A Micro-Nano Formulation of Multi-Micronutrients- and Carbon Nanofiber-

Modified Biochar for Enhanced Plant Growth

Abhishek Gupta^{a#}, Rahul Gupta^{a#}, Nishith Verma^{a,b*}

^aDepartment of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur

208016, India.

^bCenter for Environmental Science and Engineering, Indian Institute of Technology Kanpur,

Kanpur 208016, India.

Authors contributed equally to this work.

*Corresponding author: Prof. Nishith Verma (email id: <u>vermanishith@gmail.com</u>)

Fig. S1 (a) TGA; mass percent distribution of (b) major and (c) trace elements in soil, and (d) fibre dia of CNF.

The TGA spectra of the dried soil sample indicated a negligible weight-loss over 25 - 30 °C, confirming the complete removal of moisture from soil (Fig. S1a). X-ray fluorescence spectroscopy (WD-XRF, Rigaku, Japan) was used to analyse the elemental composition of the soil. The results indicated SiO₂, Al₂O₃, and Fe₂O₃ as major elements, with mass percentage of 71.57, 12.27, and 3.51%, respectively (Fig. S1b). The barium (Ba) and lanthanum (La) trace elements were also detected, with the concentrations of 471 and 37 ppm, respectively (Fig. S1c).

Fig. S2 Hydrodynamic particle size analysis of M_CNF/dolomite.

Fig. S3 (a) XRD spectra of bamboo powder (BP), biochar, and M_CNF/biochar; FTIR spectra of (b) BP and biochar, (c) M-biochar and M_CNF/biochar; (d) XPS survey scan of M_CNF/biochar, and (e-i) high resolution deconvoluted spectra of C 1s, O 1s, Cu 2p, Mo 3d, and B 1s of M_CNF/biochar.

Fig. S4 Zeta potenatial of biochar, M/biochar, and M_CNF/biochar.

Fig. S5 Radicle growth of the germinated seed treated with (a) control, (b) biochar, (c) M/biochar, and (d) M_CNF/biochar.

Fig. S6 TGA of seeds soaked with different treatments.

Fig. S7 Normalized metal release profiles of the M/biochar and M_CNF/biochar formulations for Cu and Mo, prepared with the initial concentrations of approximately 74.5 mg Cu and 7.9 mg Mo per g of the formulation.

Fig. S8 SEM image of shoot of the plant treated with (a) biochar and (b) M/biochar.

Fig. S9 TEM image of the leaf of the plant treated with M_CNF/biochar.

Fig. S10 SEM-EDS spectra of M_CNF/biochar indicating the inclusion of B in the materials.

Fig. S11 (a) SEM, (b) TEM, (c) TEM-EDS, and XRD spectra of M_CNF/biochar after 2 months of storage.

Table S1: Composition of the precursors mixed with bamboo shoot powder, desired micronutrient content in the M_CNF/biochar formulation, and the corresponding threshold values for Cu, Mo, and B.

Desired	Threshold	Precursor	Amount of precursor	Amount of desirable	Reference
micronutrient	value	compound	taken (mg/ kg of soil)	component (mg/kg	
	(mg/kg of			of soil)	
	soil)				
Cu	75	$Cu(NO_3)_2.3H_2O$	442.5	74.51	(24)
Мо	10	$(NH_4)_6Mo_7O_{24}$	18.44	7.87	(25)
В	2	H ₃ BO ₃	0.50	0.66	(26)

Table S2: Surface charge values of the various CNF-based materials reported in the literature.

S.No.	Material	Surface charge (mV)	Reference
1	M_CNF/biochar	-47.7	This
			study
2	Cu-CNF	-17.5	(16)
3	Fe-CNF	-21.6	(29)
4	Cu-Zn-CNF	-25	(32)

 Table S3 Comprehensive comparison of micro-nano biofertilizer performance across the conventional and nano-enabled formulations.

S. No.	Fertilizer	Name of crop/plant	Particle size (nm)	Micro (M tran MN	onutrients N) and slocator (TL) TL	Period of study (Days)	Plant growth parametersBiomassRootShootcontentlength(g/plant)(RL,(SL,cm)cm)		Shoot length (S _L , cm)	Biochem Protein content $(\frac{mg}{r})$	Chlorophyll content $\frac{mg}{(\pi^2)}$)	Soil propertiesTotal NWatercontentholding $\frac{mg}{hg}/\frac{kg}{haa}$ capacity(mg/g)		Ref.
1	M_CNF/biochar	Cicer arietinum	42	Cu, Mo, and B	CNF	30	20.4	7.5	29.7	9 10.8	1.9	148.18/ 326.0	1386.7	This study
2	Magnesium ammonium phosphate/biochar	Cabbage	-	-	-	30	-	R _L + S	L = 36	-	-	33/72.6	-	(21)
3	Biochar/ urea	Sunflower	-	-	-	90	604.3 g/m ²	$R_L + S_I$	_ = 190	-	-	-	-	(62)
4	Fe ₃ O ₄ / urea	Rice	35-45	Fe	-	24	-	$R_L + S_I$	_ = ~32	~130	0.9	-	-	(63)
5a	Mg-doped hydroxyapatite/ urea	Wheat	382	-	-	160	~9.8	$R_L + S_L$	=~101	-	-	~181.8/400	-	(64)
5b	Zn-doped hydroxyapatite/ urea	Wheat	473	Zn	-	160	~12.3	$R_L + S_I$	_ = ~98	-	-	~204.5/450	-	(64)
6	CNT-MnO ₂ - Fe ₃ O ₄	Lactuca sativa	-	Fe	CNT	40	~21.5		-	-	~0.485	-	-	(65)

8

7	Urea-MWCNTs	Paddy	-	-	MWC NT	110	~34	$R_L + S_L$	L = ~ 570	-	-	-	-	(66)
8	ZnO-MWCNTs	Onion	4	Zn	-	10	~44	2.83	~7.1	-	-	-	-	(67)
9	MoO ₃ NPs	Soyabean	47	Mo	-	70	~11.5	$R_L + S_L = \sim 45$		-	-	~128/281.6	-	(68)
10	AHL/Fe-CNF	Cicer arietinum	10-100	Fe	CNF	30	~6.0	~9.5	~8.8	~5.3	~62 µg /L	-	-	(55)
11	Fe-CNF/Mo- MOF	Cicer arietinum	-	Fe and Mo	CNF	30	~2.8	~15	~13	~1.9	-	~97.7/215	-	(7)
12	Cu-CNF	Cicer arietinum	230	Cu	CNF	20	-	10.6	16.7	~ 6.2	~ 4	-	-	(16)

Abbreviations: CNF: Carbon nanofibers; CNT: Carbon nanotubes; MWCNT: Multi walled carbon nanotubes; NPs: Nanoparticles; AHL: Acylated homoserine lactones; MOF: Metal organic framework.