Supporting Information for

Highly Selective Capture and Efficient Concentration of Trace Titanium Dioxide

Nanoparticles in Environmental Waters by Phosphorylated Ferroferric Oxide

Ronggang Zheng, ^{a,b} Sujuan Yu, ^{a,b} Rui Yang, ^{a,b} Peng Li, ^{a,b} Qingcun Li, ^{a,b} Li Li, ^{a,b} Yuhang Chen, ^a Yaqi Cai, ^{a,b} and Jingfu Liu^{*a,c,d}

^a State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
^b College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China

^c School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
 ^d Institute of Environment and Health, Jianghan University, Wuhan 430056, China

Total pages: 13

Total figures: 5

Total tables: 5

*Corresponding author.

Tel.: +86-10-62849192; Fax: +86-10-62849192;

E-mail: jfliu@rcees.ac.cn

Contents of this file.

Figure S1. The synthesis process of phosphorylated Fe₃O₄.

Figure S2. TEM images of TiO₂NPs with different size.

Figure S3. SEM images and size distributions of pristine Fe₃O₄ and phosphorylated Fe₃O₄.

Figure S4. EDS spectra of Fe₃O₄ particles at different synthesis stage.

Figure S5. Digital photo of TiO₂NPs extracted in deionized water (left) and solutions with CaCl₂

(right); Recoveries of TiO₂NPs by adding different ions.

Table S1. ICP-MS instrumental parameters for the determination of Ti.

Table S2. Analytical performance of the proposed method.

Table S3. Comparison of analytical performance of this method with other analytical methods.

Table S4. The detailed characteristics of real water samples.

Table S5. Elemental content in filtrate after deionized water is filtered by stainless steel membranes.

Figure S1. The synthesis process of phosphorylated Fe₃O₄.

Figure S2. TEM images of TiO₂NPs with different size: (A) 60 nm; (B) 40 nm; (C) 30 nm; (D) 10–

25 nm; (E) 5–10 nm, and (F) \leq 5 nm.

Figure S3. SEM images and size distributions of pristine Fe_3O_4 (A and B) and phosphorylated Fe_3O_4

(C

and

D).

Figure S4. EDS spectra of Fe₃O₄ particles at different synthesis stages: (A) pristine Fe₃O₄; (B) Fe₃O₄ modified with $Y(NO_3)_3 \cdot 6H_2O$ and urea; (C) phosphorylated Fe₃O₄.

Figure S5. (A) Digital photo of TiO₂NPs extracted in deionized water (left) and solutions with CaCl₂ (right). (B) Recoveries of TiO₂NPs by adding different ions.

Parameter	Parameter value
Instrument	Agilent 8900 ICP-MS
RF power	1500 W
Sampling depth	8 mm
Carrier gas	1.05 L/min
Reaction gas	O ₂ (25%)
Monitored isotopes (m/z)	$^{48}{ m Ti}{}^{16}{ m O}^+$

Table S1. ICP-MS instrumental parameters for the determination of Ti.

Species	Linear range (µg/L)	R ²	Recovery (%)	RSD (%, n=3)	LOD (ng/L)	LOQ (ng/L)
TiO ₂ NPs	0.001-500	0.9998	91.6	3.8	0.4	1.4

 Table S2. Analytical performance of the proposed method.

Method	Size (nm)	Time	Enrichment factor	LOD (µg/L)	Ref.
Solvent microextraction-ICP-MS	19	>2 h	83	0.07	1
Magnetic solid phase extraction- ICP-AES	25-100	22 min	-	20	2
Capillary microextraction-ICP-MS	5-100	10 min	10	0.63	3
Magnetic solid phase extraction- ICP-MS	5-100	25 min	400	0.017	4
Magnetic microextraction-ICP-MS	<5-100	-	1000	0.0004	This work

Table S3. Comparison of analytical performance of this method with other analytical methods.

Sample	pН	K ⁺ (mg/L)	Na ⁺ (mg/L)	Ca ²⁺ (mg/L)	Mg ²⁺ (mg/L)	DOM (mg C/L)
Drinking water	7.8	0.32	1.73	0.13	0.04	0.04
Spring water	8.1	4.58	6.90	40.95	13.72	1.43
River 1	8.1	12.55	58.24	77.36	27.73	4.81
River 2	8.6	6.75	59.33	54.96	33.83	15.53
Lake 1	8.2	5.50	32.38	75.03	45.89	12.71

Table S4. The detailed characteristics of real water samples.

Element	Monitored isotopes (m/z)	Content (μ g/L)
Al	²⁷ Al ¹⁶ O ⁺	ND^{a}
Ti	$^{48}{ m Ti}^{16}{ m O}^+$	ND
V	$^{51}V^{16}O^{+}$	0.003
Ga	$^{71}{ m Ga}^{16}{ m O}^+$	ND
Nb	⁹³ Nb ¹⁶ O ⁺	0.022
Eu	¹⁵³ Eu ¹⁶ O ⁺	ND
Но	¹⁶⁵ Ho ¹⁶ O ⁺	ND
Er	¹⁶⁶ Er ¹⁶ O ⁺	ND
Tm	$^{169}{\rm Tm}^{16}{\rm O}^+$	ND
Yb	$^{174}{\rm Yb^{16}O^{+}}$	ND
Ta	¹⁸¹ Ta ¹⁶ O ⁺	ND
a:	Below	the LOD.

Table S5. Elemental content in filtrate after deionized water is filtered by stainless steel membranes.

References

- 1. S. M. Majedi, B. C. Kelly and H. K. Lee, Efficient hydrophobization and solvent microextraction for determination of trace nano-sized silver and titanium dioxide in natural waters, *Anal. Chim. Acta*, 2013, **789**, 47-57.
- L. Shen, Y. Zhu, P. Zhang and H. Wang, Capturing of Nano-TiO₂ from complex mixtures by bisphosphonate-functionalized Fe₃O₄ nanoparticles, *ACS Sustainable Chem. Eng.*, 2017, 5, 1704-1710.
- X. Liu, M. He, B. Chen and B. Hu, Monolithic capillary microextraction combined with ICP-MS for the determination of TiO₂ NPs in environmental water samples, *Talanta*, 2019, 197, 334-340.
- 4. Y. Wang, B. Chen, B. Wang, M. He and B. Hu, Phosphoric acid functionalized magnetic sorbents for selective enrichment of TiO_2 nanoparticles in surface water followed by inductively coupled plasma mass spectrometry detection, *Sci. Total Environ.*, 2020, **703**, 135464.