Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2024

Supporting information

Cooperative catalytic behavior of CoS and Bi2S3 nanoparticles on Zr:BiVO4 photoanodes for enhanced photoelectrochemical sulfite oxidation coupled with pharmaceutical pollution degradation

Prabhakarn Arunachalam^a, Maged N Shaddad^b, Mabrook S Amer^a, Abdulaziz M. Alsalman^a, Jagannathan. Madhavan^c

^aElectrochemical Sciences Research Chair, Department of Chemistry, Science College,

King Saud University, Riyadh, Kingdom of Saudi Arabia.

^bDepartment of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam

Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.

^cSolar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632 115, Tamil Nadu, India.

Corresponding authors:

* parunachalam@ksu.edu.sa; Tel:+966114673670.

Figure S1 a) EDS spectrum of the a) $Zr:BiVO_4$, b) $Zr:BiVO_4@Bi_2S_3$, and c) $Zr:BiVO_4@Bi_2S_3$ -CoS electrode.

Samples	Bi %	V %	Zr %	S %	Co%	0%
Zr:BiVO ₄	52.91	22.81	0.22	-		24.06
Zr:BiVO ₄ /Bi2S3	73.31	6.92	-	2.307	-	12.58
Zr:BiVO ₄ /Bi2S3@CoS	70.97	13.11	-	8.37	1.87	5.69

Table S1. Elemental composition obtained from EDAX spectra of prepared materials

Figure S2. Core level Co 2p XPS spectra of Zr:BiVO₄@Bi₂S₃-CoS films

Figure S3. (a) Chronoamperometry measurements of fabricated electrodes of $Zr:BiVO_4@Bi_2S_3$ -CoS at 0.1 $V_{Ag/AgCl}$ in 0.5 M Na₂SO₄. (b) Faradaic efficiency of $Zr:BiVO_4@Bi_2S_3$ -CoS electrodes for the theoretically calculated and experimentally measured O₂ at a potential of 0.1 $V_{Ag/AgCl}$.

The Faradic efficiency of oxygen production for Zr:BiVO₄@Bi₂S₃-CoS photoanode was determined through galvanostatic catalysis at 0.1 V_{Ag/AgCl} (Figure S3a). Oxygen generation was measured every 22 minutes by a gas chromatography (Agilent GC-8890) using a constant current over a period of 4 h. At this point, the theoretically calculated oxygen generation and the actual oxygen generation were compared. The theoretically calculated amount of oxygen was determined using the following equation from Faraday's law [¹](Mo sa et al., 2016) as follows:

$$\eta_{H2}$$
 (theoretical) = Q/nF = I × t /nF (1)

where η_{O2} is the theoretically calculated amount of O_2 , Q is the amount of applied charge, n is the number of electrons participating to produce one O_2 molecule (4 electrons), F is the Faraday constant (96485.3 s A mol⁻¹), i is the applied current, and t is the reaction time.

Faraday efficiency is calculated using the following equation.

Faradaic efficiency =
$$\eta_{O2}$$
 (measured)/ η_{O2} (theoretical) (2)

Furthermore, the photoelectrode produced 14.6 µmol of oxygen in an hour (**Figure S3b**), with a Faraday efficiency close to 100%.

S.No	Electrode	Electrolyte (pH)	Co-catalyst (Method)	Current density (mA/cm ²)	Ref.
1	BiVO ₄ /FeVO ₄	$0.2 \text{ M Na}_2 \text{SO}_4$ pH = 7	Electrospray technique	0.4 @ 1.23 V _{RHE}	[2]
2	BiVO ₄ /CoFe-NiOOH	0.5 M Na ₂ SO ₄ pH = 7	Lifting method/chemical process	1.54 @ 1.23 V _{RHE}	[3]
3	BiVO4/rGO/NiFe	$\begin{array}{c} 0.5 \text{ M Na}_2 \text{SO}_4 \\ \text{pH} = \sim 6.9 \end{array}$	Potentiostatic electrodeposition	1.30 @ 1.23 V _{RHE}	[4]
4	CoPi/BiVO ₄	0.5 M Na ₂ SO ₄	Photodeposition	1.1 @ 1.23 V _{RHE}	[5]
5	CoFe-PB/BiVO ₄	0.1 M KPi	Wet processing method	1.0 @ 1.23 V _{RHE}	[6]
6	Ag/Ni-Zr:BiVO ₄	0.1 M PBS pH 7.5	Electrochemical deposition process	3.14 @1.23 V _{RHE}	[7]
7	NiFePB/Zr:BiVO ₄	0.1 M PBS pH 7.5	Electrodeposition process	3.23 @1.23 V _{RHE}	[8]
8	BiVO ₄ /Bi ₂ S ₃	0.5 M Na ₂ SO ₄	Photoassisted electrodeposition process	1.43 @1.23 V _{RHE}	[9]
9	BiVO ₄ /Bi ₂ S ₃	0.35 M Na ₂ SO ₃ /0.25 M Na ₂ S	PEC transformation	3.3 @1.23 V _{RHE}	[10]
10	Bi ₂ O ₃ /BiVO ₄	0.1 M Na ₂ SO ₄	pulsed laser deposition	2.1 @1.23 V _{RHE}	[11]
11	Bi/Bi ₂ O ₃	0.2 M Na ₂ SO ₃	Magnetron sputtering	$0.5 @~0.6~V_{Ag/AgCl}$	[12]
12	Bi ₂ O ₃ /BiFeO ₃	0.1 M KOH	pulsed laser deposition	0.084 @ -0.68 V _{Ag/AgCl}	[13]
13	BiFeO ₃ /Bi ₂ O ₃	-	Flame annealing process	-0.21 @ 0.38 V _{RHE}	[14]
14	BiVO ₄ /Bi ₂ S ₃ /FeOOH	0.1 M Na ₂ SO ₄	Hydrothermal process	$0.8 @ 0.4 V_{SCE}$	[15]
15	Mo:BiVO ₄	0.1 M Na ₂ SO ₄	Pulsed laser deposition	2.1@1.23 V _{RHE}	[16]
1.6	BiVO ₄ /V-	1 M IZD'		5 42 O 1 02 M	[17]

Table S2. Various kinds of BiVO₄-based electrode materials are loaded with different cocatalysts and their PEC properties for water-splitting reactions.

	NiOOH/FeOOH				
17	BiVO ₄ /Bi ₂ S ₃ /BiPS ₄	0.1 M PBS/Na2S pH 10	Ion-exchange reactions	3.85 @1.23 VRHE	[18]
18.	Zr:BiVO ₄ @Bi ₂ S ₃ -CoS	0.1 M Na2S/Na2SO4	Ion-exchange reactions	3.09 @1.23 VRHE	This work

Table S3. Electrochemical Impedance parameter obtained from the best fitted to the equivalent circuit for the EIS spectra observed under continuous irradiation conditions at 0.8 V vs RHE.

Samples	R _s (ohm)	Q1 (µMho)	R _{ct} (Ω)	L
Zr:BiVO ₄	29.8	322	8883	1.10 kH
Zr:BiVO ₄ @Bi ₂ S ₃	41.6	164	1011	72.5 H
Zr:BiVO4@Bi2S3-CoS	40.5	180	998	40.3 H

References

Mosa, I. M., Biswas, S., El-Sawy, A. M., Botu, V., Guild, C., Song, W., ... & Suib, S.
L. 2016. Tunable mesoporous manganese oxide for high performance oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 4(2), 620-631.

 ^[2] N. Li, X. Wu, M. Wang, K. Huang, J. He, W. Ma, ... & S. Feng, Facile preparation of BiVO4/FeVO4 heterostructure for efficient water-splitting applications, International Journal of Hydrogen Energy 44 (2019) 23046–23053, https://doi.org/10.1016/j.ijhydene.2019.07.063.

^[3] G. Fang, G., Liu, Z., Han, C., Wang, P., Ma, X., Lv, H., ... & Tong, Z. Promising CoFe-NiOOH Ternary Polymetallic Cocatalyst for BiVO4-Based Photoanodes in Photoelectrochemical Water Splitting, ACS Applied Energy Materials 4 (2021) 3842–3850, https://doi.org/10.1021/acsaem.1c00247.

^[4] X. Han, Y. Wei, J. Su, Y. Zhao, Low-cost oriented hierarchical growth of BiVO4/rGO/NiFe nanoarrays photoanode for photoelectrochemical water splitting, ACS Sustainable Chemistry & Engineering 6 (2018) 14695–14703,

https://doi.org/10.1021/acssuschemeng.8b03259

[5] Y. Wei, J. Su, X. Wan, L. Guo, L.Vayssieres, Spontaneous photoelectric fieldenhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting. Nano Research 9 (2016) 1561–1569, https://doi.org/10.1007/s12274-016-1050-9.

[6] F.S. Hegner, I. Herraiz-Cardona, D. Cardenas-Morcoso, N. López, J.R. Galán-Mascarós, S. Gimenez, Cobalt hexacyanoferrate on BiVO4 photoanodes for robust water splitting, ACS applied materials & interfaces 9 (2017) 37671–37681, https://doi.org/10.1021/acsami.7b09449.

[7] M.A. Mahadik, H.S. Chung, S.Y. Lee, M. Cho, J.S. Jang, In-situ noble fabrication of Bi2S3/BiVO4 hybrid nanostructure through a photoelectrochemical transformation process for solar hydrogen production, ACS Sustainable Chemistry & Engineering 6 (2018) 12489–12501, https://doi.org/10.1021/acssuschemeng.8b03140.

[8] M. Wang, Q. Wang, P. Guo, Z. & Jiao, In situ fabrication of nanoporous BiVO4/Bi2S3 nanosheets for enhanced photoelectrochemical water splitting, Journal of colloid and interface science, 534 (2019) 338–342, https://doi.org/10.1016/j.jcis.2018.09.056.1.

[9] M. Huang, J. Bian, W. Xiong, C. Huang, R. Zhang, Low-dimensional Mo: BiVO 4 photoanodes for enhanced photoelectrochemical activity, Journal of Materials Chemistry A 6 (2018) 3602–3609, https://doi.org/10.1039/C7TA11132K.

[10] M.A. Mahadik, H.S. Chung, S.Y. Lee, M. Cho, J.S. Jang, In-situ noble fabrication of Bi2S3/BiVO4 hybrid nanostructure through a photoelectrochemical transformation process for solar hydrogen production, ACS Sustainable Chemistry & Engineering 6 (2018) 12489–12501, https://doi.org/10.1021/acssuschemeng.8b03140.

[11] S. Lee, J. Song, Y. R. Jo, K. S. Choi, J. Lee, S. Seo, ... & S. Lee, In situ growth of nanostructured BiVO4–Bi2O3 mixed-phase via nonequilibrium deposition involving metal exsolution for enhanced photoelectrochemical water splitting, ACS Applied Materials & Interfaces, 11(2019), 44069-44076.

[12] C. Li, J. Zhang, K. Liu, A new method of enhancing photoelectrochemical characteristics of Bi/Bi2O3 electrode for hydrogen generation via water splitting. Int. J. Electrochem. Sci. 7 (2012) 5028-5034.

[13] X. Yan, R. Pu, R. Xie, B. Zhang, Y. Shi, W. Liu, ... & N. Yang, Design and fabrication of Bi2O3/BiFeO3 heterojunction film with improved photoelectrochemical performance, Applied Surface Science 552 (2022) 149442.

[14] S. Man, X. Leng, J. Bai, Z. Li, L. Xu, Facile synthesis of BiFeO3/Bi2O3 composite photocathode with improved photoelectrochemical performance. Materials Letters, 323 (2022) 132591.

[15] M. Wang, Q. Wang, P. Guo, Z. & Jiao, In situ fabrication of nanoporous BiVO4/Bi2S3 nanosheets for enhanced photoelectrochemical water splitting, Journal of colloid and interface science, 534 (2019) 338–342, https://doi.org/10.1016/j.jcis.2018.09.056.1.

[16] M. Huang, J. Bian, W. Xiong, C. Huang, R. Zhang, Low-dimensional Mo: BiVO 4 photoanodes for enhanced photoelectrochemical activity, Journal of Materials Chemistry A 6 (2018) 3602–3609, https://doi.org/10.1039/C7TA11132K.

[17] R. T. Gao, D. He, L. Wu, K. Hu, X. Liu, Y. Su, L. Wang, Towards Long-Term Photostability of Nickel Hydroxide/BiVO4 Photoanodes for Oxygen Evolution Catalysts via In Situ Catalyst Tuning. Angewandte Chemie 132 (2020) 6272-6277, https://doi.org/10.1002/ange.201915671.

[18] M. N. Shaddad, P. Arunachalam, M. Hezam, N. M. BinSaeedan, S. Gimenez, J. Bisquert, A. M. Al-Mayouf, Facile fabrication of heterostructured BiPS4-Bi2S3-BiVO4 photoanode for enhanced stability and photoelectrochemical water splitting performance. Journal of Catalysis 418 (2023), 51-63.