Supporting Information

A new mechanism for visible light photocatalysis: Generation of intraband by adsorbed organic compounds with wide-bandgap semiconductors

Teng Wang ^{a, #}, Jiachun Cao ^{a, b #}, Juan Li ^b, Juntian Li ^b, Didi Li ^a, Shaobin Wang ^c,

Zhimin Ao ^{b, a*}

^a Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk
 Control, Key Laboratory for City Cluster Environmental Safety and Green
 Development of the Ministry of Education, Institute of Environmental Health and
 Pollution Control, School of Environmental Science and Engineering, Guangdong
 University of Technology, Guangzhou 510006, China

^b Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China

^c School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.

[#] These authors contributed equally

^{*} Corresponding authors: E-mail: zhimin.ao@bnu.edu.cn (ZA)

Pages - 24

Table - 5

Fig.s - 16

Table S1. The models and software parameters used in our surface calculations.

Туре	Miller	Terminate	Supercell	Reference	K-mesh	
	index				Relax	SCF
A-TiO ₂	101	O-Ti-O	$1 \times 4 \times 3$	1	$2 \times 2 \times 1$	3 × 3 × 1
R-TiO ₂	110	O-Ti-O	$4 \times 2 \times 3$	2	$2 \times 2 \times 1$	$3 \times 3 \times 1$
La_2O_3	001	La-O	$2 \times 3 \times 2$	3	$2 \times 2 \times 1$	$2 \times 3 \times 1$
Sb_2O_3	111	Sb-O, Sb	$1 \times 1 \times 2$	4	$2 \times 2 \times 1$	$2 \times 2 \times 1$

Table S2. Information on oxidation products of styrene by visible light photolysis of TiO_2 detected by PTR-ToF-MS.

Entry	m/z	Name	Formula	Reference
1	43.017	ketene	C ₂ H ₂ O	5
2	45.019	acetaldehyde	C_2H_4O	5, 6
3	47.044	ethanol	C_2H_6O	5
4	59.059	acetone	C_3H_6O	5, 6
5	61.063	acetic acid	$C_2H_4O_2$	5, 6
6	79.054	benzene	C_6H_6	5, 6
7	95.061	phenol	C_6H_6O	5, 6
8	105.067	styrene	C_8H_8	5

 $\label{eq:table S3} \textbf{Table S3}. \text{ The experimental and calculated CBM and VBM (eV)}.$

	Exp.		Cal.			
	CBM	VBM	Miller index	CBM	VBM	
A-TiO ₂	-0.72	2.55	101	-0.62	2.56	
R-TiO ₂	-0.25	2.77	110	-0.17	2.78	
La_2O_3	-3.39	2.74	001	-2.71	1.28	
Sb_2O_3	-1.81	2.23	111	-1.74	1.68	

Table S4. The experimental and calculated band gap energy (eV).

	Г	Cal.		
	Exp.	$U_{ m eff}$	Bulk	Surface
A-TiO ₂	3.27	7.5	3.24	3.18
R-TiO ₂	3.02	9.5	3.02	2.94
La_2O_3	5.03	5.4	3.99	3.99
Sb_2O_3	4.04	4.5	3.38	3.43

Table S5. The adsorption energy ($E_{\rm ads}$, eV) of VOC molecules on simulated surfaces.

	Styrene	Toluene	Benzene	Ethyl acetate
A-TiO ₂ (101)	-1.021	-0.531	-0.692	-1.005
R-TiO ₂ (110)	-1.087	-0.867	-0.747	-1.265
$La_2O_3(001)$	-1.020	-0.977	-1.026	-1.046
Sb ₂ O ₃ (111)	-0.566	-0.539	-0.526	-0.481

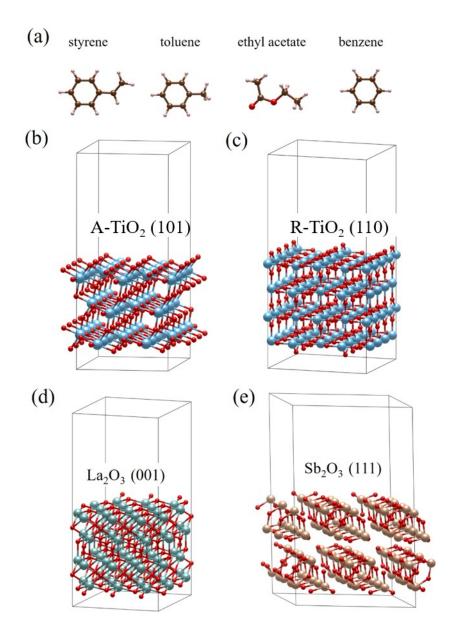
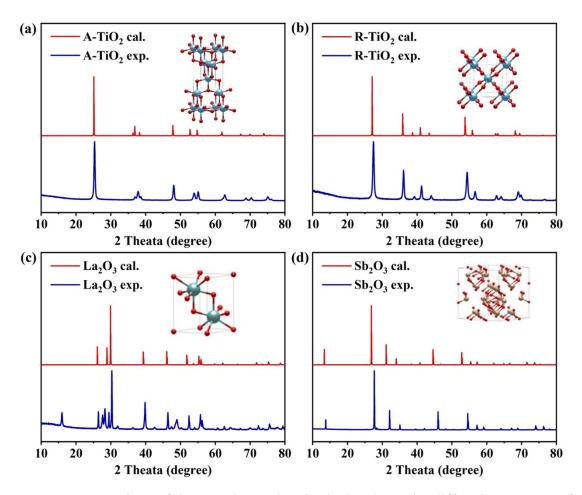
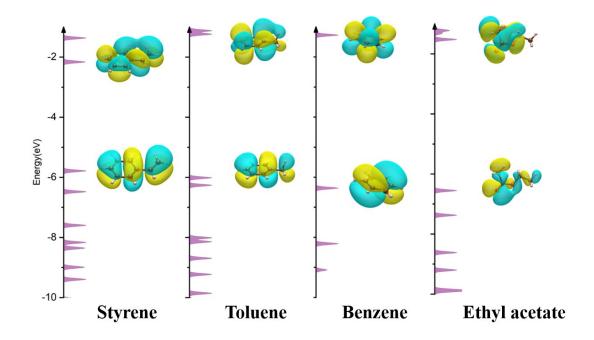
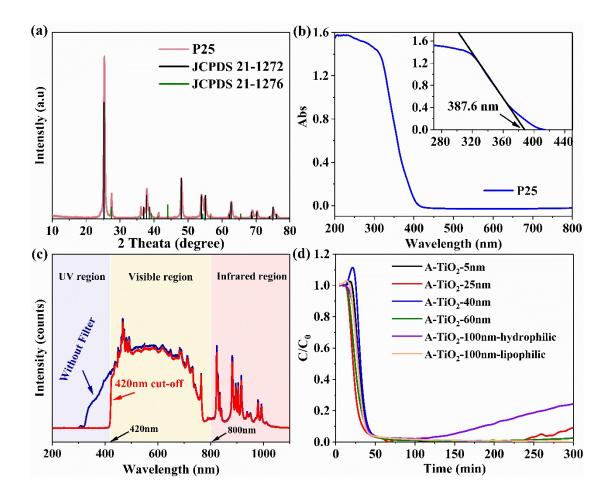
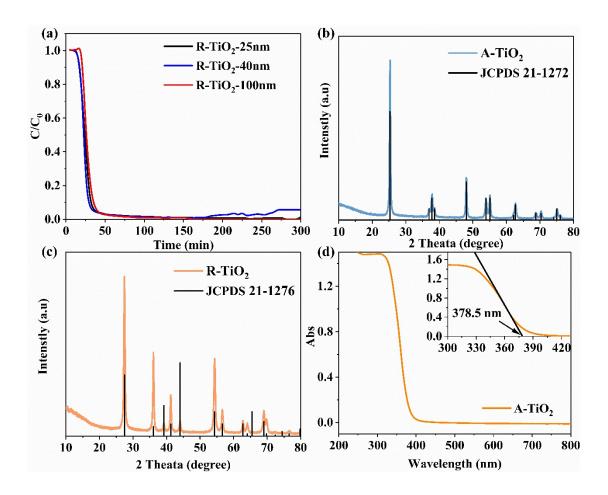
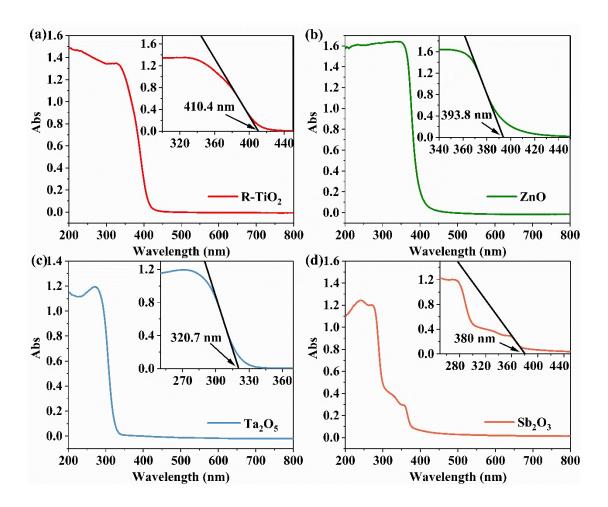
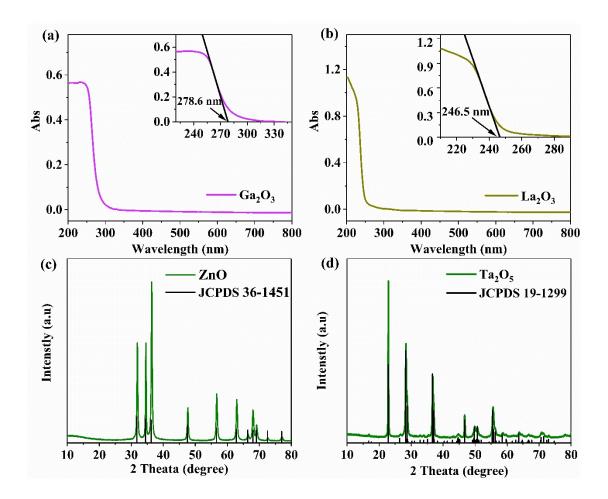



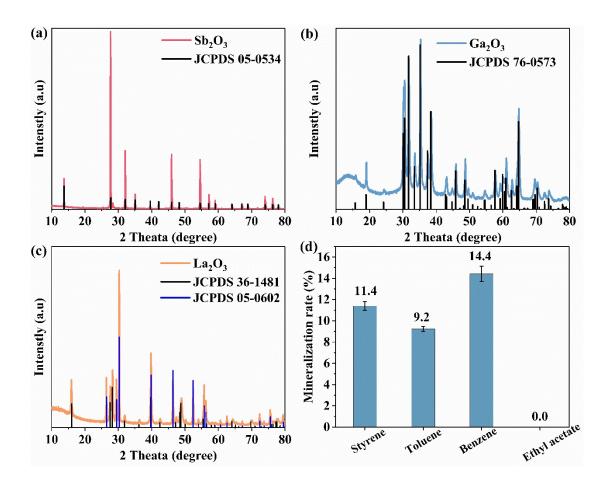
Fig. S1. The optimized structures of VOC molecules and semiconductor surfaces.

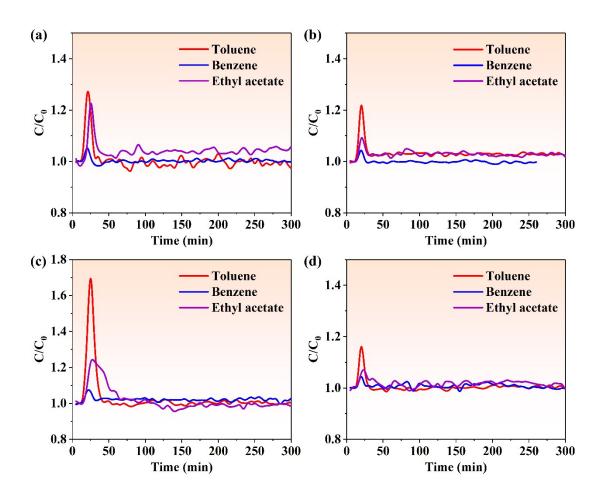
Fig. S2. Comparison of the experimental and calculated powder diffraction patterns of semiconductors.


Fig. S3. DOS and charge distributions of front orbitals of VOC molecules in a vacuum state.


Fig. S4 (a) XRD spectra of P25 obtained in this work and from the PDF cards; (b) UV-Vis diffuse reflection absorption patterns and absorption band edges of P25; (c) The spectral distribution of the Xenon light source without a filter and with a Cut 420 filter; (d) Degradation curves of styrene by A-TiO₂ with different particle sizes.


Fig. S5. (a) Degradation curves of styrene by R-TiO₂ with different particle sizes; XRD spectra of (b) A-TiO₂ and (c) R-TiO₂ obtained in this work and from the PDF cards; (d) UV-Vis diffuse reflection absorption patterns and absorption band edges of A-TiO₂.


Fig. S6. UV-Vis diffuse reflection absorption patterns and absorption band edges of (a) R-TiO₂, (b) ZnO, (c) Ta₂O₅ and (d) Sb₂O₃.

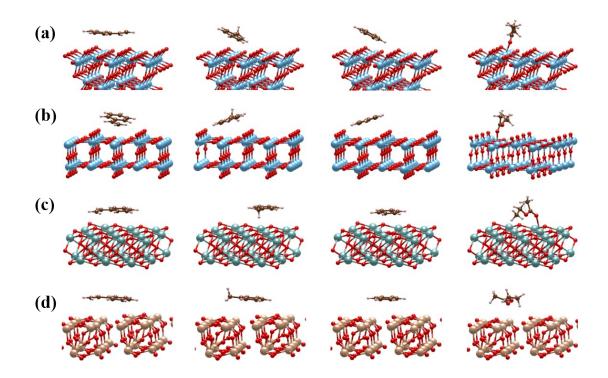
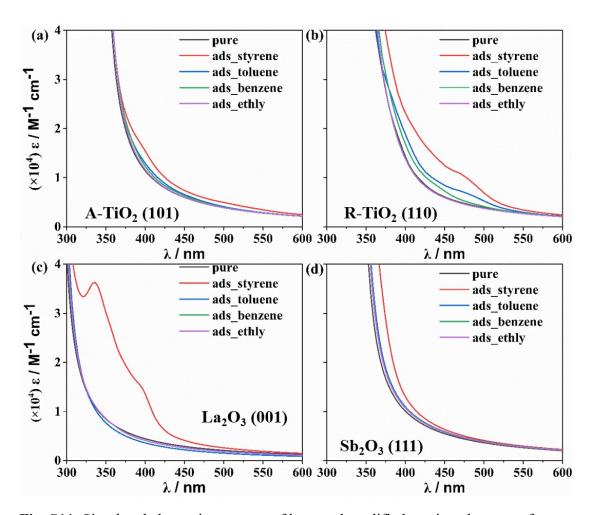
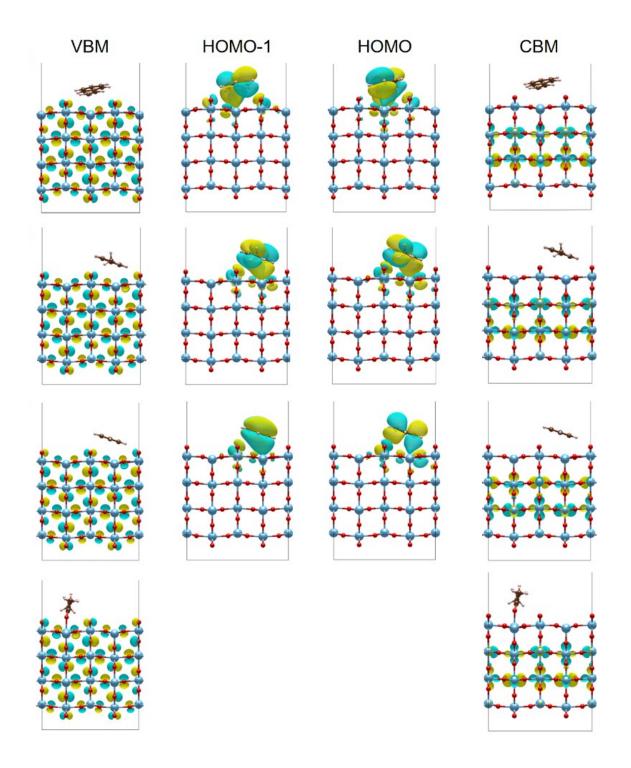
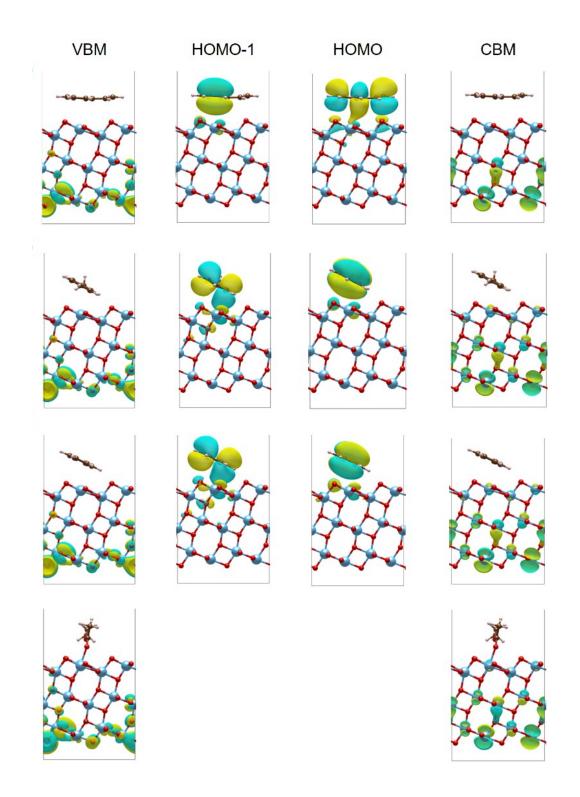
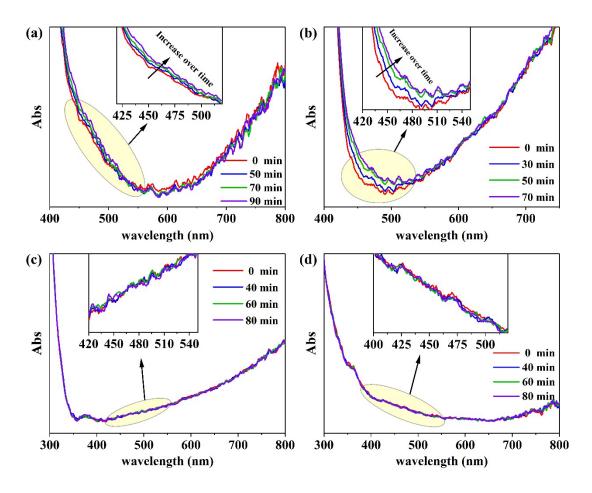

Fig. S7. UV-Vis diffuse reflection absorption patterns and absorption band edges of (a) Ga₂O₃ and (b) La₂O₃; XRD spectra of (c) ZnO and (d) Ta₂O₅ obtained in this work and from PDF cards.

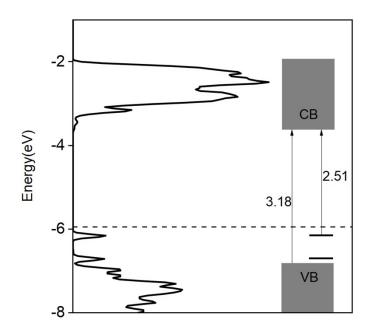
Fig. S8. XRD spectra of (a) Sb₂O₃, (b) Ga₂O₃ and (c) La₂O₃ obtained in this work and from PDF cards; (d) Histogram of the degradation mineralization rate of A-TiO₂ for different VOCs.

Fig. S9. Degradation curves of toluene, benzene and ethyl acetate by (a) Ta_2O_5 , (b) Sb_2O_3 , (c) Ga_2O_3 and (d) La_2O_3 .

Fig. S10. The most stable adsorption configurations of styrene, toluene, benzene, and ethyl acetate on the simulated surfaces of (a) A-TiO₂, (b) R-TiO₂, (c) La₂O₃, and (d) Sb₂O₃, respectively.


Fig. S11. Simulated absorption spectra of bare and modified semiconductor surfaces.


Fig. S12. The pivotal orbitals of A-TiO₂ (101) adsorption systems with adsorbing VOC molecules. VBM, CBM of semiconductor surfaces and molecule orbital exiting in the semiconductor band gap.

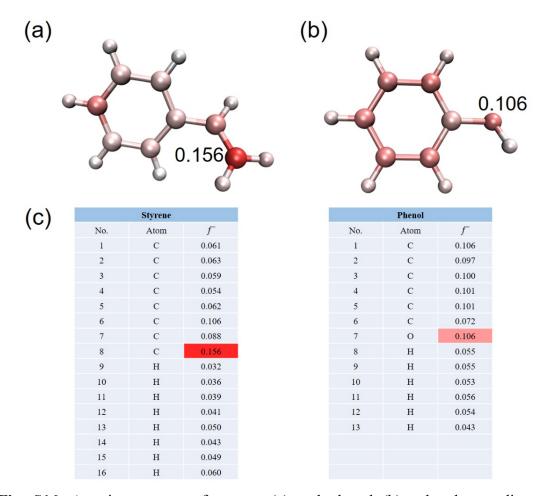

Fig. S13. The pivotal orbitals of R-TiO₂ (110) adsorption systems with adsorbing VOC molecules. VBM, CBM of semiconductor surfaces and molecule orbital exiting in the semiconductor band gap.

Fig. S14. *In situ* UV-Vis absorption spectra of (a) A-TiO₂, (b) P25, (c) Ga₂O₃ and (d) La₂O₃ during continuous adsorption of toluene.

Fig. S15. DOS plot for phenol molecule adsorbed on A-TiO₂ (101) surface. The right end of the Fig. shows the position of the newly created midgap states in the electronic structure of the A-TiO₂ surface.

Fig. S16. Atomic structure of styrene (a) and phenol (b) colored according to Condemned Fukui function (f^-) data (c). The atom with a larger Fukui function (f^-) is colored redder.

References

- 1 Lamiel-Garcia O, Tosoni S, Illas F. Relative Stability of F-Covered TiO₂ Anatase (101) and (001) Surfaces from Periodic DFT Calculations and ab Initio Atomistic Thermodynamics. *The Journal of Physical Chemistry C*, 2014, **118**, 13667-13673.
- 2 Kowalski PM, Meyer B, Marx D. Composition, structure, and stability of the rutile-TiO₂(110)surface: Oxygen depletion, hydroxylation, hydrogen migration, and water adsorption. *Physical Review B*, 2009, **79**, 115410.
- 3 Wang S, et al. First principles studies of CO₂ and O₂ chemisorption on La₂O₃ surfaces. *Phys. Chem. Chem. Phys.*, 2017, **19**, 26799-26811.
- 4 Haj Lakhdar M, Smida YB, Amlouk M. Synthesis, optical characterization and DFT calculations of electronic structure of Sb₂O₃ films obtained by thermal oxidation of Sb₂S₃. *J. Alloys Compd.*, 2016, **681**, 197-204.
- 5 Yuan B, Koss AR, Warneke C, Coggon M, Sekimoto K, de Gouw JA. Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences. *Chem. Rev.*, 2017, **117**, 13187-13229.
- 6 Gandolfo A, *et al.* Unexpectedly High Levels of Organic Compounds Released by Indoor Photocatalytic Paints. *Environ. Sci. Technol.*, 2018, **52**, 11328-11337.