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Chemicals and materials

All chemicals with analytical grade were employed as received without further 

purification: cobalt nitrate hexahydrate (Co(NO3)2·6H2O, Aladdin, 98%), commercial Co3O4 

(com-Co3O4, Aladdin, 99%). 2-methylimidazole (C4H6N2, Sinopharm, 99%), commercial 

Pt/Al2O3 (com-Pt/Al2O3, Sinopharm, 99%), methanol (CH3OH, Aladdin, 99.5%), ethanol 

(C2H5OH, Aladdin, 99.8%). Ultrapure water (Elga Purelab Classic, 18.2 MΩ. cm) was used 

through all the experiments.

Catalyst characterization

The properties of samples were characterized by using various techniques. Power X-ray 

diffraction (XRD) analysis was carried out using an X-ray diffractometer (D8 Advance, Bruker) 

with Cu Kα radiation (50 kV, 60 mA). Thermogravimetric analysis (TGA) was conducted on a 

Mettler Toledo apparatus from 30 to 900 °C at a heating rate of 10 oC min-1 in air or nitrogen 

atmospheres. The surface morphologies of the samples were characterized by scanning electron 

microscopy (SEM) (Su8220, Hitach). The morphologies, element distribution and crystalline 

state were observed by using transmission electron microscopy (TEM), high-angle annular dark 

field-scanning transmission electron microscopy (HAADF-STEM) and selected area electron 

diffraction (SAED), which were operated on a Thermo Talos-F200S microscope (Talos F200S, 

FEI). The specific surface area, pore size as well as pore volume were investigated on an 

automatic volumetric sorption analyzer (ASAP2020, Micromeritics). Prior to the measurement, 

the samples were degassed at 150 °C for 3 h. The surface elements, oxygen species and 

elemental states of samples were analyzed using X-ray photoelectron spectroscope (XPS) 

(Escalab 250Xi, Thermo Fisher), in which monochromated Al Kα (1486.6 eV) and C 1s signal 

at binding energies (BEs) of 284.6 eV were served as an X-ray source and a reference for BEs 

calibration, respectively. Electron paramagnetic resonance (EPR) was conducted on a Bruker 

JEOL FA200 spectrometer. Raman characterization was performed on a confocal Raman 



Spectroscopy (LabRAM HR Evolution, HORIBA Jobin Yvon), in which the wavelength was 

fixed to be 532 nm. Hydrogen temperature-programmed reduction (H2-TPR) experiments were 

investigated on a chemical adsorption analyzer (MFTP-3060, China). The sample (50 mg) was 

first pretreated in N2 flow of 30 mL min-1 at 200 °C for 1 h; after cooled to room temperature 

(RT), the gas was switched to 8% H2/92% N2 mixture gas; and then the temperature was 

increased from RT to 700 °C at a rate of 10 °C min-1, and thus the temperature-signal curve was 

recorded for analysis. 

For the detection of Lewis and Brønsted acid sites on the surface of ZIF-67-derived Co3O4 

catalysts, pyridine adsorption Fourier transform infrared spectroscopy (Py-IR) was operated by 

using an FTIR (Tensor 27, Bruker, Germany), of which pyridine was adopted as a probe 

molecule. First, a certain amount of sample was firstly pressed into a regular wafer and placed 

into the IR cell connected by a vacuum adsorption apparatus. Then, the sample was pretreated 

at 250 °C for 2 h under vacuum. After it cooled to room temperature, the spectra were obtained 

as background. Then, pyridine vapor was introduced until the adsorption saturation. Finally, 

the Py-IR spectra were obtained at room temperature after the samples were vacuumed at 50, 

150, 200, 250 and 300 °C, respectively. The absorption band at 1450 cm-1 is used to quantify 

Lewis acid sites, whereas the quantities of Brønsted acid sites can be calculated from the peak 

areas centered at 1540 cm-1.1

The in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) 

experiments were conducted on a Nicolet iS10 spectrometer at a resolution of 4 cm-1 with 32 

scans, which was equipped with and a diffuse reflectance cell (consisted of two ZnSe windows 

and one glass observation window) as well as a MCT detector (cooled by liquid nitrogen). First, 

the catalyst was mixed with KBr at a certain ratio in order to get enhanced intensities of the 

peaks presented on the spectra, and then the mixed sample was placed on a porous screen 

located at the bottom of the cell. Afterwards, the sample was pretreated under a N2 flow of 20 

mL min-1 at 150 oC for 1 h, of which the background spectrum was obtained when the 



temperature was reduced to 30 oC. Finally, the mixture gas such as 500 ppm n-hexane/air or 

500 ppm n-hexane/N2 was introduced into the system at a flow rate of 20 mL min-1, and the 

spectra were measured at different temperatures, which had been automatically subtracted from 

the background spectrum.

Kinetic studies

For kinetic studies, the turnover frequency (TOF) is demonstrated as molar number of 

VOCs transformed per active site of catalyst per second, and is performed at certain reaction 

temperature where VOC conversion is relatively low under a kinetically controlled regime.2 

The kinetic regime means that the reaction rate is not affected by VOC diffusion and only 

depends on the number of active sites on the catalyst.3 Hence, the TOFCo relating to the VOC 

catalytic degradation over ZIFs-derived metal oxide catalysts was calculated according to the 

following equation:

TOFCo =  (s-1)          
 
𝐶VOCs * 𝑋VOCs * 𝑉gas

𝑛

where XVOCs (%) represents the VOC conversion. Vgas (mol s-1) is the total molar flow rate 

of VOCs (The molar volume of gas used in the equation is 24.5 L mol-1). CVOCs (%) is the 

concentration of reactant gas. n (mol) is the molar amount of Co of the catalyst.

For apparent activation energy (Ea) calculation, the overall variation of the mole flow rate 

and the pressure drop across the reactor are irrespective, and thus the following Arrhenius 

equation is presented under the assumption of a plug-flow regime and the mass balance.4

𝑙𝑛𝑌 = ln(𝐾0
r𝑚𝐶𝑎𝑡.) ‒

𝐸𝑎
𝑅𝑇

where

𝑌 =
∅0
𝑅𝑇0

𝑙𝑛( yin

yout
)



where R is the universal gas constant (8.314 J·mol-1 K-1, Kr
0 is the reaction constant (mol 

Pa-1 g-1 s-1), T0 is the standard temperature (in Kelvin), Φ0 (m3 s-1) is the total flow rate of VOCs, 

Cin and Cout are the VOC concentrations corresponding to the inlet and outlet, respectively, and 

m (g) is the mass amount of the catalyst. By calculating the above two formulas, the Ea (kJ 

mol-1) values could be determined.
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Fig. S1. XRD pattern of original ZIF-67.
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Fig. S2. TGA/DTG curves of original ZIF-67 in air atmosphere.
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Fig. S3. (a) Nitrogen adsorption-desorption isotherms and (b) the corresponding pore size 

distributions of ZIF-67 sample.
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Fig. S4. (a) TEM and SEM images of original ZIF-67. STEM-EDS elemental mapping of (b) 

Co3O4-300, (c) Co3O4-400 and (d) Co3O4-500.
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Fig. S5. The EPR spectra of Co3O4-300, Co3O4-400 and Co3O4-500 catalysts.
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Fig. S6. H2-TPR profiles of Co3O4-300, Co3O4-400 and Co3O4-500 catalysts.
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Fig. S7. n-Hexane conversion (solid symbols) and mineralization (dash symbols) as a 

function of reaction temperature catalyzed by Co3O4-300, Co3O4-400 and Co3O4-500. Note: 

n-hexane = 500 ppm and GHSV = 60,000 mL g-1 h-1.

160 200 240 280 320 360
0

20

40

60

80

100

n-
H

ex
an

e 
co

nv
er

si
on

 (%
)

Temperature (oC)

 Co3O4-300 
 com-Pt/Al2O3

 com-Co3O4

Fig. S8. The conversion of n-hexane as a function of reaction temperature catalyzed by 

Co3O4-300, com-Pt/Al2O3 and com-Co3O4. Note: n-hexane = 500 ppm and GHSV = 60,000 

mL g-1 h-1.
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Fig. S9. Py-IR spectra of Co3O4-300 (black), Co3O4-400 (blue) and Co3O4-500 (red) at (a) 50, 

(b) 150, (c) 200, (d) 250 and (e) 300 oC.
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Fig. S10. (a) C 1s, (b) Co 2p and (c) O 1s XPS spectra for Co3O4-300 after 90 h of on-stream 

reaction at different temperatures.
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Fig. S11. XRD patterns of Co3O4-300 catalyst after reaction of (a) cycle test for 5 times, (b) 

stability test during 90 h of on-stream reaction, (c) in the presence and absence of 5.0 vol.% 

water vapor and (d) in the presence and absence of 10.0 vol.% CO2.
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Fig. S12. In situ DRIFTS studies on Co3O4-300 at relatively low temperatures under the 

condition of (a) 500 ppm n-hexane balanced by air and (b) 500 ppm n-hexane balanced by N2.
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Fig. S13. In situ DRIFTS studies on Co3O4-300 under the condition of 500 ppm n-hexane 

balanced by N2 at different temperatures.

Table S1 XPS peak area of various C-binding configurations to the total area.

C 1s

Sample C-C, C = C

(284.8 eV)

C-O

(286.3 eV)

C = O

(288.8 eV)

Co3O4-300 73.9 14.2 11.9 

Co3O4-400 78.6 14.7 6.7 

Co3O4-500 78.7 14.0 7.3 

Co3O4-300 after 90 

h of reaction
77.1 15.1 7.8 



Table S2. Catalytic performance of various catalysts toward n-hexane oxidation obtained in 

this study and reported in the literatures.

Catalyst Reactant composition
Space velocity 

(mL g-1 h-1)

T90 

(°C)
Reference

0.04Pd SSC/Ti-

SBA-15
40 ppm, Air 60,000 310 5

Ce0.97Cu0.03O2 852 ppm, Air --- 350 6

0.12Pt/Al2O3 1500 ppm, Air 17,500 h-1 400 7

5Co15Mn 2.5 g m-3, Air 14,400 h-1 252 8

CoMn-MS 360 ppm, Air 30,000 h-1 266 9

Co3O4-300 500 ppm, Air 20,000 187 This work

Co3O4-300 500 ppm, Air 60,000 196 This work

Co3O4-300 500 ppm, Air 100,000 199 This work

Table S3 Concentration of acid sites of the three catalysts at various evacuated temperatures.
Sample Temperature (oC) CBrønsted (μmol g-1) CLewis (μmol g-1) Ctotal (μmol g-1) CLewis/CBrønsted

50  10.6   113.4 124.0 10.7

150 6.3 92.5 98.8 14.7

200 3.1 55.0 58.1  17.5

250 2.3 28.1 30.5 12.1

Co3O4-300

300 0.8 9.3 10.2 11.3

50 9.6 74.1 83.8 7.7

150 5.0 50.5 55.6 10.0

200 2.3 44.5 46.8 19.1

250 0.9 18.0 18.9 19.0

Co3O4-400

300 0.3 6.7 7.0 22.8

50 8.4 61.6 70.0 7.4

150 4.7 43.5 48.2 9.3

200 1.1 15.9 16.9 14.9

250 0.5 13.8 14.3 27.7

Co3O4-500

300 0.1 5.5 5.7 38.9



Table S4. The assignment of various species at different peak positions.
Peak position (cm-1) Assignment Species

2969, 2940 --- n-hexane

2370, 2306 antisymmetric stretching vibration CO2

1554, 1467 symmetric or antisymmetric stretching vibration -COO-

1200 stretching vibrations alkoxides

749 --- H2O
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