Supplementary Information Micromotor-assisted bifunctional platform for efficient detection and removal of aniline

Ningning Xing^a, Yangsai Lyu^b, Weilin Zhao^a, Ziwei Lan^a, Min Zuo^a, Jia Li^a* ^aSchool of Material Science and Engineering, University of Jinan, Jinan, 250022,

China

^bDepartment of Mathematics and Statistics, Queen's University, Kingston, K7L 3N6, Canada

Fig. S1 SEM images of (a) Co-N/C and (b) CA@MnO₂@Co-N/C.

Fig. S2 Movement photos of CA@ $MnO_2@Co-N/C$ micromotors in different concentrations of H_2O_2 .

Fig. S3 The effect of (a) pH, (b) incubation time, (c) incubation temperature, (d) concentration of TMB, (e) concentration of H_2O_2 and (f) concentration of catalyst on the chromogenic system.

Fig. S4 Michaelis-Menten curves of CA-MnO₂@Co-N/C micromotors at fixed concentrations of (a) H_2O_2 (50 mM) and (c) TMB (10 mM). Double-reciprocal Lineweaver-Burk plots of catalytic activity of CA-MnO₂@Co-N/C micromotors with constant concentration of (b) H_2O_2 (50 mM) and (d) TMB (10 mM).

Fig. S5 The leaching concentration of Mn (a) and Co (b) at different pH value.

Fig. S6 Consumption of H_2O_2 by CA-MnO₂@Co-N/C micromotors under Fenton-like reaction condition.

Fig. S7 Velocity of CA-MnO₂@Co-N/C micromotors during aniline degradation process.

Fig. S8 (a) Reusability on the removal of aniline in the Fenton-like system catalyzed by CA- $MnO_2@Co-N/C$ micromotors. (b) XRD pattern of CA- $MnO_2@Co-N/C$ micromotors before and after degradation of aniline. (c) SEM image of CA- $MnO_2@Co-N/C$ micromotors after 5 cycles.

Table S1. Specific surface area and porosity properties of CA-MnO₂@Co-N/C micromotors.

Materials	BET surface area (m ² /g)	Total pore volume (cc/g)	Average pore size (nm)	
Co-N/C	72.81	0.17	3.67	
CA-MnO ₂ @Co-N/C	158.72	0.35	7.96	

Table S2. Comparison of speed with other reported micromotors.

Micromotors	Concentration of H ₂ O ₂	Velocity (µm/s)	Ref.	
CuS@Fe ₃ O ₄ /Pt	5%	423.8	1	
MnO ₂ microparticles	5%	128	2	
Au/Ni/Pt	5%	37.57	3	
Fe-zeolite micromotors	10%	84.96	4	
rGO/ZnO/BiOI/Co-Pi/Pt	5%	63.1	5	
W ₅ O ₁₄ /PEDOT-Pt	3%	342	6	
MgAl-LDH/MFZ@HRP	5%	128.33	7	
C/Al ₂ O ₃ /MnO ₂ /LDH/MIPs	7%	51.32	8	
CA-MnO ₂ @Co-N/C	7%	398.88	This work	

Table S3. Comparison of the steady-state kinetic parameters of CA-MnO₂@Co-N/C micromotors and HRP.

Nanozyme -	$K_{\rm m}$ (n	$K_{\rm m}({\rm mM})$		$V_{\rm max} (10^{-8}~{ m M~s^{-1}})$		K_{cat} (s ⁻¹)	
	H_2O_2	TMB	H_2O_2	TMB	H_2O_2	TMB	
HRP	3.7	0.43	8.71	10	-	-	
CA-MnO ₂ @Co-N/C	0.68	0.08	0.88	0.78	0.156	0.176	

References

- 1 E. Ma, K. Wang, Z. Hu and H. Wang, Dual-stimuli-responsive CuS-based micromotors for efficient photo-Fenton degradation of antibiotics, *J. Colloid Interface Sci.*, 2021, **603**, 685-694.
- 2 J. Tesa, M. Ussia, O. Alduhaish and M. Pumera, Autonomous self-propelled MnO₂ micromotors for hormones removal and degradation, *Appl. Mater. Today*, 2022, **26**, 101312.
- 3 Z. Li, Z. Xie, H. Lu, Y. Wang, and Y. Liu, Cargo transportation and methylene blue degradation by using fuel-powered micromotors, *ChemistryOpen*, 2021, **10**, 861-866.
- 4 W. Ma, K. Wang, S. Pan and H. Wang, Iron-exchanged zeolite micromotors for enhanced degradation of organic pollutants, *Langmuir*, 2020, **36**, 6924-6929.
- 5 H. Zhou, B. Wu, L. Dekanovsky, S. Wei, B. Khezri, T. Hartman, J. Li and Z. Sofer, Integration of BiOI nanosheets into bubble-propelled micromotors for efficient water purification, *FlatChem*, 2021, **30**, 100294.
- 6 G. Cogal, G. Karaca, E. Uygun, F. Kuralay, L. Oksuz, M. Remskar and A. Oksuz. RF plasmaenhanced conducting polymer/W₅O₁₄ based self-propelled micromotors for miRNA detection, *Anal. Chim. Acta*, 2020, **1138**, 69-78.
- 7 X. Yang, C. Liu, S. Gao, X. Zhang, Z. Lan, M. Zuo and J. Li, A novel bio-template route to synthesize enzyme-immobilized MOF/LDH tubular magnetic micromotors and their application in water treatment, *Environ. Sci.: Nano*, 2024,11, 1142-1156.
- 8 Y. Zhu, Z. Yuan, J. Rong, T. Zhang, D. Yang, J. Pan and F. Qiu, Engineering flower-shaped hierarchical micromotors on a sustainable biotemplate by teamed boronate affinity-based surface imprinting for effective separation of shikimic acid, *Sep. Purif. Technol.*, 2024, 336, 126345.