Supplementary Documents:

Figure S1: Device of functionalized MoS_2 : (a) before adsorption, (b) after adsorption of NO molecule, and (c) after adsorption of NO₂ molecule. (d) TDOS due to MoS_2 NR in pristine and (V_S, Mn, Fe, Co, and Ni)-functionalized forms.

Figure S2: Differential resistance versus bias due to the adsorptions of NO and NO₂ gas molecules on five samples: (a) $MoS_2:V_S$, (b) $MoS_2:Mn$, (c) $MoS_2:Fe$, (d) $MoS_2:Co$, and (e) $MoS_2:Ni$.

Figure S3: Sensor response versus bias due to the adsorptions of NO and NO₂ gas molecules on five samples: (a) $MoS_2:V_S$, (b) $MoS_2:Mn$, (c) $MoS_2:Fe$, (d) $MoS_2:Co$, and (e) $MoS_2:Ni$.

Figure S4: The initial and final configurations of relaxing two molecules (NO and N₂), simultaneously, on MoS₂:Ni@S surface. NO molecule favors chemisorption on Ni dopant while N₂ molecule remains in a physisorption state. Color of atoms: Mo (cyan), S (yellow), Ni (green), N (blue), O (red).