Hematite-based photoanodes decorated with oxygen-deficient CeO₂ for photoelectrocatalytic degradation of tetracycline: Pulse deposition strategy

Meiying Jia^a, Yuanyuan Ma^c, Wenxuan Wang^b, Anqi Kang^b, Ping Wang^a *, Haiyin Xu^a, Weiping Xiong^b, Zhaohui Yang^b

^a Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, P.R. China;

^b College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China;

^c State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China.

* Corresponding author at: College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.

Phone & Fax: +86-0731-8562-3372

E-mail address: pingwang@csuft.edu.cn

Reagents

Cerous nitrate hexahydrate (Ce(NO₃)₃•6H₂O, 99.7%), Ferrous sulfate heptahydrate (FeSO₄•7H₂O, 99.7%), Anhydrous sodium sulfate (Na₂SO₄, 99.7%), Potassium chloride (KCl, 99.7%), hydrochloric acid (HCl, 99.7%), sodium hydroxide (NaOH, 99.7%), acetonitrile (ACN, 99.7%), methanoic acid (FA, 99.7%), tert-butanol (TBA, 99.7%), sodium azide (NaN₃), Ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) acetone, anhydrous ethanol were provided by Sino pharm Chemical Reagent Co., Ltd. Tetracycline (TC, 99%) was purchased from Shanghai Rhawn Technology Development Co. Ltd. Without special statement, deionized water with the specific resistance of 18.25 M Ω ·cm was applied to prepare solutions. The above reagents are commercially available analytical pure and were directly used without further purification.

The photoelectrocatalytic degradation experiment

For each photoelectrocatalytic degradation experiment, the performance was assessed by the degradation of tetracycline (TC, 20 mg·L⁻¹) in a three-electrode quartz cell (100 mL) with Na₂SO₄ as the electrolyte. After the adsorption-desorption equilibrium of TC was reached in the dark for 30 min, a light source was set at a certain distance from the photoanode for photoelectrocatalytic degradation. At each sampling time point, the solution was extracted with a syringe and 1.5 mL samples were collected with a 0.45 μ m microporous filter for high performance liquid chromatography (HPLC) analysis. The intermediates of TC and the leaching concentrations of metal ions in treated water were detected by liquid chromatography-

mass spectrometry (LC-MS) and ICP-MS, respectively. The specific HPLC and LC-MS analysis operation was displayed in detail as follows.

HPLC analysis operation:

The samples were filtered with 0.45 μ m cellulose acetate syringe membrane filter to determine the TC concentration via (HPLC, Agilent 1100 series, USA) with an Agilent TC-C18 column (4.6 × 250 mm, 5 um). The mobile phase was a mixture of 80% oxalic acid and 20% acetonitrile. Notably, the mobile phase was sonicated for 15 min before use to remove air bubbles. The detector wavelength was set at 354 nm, and the column temperature was 30°C. Meanwhile, the flow rate and injection volumes were 0.5 mL/min and 20 μ L, respectively. The retention time of TC was 3.8 min.

Liquid chromatography-mass spectrometry

Determination of the photo-electrodegradation intermediates of TC were carried out on a LC-MS system equipped with a 6460 HPLC (Agilent, USA) and an API 3000 mass analyzer. The HPLC column was a Kromasil C18 column (4.6×100 mm) from Agilent. 0.1% of formic acid aqueous solution and acetonitrile were used as mobile phases A and B, respectively. The eluent flow rate keeps 0.45 mL/min. An injection volume of 10 µL was used in analysis and column temperature at 302 K (30° C). Linear gradient elution as follows: The gradient solvent was as followed: A=90% (0 min), 10% (10 min), 10% (14 min), 90% (15 min), 90% (16 min). Max pressure limit: 1300 bar.

Characterization

The surface morphology and structure of the catalyst were recorded by emission scanning electron microscopy (FE-SEM). X-ray diffractometer (XRD) analysis was performed using Bruker D8 (scanning Angle:5-90°). X-ray photoelectron spectroscopy (XPS) was performed on Thermo ESCALAB 250XI instrument using an Al-k- α X-ray source to characterize the chemical composition and valence states of the catalyst materials. Fourier transform infrared spectroscopy (FTIR) was obtained using a Fourier transform infrared spectrometer (NICOLET iS10) in the range of 4000-400 cm⁻¹. The UV-vis absorption (DRS) spectra and photoluminescence (PL) spectra were detected by Varian Cary 300 spectrophotometer and PerkinElmer LS-55 fluorescence, respectively. Electron paramagnetic resonance (EPR) signals were detected with the Bruker A300 spectrometer. The mineralization of TC was estimated by total organic carbon (TOC) using Shimadzu TOC-VCPH analyzer.

The photoelectrochemical performance test

An electrochemical station (CHI 660E, Shanghai Chenhua) was used for photoelectrochemical measurements in Na₂SO₄ electrolyte. The FTO- α -Fe₂O₃@CeO₂ photoanode was used as the working electrode, and the Ag/AgCl electrode and the Pt sheet were used as the reference and counter electrodes, respectively. The measured potential versus Ag/AgCl was converted to a standard hydrogen electrode (NHE) by $E_{NHE} = E_{Ag/AgCl} + 0.197$. The visible light source was a PLS-SXE 300 W xenon lamp equipped with a cut-off filter to ensure visibility ($\lambda > 420$ nm), and the optical density parameter was 0.318 W·cm⁻².

$$i = i_0 \left[exp\left(\frac{\alpha_a nFE}{RT}\right) + exp\left(\frac{\alpha_c nFE}{RT}\right) \right]$$
(1)

where i represents the current density; i0 represents the exchange current density; α_a represents the anodic electron transfer coefficient; α_c represents the cathodic electron transfer coefficient; n represents the number of electrons transferred in the reaction; F represents Faraday's constant; E represents the applied voltage; R represents the universal gas constant, T represents the thermodynamic temperature.

Fig. S1 Pulse deposition current-time curve of (a) $FTO-\alpha$ -Fe₂O₃ photoanode, (b) $FTO-CeO_2$ photoanode.

Fig. S2 SEM-EDS spectrum of $FTO-\alpha$ -Fe₂O₃ photoanode, $FTO-CeO_2$ photoanode, and FTO-

 α -Fe₂O₃@CeO₂ photoanode.

Fig. S3 (a) Degradation dynamics and (b) pseudo-first-order kinetic curves of TC using different photoanodes; (c) comparison of TC degradation dynamics and (d) pseudo-first-order kinetic curves using $FTO-\alpha$ -Fe₂O₃@CeO₂ photoanode under different processes. Effect of (e) deposition time on the PEC degradation and (f) degradation dynamics.

Fig. S4 Effect of (a) external potential on the PEC degradation and (b) degradation dynamics; Effect of (c) pH on the PEC degradation and (d) degradation dynamics; (e) Effect of antibiotic concentration and (f) degradation dynamics.

Fig. S5 (a) Long-time photocurrent decay curve; (b) XRD patterns of $FTO-\alpha$ -Fe₂O₃@CeO₂ before

and after cyclic degradation.

Fig. S6 (a, b) Effects of different radical scavengers on degradation of TC by FTO- α -Fe₂O₃@CeO₂ photoanode; ESR spectra of (c) DMPO-•OH adduct and (d) TEMPO-h⁺ adduct for FTO- α -Fe₂O₃@CeO₂ photoanode under visible light irradiation ($\lambda > 420$ nm).

Fig. S7 LC-MS analysis of TC intermediates (P1-P6) by FTO-α-Fe₂O₃@CeO₂ photoanode.

Fig. S8 LC-MS analysis of TC intermediates (P7-P13) by FTO-α-Fe₂O₃@CeO₂ photoanode.

Fig. S9 The intermediates (P1-P6) of TC by FTO-α-Fe₂O₃@CeO₂ photoanode.

Fig. S10 The intermediates (P7-P13) of TC by FTO-α-Fe₂O₃@CeO₂ photoanode.

Table S1 Degradation of various pollutants by different photoelectrodes.

Photoelectrode	Current Density	kª/min ⁻¹	Pollutants	Removal efficiency	Ref
TNTAs/P	0.20 mA·cm ⁻²	0.0063	Tylosin	80.00%-250 min	1
			10 mg/L, 100 mL		-
rCO/a C N /TNA a	0.28 1	NA ^b	Oxytetracycline	76.59%-60 min	2
100/g-C3114/111AS	0.28 µA·ciii -		20 mg/L, 40 mL		
PbS/TiO ₂	$0.09 \dots 1.5 \dots -^{2}$	NIA	4-chlorobenzoic	80.37%-420 min	3
	0.08 mA·cm ²	INA	5 mg/L, 80 mL		÷

TiO ₂ -NPs/TiO ₂ -NTs	0.04 mA·cm ⁻²	0.0013	Diclofenac 5 mg/L, 80 mL	62.00%-720 min	4
MI TiO ₂ , (111) NRs	NA	0.032	Dimethyl phthalate 2 mg/L, 50 mL	88.30%-120 min	5
TNTs-Ag/SnO ₂ -Sb	0.40 mA·cm ⁻²	NA	α-ethinylestradiol 1.2 mg/L, 100 mL	60.00%-60 min	6
Au/TiO ₂ -NTs	0.01 mA·cm ⁻²	0.0026	Methyl orange 5 mg/L, 100 mL	56.00%-300 min	7
Ce@Fe-2	NA	0.032	Tetracycline 20 mg/L, 50 mL	88.60%-60 min	8
FTO-α-Fe ₂ O ₃ @CeO ₂	0.32 mA·cm ⁻²	0.024	Tetracycline 20 mg/L, 100 mL	93.13%-120 min	This study

^a Rate constant.

-

^b NA: Not available.

Table S2 Information and proposed structure of the degradation intermediates from TC
--

Products	Molecular Formula	m/z	Proposed Structure
TC	$C_{22}H_{25}N_2O_8$	445	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$
P1	$C_{22}H_{25}N_2O_9$	461	
Р2	$C_{22}H_{23}N_2O_9$	459	
Р3	$C_{21}H_{23}N_2O_8$	431	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
P4	$C_{20}H_{38}NO_6$	388	HO CH ₃ HN CH ₃
Р5	$C_{19}H_{19}O_5$	327	OH O OH O HO CH ₃
P6	$C_{16}H_{18}O_4$	274	
P7	$C_{20}H_{21}N_2O_8$	417	

P8	$\mathrm{C}_{20}\mathrm{H}_{26}\mathrm{NO}_{7}$	392	OH O OH OH OH CH ₂ NH ₂
Р9	C ₁₉ H ₂₄ NO ₆	362	
P10	$C_{17}H_{17}O_6$	317	
P11	C ₁₇ H ₁₇ O ₅	301	
P12	$C_{17}H_{17}O_4$	285	OH O OH O CH ₂
P13	C ₁₅ H ₁₉ O ₃	247	OH O OH CH ₂

Reference

- G. Zhang, G. Huang, C. Yang, S. Chen, Y. Xu, S. Zhang, P. Lu, J. Sun, Y. Zhu and D. Yang, Efficient photoelectrocatalytic degradation of tylosin on TiO₂ nanotube arrays with tunable phosphorus dopants, *J. Environ. Chem. Eng*, 2021, 9, 104742-104749.
- C. Yu, J. Hou, B. Zhang, S. Liu, X. Pan, H. Song, X. Hou, Q. Yan, C. Zhou,
 G. Liu, Y. Zhang and Y. Xin, In-situ electrodeposition synthesis of Z-scheme rGO/g-C₃N₄/TNAs photoelectrodes and its degradation mechanism for oxytetracycline in dual-chamber photoelectrocatalytic system, *J. Environ. Manage.*, 2022, **308**, 114615-114625.
- H. Zhang, Y. Gao, G. Zhu, B. Li, J. Gou and X. Cheng, Synthesis of PbS/TiO₂ nano-tubes photoelectrode and its enhanced visible light driven photocatalytic performance and mechanism for purification of 4-chlorobenzoic acid, *Sep. Purif. Technol.*, 2019, 227, 115697-115705.
- X. Cheng, H. Liu, Q. Chen, J. Li and P. Wang, Enhanced photoelectrocatalytic performance for degradation of diclofenac and mechanism with TiO₂ nano-particles decorated TiO₂ nano-tubes arrays photoelectrode, *Electrochim. Acta*, 2013, **108**, 203-210.
- J. Zhang, B. Tang and G. Zhao, Selective photoelectrocatalytic removal of dimethyl phthalate on high-quality expressed molecular imprints decorated specific facet of single crystalline TiO₂ photoanode, *Appl. Catal., B*, 2020, 279, 119364-119371.

- H. He, S. Sun, J. Gao, B. Huang, T. Zhao, H. Deng, X. Wang and X. Pan, Photoelectrocatalytic simultaneous removal of 17alpha-ethinylestradiol and E. coli using the anode of Ag and SnO₂-Sb 3D-loaded TiO₂ nanotube arrays, *J. Hazard. Mater.*, 2020, **398**, 122805-122814.
- L. Wu, F. Li, Y. Xu, J. W. Zhang, D. Zhang, G. Li and H. Li, Plasmoninduced photoelectrocatalytic activity of Au nanoparticles enhanced TiO₂ nanotube arrays electrodes for environmental remediation, *Appl. Catal., B*, 2015, 164, 217-224.
- S. He, C. Yan, X.-Z. Chen, Z. Wang, T. Ouyang, M.-L. Guo and Z.-Q. Liu, Construction of core-shell heterojunction regulating α-Fe₂O₃ layer on CeO₂ nanotube arrays enables highly efficient Z-scheme photoelectrocatalysis, *Appl. Catal., B*, 2020, **276**, 119138-119148.