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1. Electrochemical Measurements 

The electrochemical workstation (CHI 760E, Chenhua Instrument Co., China), utilizing a three-

electrode configuration, was employed for the assessment of electrochemical impedance 

spectroscopy (EIS), linear sweep voltammetry (LSV), and current-time (i-t) graphs. The 

catalysts were coated on the glass carbon electrode (GCE) as the working electrode. Pt and 

Ag/AgCl electrodes were used as the counter and reference electrodes, respectively. The 

preparation steps for the catalyst-modified GCE involved dispersing 10 mg of the catalyst into 

a mixed solution of 0.2 mL Nafion (5%), 0.1 mL isopropanol, and 2.7 mL deionized water (DI). 

After 30 min of ultrasonic treatment, 5 μL of the resulting homogeneous catalyst ink was 

dripped onto the surface of the GCE. Before each test, the GCE was repeatedly polished with 

alumina slurries on a felt pad, followed by rinsing with DI water and dripping of catalyst ink 

on the GCE. The catalyst's EIS was measured using an electrolyte consisting of 50 mL of 4-CP 

solution (20 mg L-1) within a sweep range of 1×10-2 to 1×106 Hz. For LSV and i-t measurements, 

200 mmol L-1 boric acid buffer was used as the electrolyte. The current at the working 

electrode was recorded by sweeping the potential from 0.2 to 1.4 V at a scan rate of 10 mV 

s-1. Additionally, i-t curves for the Fe-N5 electrode were acquired at 0.5 V vs. Ag/AgCl.

2. Determination of PMS consumption

The concentration of PMS remaining in the solution was determined by the colorimetric 

method. A reaction sample of 0.1 mL was collected and filtered through a 0.22 μm filter. Later, 

0.4 mL ABTS (10 mM), 0.2 mL Co2+ (10 mM), and 9.4 mL DI water were immediately added 

into the above sample to react for 10 min. A green-colored ABTS radical cation was formed. 

The resulting solution was analyzed by UV/Vis spectrophotometer (UV1800, Shimadzu, Japan) 

at the maximum absorbance wavelength of 735 nm.[1]



3. Mathematical Formulations and Calculations

The pseudo-first order kinetic rate constant (k) of the degradation was calculated as follows:

‒ 𝑙𝑛(
𝐶𝑡

𝐶0
) = 𝑘𝑡

Where, C0 and Ct represent the initial and the instant concentration of 4-CP.

The turnover frequency of the degradation was calculated as follows:

𝑇𝑂𝐹 =
𝑘

[𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡]0

Where, 𝑘 wass the rate constant of the reaction, and [Catalyst]0 was the loading of the 

catalyst.

4. Radical Probe Experiments

In this study, the steady-state concentration of SO4
·-, OH·, O2

·-, and 1O2 in the Fe-N5/PMS 

system were be calculated using BA, NB, p-CBA, and FFA as probe compounds. Since the probe 

compounds were low concentration compared to 4-CP (20 mg/L for 4-CP, 2 mg/L for BA, NB, 

FFA and p-CBA), which would not affect 4-CP degradation. [2] The second-order reaction rate 

constants between organic compounds and reactive species (M-1·s-1) were shown in Table S6. 

The calculation methods of steady-state concentration of OH·, SO4
·-, 1O2, O2

·- are as follows:

               (1)
(𝑘𝐵𝐴, 𝑂𝐻· [𝑂𝐻·]𝑠𝑠 + 𝑘

𝐵𝐴, 𝑆𝑂4
· ‒  

[𝑆𝑂4
· ‒ ]𝑠𝑠)𝑡 = 𝑘, 𝐵𝐴𝑡

               (2)
(𝑘𝑁𝐵, 𝑂𝐻· [𝑂𝐻·]𝑠𝑠 + 𝑘

𝑁𝐵, 𝑆𝑂4
· ‒  

[𝑆𝑂4
· ‒ ]𝑠𝑠)𝑡 = 𝑘, 𝑁𝐵𝑡

                                

(𝑘𝑝 ‒ 𝐶𝐵𝐴, 𝑂𝐻· [𝑂𝐻·]𝑠𝑠 + 𝑘
𝑝 ‒ 𝐶𝐵𝐴, 𝑆𝑂4

· ‒  
[𝑆𝑂4

· ‒ ]𝑠𝑠 + 𝑘𝑝𝐶𝐵𝐴, 1𝑂2
 [1𝑂2

]𝑠𝑠 + 𝑘
𝑝 ‒ 𝐶𝐵𝐴, 𝑂2

· ‒  

[𝑂2
· ‒ ]𝑠𝑠)𝑡 = 𝑘, 𝑝 ‒ 𝐶𝐵𝐴𝑡

(3)

                                     

(𝑘𝐹𝐹𝐴, 𝑂𝐻· [𝑂𝐻·]𝑠𝑠 + 𝑘
𝐹𝐹𝐴, 𝑆𝑂4

· ‒  
[𝑆𝑂4

· ‒ ]𝑠𝑠 + 𝑘𝐹𝐹𝐴, 1𝑂2
 [1𝑂2

]𝑠𝑠 + 𝑘
𝐹𝐹𝐴, 𝑂2

· ‒  
[𝑂2

· ‒ ]𝑠𝑠)𝑡

= 𝑘, 𝐹𝐹𝐴𝑡

(4)

𝑘𝐵𝐴, 𝑂𝐻· ,𝑘𝐵𝐴, 𝑆𝑂4
· ‒  

, 𝑘𝑁𝐵, 𝑂𝐻· , 𝑘𝑁𝐵, 𝑆𝑂4
· ‒  

, 𝑘𝑝 ‒ 𝐶𝐵𝐴, 𝑂𝐻· , 𝑘𝑝 ‒ 𝐶𝐵𝐴, 𝑆𝑂4
· ‒  

, 𝑘𝑝𝐶𝐵𝐴, 1𝑂2
 , 

𝑘
𝑝 ‒ 𝐶𝐵𝐴, 𝑂2

· ‒  
, 𝑘𝐹𝐹𝐴, 𝑂𝐻· ,



, , values were taken from [2-3].
 𝑘

𝐹𝐹𝐴, 𝑆𝑂4
· ‒  

 𝑘𝐹𝐹𝐴, 1𝑂2
  𝑘

𝐹𝐹𝐴, 𝑂2
· ‒  

The pseudo-first order reaction rate constant (k, BA, k, NB, k, p-CBA, k, FFA) could be obtained from 

the slope of the plots of , , , and , 
‒ 𝑙𝑛

[𝐵𝐴]
[𝐵𝐴]0

‒ 𝑙𝑛
[𝑁𝐵]
[𝑁𝐵]0

‒ 𝑙𝑛
[𝑝 ‒ 𝐶𝐵𝐴]
[𝑝 ‒ 𝐶𝐵𝐴]0

‒ 𝑙𝑛
[𝐹𝐹𝐴]
[𝐹𝐹𝐴]0

respectively. Then, the steady-state concentration of the reactive species was obtained by 

solving the equations 1-4 and was shown in Table S6. 

5. Preparation of Fe-N4 SAC

In the synthesis of Fe-N4, 81.1 mg of FeCl3·6H2O and 2.59 g of ZnCl2 were dissolved in 200 mL 

of formamide solution, and was stirred continuously for 45 min to achieve a homogeneous 

solution. This solution was heated at 180 °C for 12 h in a Teflon-lined autoclave. After cooling 

to room temperature, the resultant precipitate was centrifuged for 10 minutes and, washed 

with ethanol and DI water. The washed precipitate was then dried in an oven at 60 °C for 24 

h. The dried powder was subsequently calcined at 900 °C with a rate of 5 °C min-1 for 1 h under 

N2 atmosphere, to obtain Fe-N4 SAC. 



Pollutants Wavelength Mobile phase (v/v)

2-CP 275 Water : Methanol=40:60

4-CP 280 Water : Methanol=40:60

 2,4-DCP 280 Water : Acetonitrile=30:70

2,4,6-TCP 284 Water : Methanol=30:70

BPA 230 Water : Methanol=30:70

Phenol 270 Water : Methanol=35:65

2-NP 280 Water : Methanol=20:80

4-NP 280 Water : Methanol=20:80

SDZ 265 Water : Acetonitrile =15:85

SMT 175 Water : Methanol=55:45

Table S1
HPLC operating conditions for analyzing the pollutants.



aCN, coordination number, bR, the distance to the neighboring atom, cσ2, the Mean Square Relative 

Displacement (MSRD), dΔE0, inner potential correction, R factor indicates the goodness of the fit. S02 

was fixed to 0.820, according to the experimental EXAFS fit of Fe foil by fixing CN as the known 

crystallographic value. * This value was fixed during EXAFS fitting, based on the known structure of Fe. 

Fitting range: 3.0 ≤ k (/Å) ≤ 14.0 and 1.0 ≤ R (Å) ≤ 3.0 (Fe foil), 3.0 ≤ k (/Å) ≤ 13.8 and 1.0 ≤ R (Å) ≤ 4.0 

NB 265 Water : Acetonitrile=50:50

BA 227 Water : Acetonitrile=50:50

FFA 214 Water : Acetonitrile=50:50

p-CBA 239 Water : Acetonitrile=50:50

Sample Shell CNa R(Å)b σ2(Å2)c ΔE0(eV)d R factor

Fe-Fe 8* 2.474±0.00
3

0.0052±0.0
003

Fe foil
Fe-Fe 6* 2.854±0.00

5
0.0068±0.0

007

6.9±0.7 0.0019

Fe-O 3.4±0.3 1.938±0.01
7

Fe-O 2.7±0.4 2.103±0.02
9

0.0053±0.0
020 -5.2±2.1

Fe-Fe 5.2±0.6 2.960±0.00
9

Fe-Fe 4.2±0.8 3.381±0.01
1

Fe2O3

Fe-Fe 5.4±0.3 3.692±0.01
0

0.0065±0.0
009 -3.3±1.4

0.0071

Fe-N5 Fe-N 5.2±0.4 2.002±0.02
0

0.0043±0.0
028 -1.1±3.8 0.0025

Table S2
EXAFS fitting parameters at the Fe K-edge for various samples (Ѕ0

2=0.820).

Flow rate of mobile phase using 1.0 mL min-1 for all experiments.



(Fe2O3), 2.0 ≤ k (/Å) ≤ 10.0 and 1.0 ≤ R (Å) ≤ 2.5 (Fe-N5). A reasonable range of EXAFS fitting parameters: 

0.700 < Ѕ0
2 < 1.000, CN > 0, σ2 > 0 Å2, |ΔE0| < 10 eV, R factor < 0.02.

Catalysts 4-CP
(mg L-1)

PMS
(mM)

Catalyst
(g L-1)

k
(min-1)

TOF
(L (min·g)-1)

Reference

Fe-N5 20 0.33 0.05 2.99 59.8 This work

HFeNC-g-C3N4 1 1 0.03 0.038 1.272 [4]

PSBC 10 1 0.4 1.7 4.25 [5]

MnN5 10 1 0.5 0.51 1.02 [6]

SAFe-OCN 12 1 0.5 0.21 0.42 [7]

γ-MnOOH 50 4 0.17 0.068 0.401 [8]

γ-Fe2O3 20 0.5 0.2 0.15 0.745 [9]

FeMn@NCNT 6 1.6 0.1 1.266 12.66 [10]

Fe2O3-CoFe2O4 10 2 0.01 0.147 14.7 [11]

Fe/Fe3O4@CPPy 2 0.25 0.08 0.392 4.9 [12]

Table S3
Comparison of reaction conditions and reaction parameters over the reported SACs and 
nanocatalysts for 4-CP degradation by PMS activation in the Fenton-like reaction.      



Fe-MOF@Mn2O3 10 2 0.2 0.086 0.43 [13]

BFA-500 3 0.5 0.05 0.0885 1.77 [14]



Tap Water River water Reclaimed water

pH 7.65 7.40 8.34

HCO3
− (mg L-1) 28.82 63.60 44.14

SO4
2− (mg L-1) 41.63 90.65 21.90

PO3
4− (mg L-1) 0 0.13 0.01

NO3
− (mg L-1) 0.46 8.94 49.91

Cl− (mg L-1) 12.23 94.63 55.71

TOC (mg L-1) - 3.15 4.64

Table S4
Parameters of the obtained water samples.



Catalyst k (min-1) Reference

2-CP

Fe-N5 2.12 This work

Fe-doped CeO2 0.0039 [15]

TNTs@AC 0.044 [16]

Zn1−xCdxS 0.037 [17]

Fe-NZ 0.016 [18]

2,4 DCP

Fe-N5 2.04 This work

Fe-Pd@ZIF-8 0.0785 [19]

Cu2S/Cu2O nZVI 0.0143 [20]

Ethylenediamine-N,N-

disuccinic-acid (EDDS) 
0.0414 [21]

Organobentonite-nZVI 0.247 [22]

2,4,6 TCP

Fe-N5 1.83 This work

ZVCow 1.40 [23]

Zero-valent iron (ZVI) 0.087 [24]

NiO/Al2O3 catalyst 0.044 [25]

Nanoscaled Fe3O4/CeO2 0.046 [26]

Table S5
Comparison of k over the reported SACs and nanocatalysts for 2-CP, 2,4-DCP, and 2,4,6-TCP 
degradation.



Table S6 

The steady-state concentrations and the contribution ratio of reactive species.

Reactive species Steady-state concentration (M) ROS (%)

·OH 2.46 × 10-13 11.70

SO4
·- 1.09 × 10-13 5.2149

1O2 1.74 × 10-12 82.5056

O2
·- 1.22 × 10-14 0.5785
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Figure S1. XRD patterns of Fe-N4 and Fe-N5.
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Figure S2. (a) XPS survey spectra, (b) N1s, (c) Fe2p, and (d) C1s of Fe-N4 and Fe-N5.
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Figure S11. (a) NB, (b) BA, (c) FFA, and (d) p-CBA degradation efficiency in Fe-N5/PMS system. Reaction 

condition: Reaction condition: [4-CP]0=20 mg L-1, [Catalyst]0=0.05 g L-1, [PMS]=0.2 g L-1, pH=7.0, T=25 
oC , [probe]0 = 2.0 mg L-1.
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Figure S12. k of NB, BA, FFA, and p-CBA degradation efficiency in Fe-N5/PMS system. Reaction 

condition: [4-CP]0=20 mg L-1, [Catalyst]0=0.05 g L-1, [PMS]=0.2 g L-1, pH=7.0, T=25 oC , [probe]0 = 2.0 mg 

L-1.
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Figure S13. Effect of SCN- on the 4-CP degradation in Fe-N5/PMS system. Reaction condition: [4-

CP]0=20 mg L-1, [Catalyst]0=0.05 g L-1, [PMS]=0.2 g L-1, pH=7.0, T=25 oC, [SCN-]=7.8 mM.
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Figure S14. Effect of KI on the 4-CP degradation in FeN5/PMS system. Reaction condition: [4-CP]0=20 

mg L-1, [Catalyst]0=0.05 g L-1, [PMS]=0.2 g L-1, pH=7.0, T=25 oC, [KI]=20 mM.
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Figure S15. Linear sweep voltammetry obtained by Fe-N5 as working electrode in the presence of PMS 

and 4-CP.



Figure S16. 2-D electron density distribution structure of (a) Fe-N4 and (b) Fe-N5.
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Figure S17. PDOS of Fe-N4 and Fe-N5.
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