants and temperature on respiratory diseases

Note:

- 1. Y. Hong, Y. Zhang, Y. J. Ma, S. G. Wang, J. Zhang, L. Hou, K. Q. Chen and H. Li, Effects of air pollutants and meteorological factors on outpatient visitors for respiratory diseases in Shenyang, *China. Environ. Sci.*, 2020, **40**(9), 4077-4090.
- 2. S. M. Ji, Assessment of the risk of death of residents by particulate matter, air temperature, and their interaction in Fuzhou, Fujian Medical University, 2021.
- 3. C. H. Gao, *The influence of the interaction between air pollutants and temperature on outpatient volume of respiratory diseases in a hospital in Hohhot*, Inner Mongolia Medical University, 2023.
- 4. M. Li, Short-term exposure to ambient air pollutants and respiratory outpatient visits among children: a multi-city time-series study, Huazhong University of Science and Technology, 2021.

Authors (Year)	Study Period	Location	Admission Type	Conclusion
1. Li (2021)	2013-2018	5 cities in China	Respiratory diseases outpatient visits among children	The interactions of $PM_{2.5}$, PM_{10} , and NO_2 with humidity were stronger under high humidity conditions in Wuhan, while the interaction of $PM_{2.5}$ was stronger in Xining under low humidity conditions.
2. Zhong (2021)	2013-2015	Guangzhou, China	Emergency visits for respiratory diseases	The effect of PM _{2.5} , PM ₁₀ , and NO ₂ on the number of residential respiratory emergencies was more pronounced under low humidity conditions

Table S8 Previous studies on interaction effects between air pollutants and RH on respiratory diseases

Note:

- 1. M. Li, *Short-term exposure to ambient air pollutants and respiratory outpatient visits among children: a multi-city time-series study*, Huazhong University of Science and Technology, 2021.
- 2. Y. P. Zhong, *Study on correlation of air pollution and meteorological factors and emergency room visits for respiratory diseases in Guangzhou*, China Medical University, 2021.