Supporting Information

Reversible metal-organic polymers template enhances platinum nanoparticles selfassemblies and accelerates POD-like catalysis for rapid and ultrasensitive multiple forms mercury detection

Fan Zhang^{a,b,e}, Tianyu Guo^c, Liwen Feng^g, Yaobin Lu^{b,c}, Jiewei Deng^{a,b,e}, Tiangang

Luan^{b,c,d,f*}

^a School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510630, PR China

^b Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China

^c Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China

^d School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China

^e Smart Medical Innovation Technology Center, Guangdong University of Technology,
Guangzhou 510006, China

^f School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China

^g Boji Pharmaceutical Research Center, Boji Medical Biotechnological Co. Ltd., Guangzhou 510630, PR China

*Corresponding authors: cesltg@mail.sysu.edu.cn (T. Luan)

Figure S1. The TEM images of 2D metal-organic polymers formed by the triazineimine type ligand and Pt²⁺ observed at different scales.

Figure S2. The TEM images of irregular Pt NPs aggregates formed by 4pyridinecarboxaldehyde and Pt²⁺ observed at different scales.

Figure S3. The ¹H-NMR spectra of imine-triazinebenzylpyridine ligand in solution (400 MHz, DMF-d₇, 25 °C): $\delta = 8.93$ (d, J = 6.2 Hz, 6H, PhH), 8.87 (s, 3H, CH=N), 8.85 (d, J = 4.4 Hz, 6H, PhH), 7.98 (d, J = 4.4 Hz, 6H, PhH), 7.63 (d, J = 6.2 Hz, 6H, PhH) ppm.

Figure S4. Zeta potential of PNAs(HCl).

Figure S5. The UV-vis spectra of PNAs(HCl) in H₂O at R.T.

C _{Hg2+} (nM)	0.001	0.005	0.01	0.02	0.04	0.08	0.1
RSD (%)	1.350	1.148	1.263	1.471	1.699	2.411	3.078

Figure S6. RSD values of different Hg²⁺ concentrations samples detected by PNAs(HCl)-based colorimetric method.

Blank sample	A _{652nm} (a.u.)		
1	1.5838		
2	1.5834		
3	1.5834		
4	1.5834		
5	1.5836		
6	1.5835		
7	1.5838		
8	1.5832		
9	1.5833		
10	1.5833		
SD value (σ)	0.000206		

Figure S7. The absorbance of the blank sample (50 μ g mL⁻¹ PNAs, 0.12 mg mL⁻¹ TMB and 2.04 mg mL⁻¹ H₂O₂ contained) at 652 nm.

Figure S8. Hg²⁺ distribution in the six investigated sample locations.

Figure S9. Organic Hg distribution in the six investigated sample locations.