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Supporting Information

Investigating Nanotoxicity: Uncovering Associations and Predictive Factors 

through Machine Learning Analysis of Published Literature

S1. Data preprocessing

The two datasets from the previously published articles by Labouta et al. (1) and Gul 

et al. (2) were merged and used in the present study. 

-The study by Labouta et al. (1) contained 2,896 data points (refer to rows): 1. 

Nanoparticle, 2. Type organic/inorganic, 3. Coat, 4. Diameter, 5. Concentration, 6. 

Zeta potential, 7. Cells, 8. Cell line (L)/primary cells (P), 9. Human(H) or Animal 

cells (A), 10. Animal?, 11. Cell morphology, 12. Cell age: Embryonic (E) or adult 

(A), 13. Exposure time (h), 14. Test, 15. Test indicator, 16. Biochemical metric, 17. 

Cell viability, 18. Interfernce checked, 19. Colloidal stability checked, 20. Positive 

control, 21. Publication year, 22. Particle ID, 23. Reference DOI

-Gul et al.’s study (2) contained 4,111 data points: 1. No., 2. Year, 3. Material, 4. 

Type (Inorganic or organic), 5. Shape, 6. Coat/functional group 7. Synthesis method 

8. Surface change, 9. Diameter (nm), 10. Size in water, 11. Size in medium, 12. Zeta 

in water, 13. Zeta in medium, 14. Cell type 15. No. of cells 16. Human or animal 17. 

Cell source 18. Cell tissue 19. Cell age 20. Cell line, Primary cells (P, L), 21. Time 

22. Concentration 23. Test 24. Test indicator 25. Aspect ratio, 26. Cell viability, 27. 

PDI, 28. Article ID, 29. DOI

Out of 7,007 data points, we removed specific columns with significant 

missing values. The columns “shape,” “synthesis method,” and “charge” were 

removed due to their high rates of missing data, with over 40% of entries (2,897 out 

of 7,007 data points) missing. Additionally, the columns “size in water,” “size in 

Supplementary Information (SI) for Environmental Science: Nano.
This journal is © The Royal Society of Chemistry 2025



2

medium,” “zeta_in_water,” “zeta_in_medium,” “zeta_potential,” and “no_of_cells” 

exhibited over 45% missing data were removed. The final merged dataset consists of 

16 columns: Material, Type, Coat/Functional Group, Diameter (nm), Cell_Type, 

Human_Animal, Cell_Source, Cell_Tissue, Cell_Morphology, Cell_Age, Cell 

Line/Primary Cell, Time (hr), Concentration (µg/mL, µM), Test, Test Indicator, and 

Cell Viability (%). 

Next, we addressed the missing values in the 'diameter' column by removing 

the corresponding rows. Then, the columns “concentrations” from the two datasets 

were reported in different units: µg/mL and µM. To harmonize the data and reduce 

sparsity for supervised learning, concentrations in µg/mL were converted to the 

molar range (10⁻³ to 10³ µM). This conversion assumed that 100 µg/mL of silver 

(Ag, MW = 107.87) equals 0.000927 M (or 927 µM). Silver was chosen as the 

reference material for concentration conversion based on its frequent occurrence in 

the dataset. Specifically, nanoparticles with coats or functional have significantly 

larger molecular weights. Thus, the concentrations in µM with the effects of coating 

were estimated as 0.001 of the corresponding concentration in µg/mL. We used this 

to factorize the concentration in µg/mL to µM. The ML models were trained based 

on the concentration range, showing no significant performance changes (data not 

shown). Notably, the ARM analysis utilized concentration in µg/mL, while the µM 

concentration was omitted in the dataset. 
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S2. Exploratory Data Analysis

The two datasets were combined, leading to a final dataset comprising 7,007 rows. 

Subsequently, the columns containing many missing values were removed, resulting 

in the 16 columns as stated in the main manuscript. Then, the missing values of 

concentration and diameter were removed. Consequently, the final dataset consists 

of 5,983 rows and 16 columns. Figure S1 was generated using numerical and label-

encoded categorical data extracted from the dataset, which consists of 5,983 rows 

and 16 columns.

Figure S1: Data distribution after label encoder (Cell viability >= 50%, labeled as 1, 

and Cell viability < 50% labeled as 0). Only four columns are digits, including 
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diameter, time, concentration, and cell viability. The remaining 12 columns, 

including material, type (organic/inorganic), coat, cells, cell source, human/animal 

cells, cell tissue, cell morphology, cell age, cell line (primary cell), test, and test 

indicator, have been label-encoded.

Figure S2: Plot of material type vs. cell viability. The plot displays the dataset's 

relationship between material type and cell viability. The data reveals that Au (gold 

nanoparticles) has the highest volume of data points, indicating a high cell viability. 

In contrast, Ag (silver nanoparticles) is notably associated with increased and lower 

cell viability.



5

Figure S3: Plot of material, size (diameter), and cell viability. The figure illustrates 

the distribution of nanoparticles based on their material, size (diameter), and 

corresponding cell viability. The dataset reveals a substantial presence of small-

sized gold (Au) and iron (Fe) nanoparticles with high cell viability. 

A substantial amount of data on small nanoparticles, such as Ag, Pt, and ZnO, 

reveals hazardous characteristics with low cell viability.
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Figure S4: Plot of material, coating/functional group, size, and cell viability. This 

figure shows the relationship between the material, coating/functional group, size, 

and cell viability of nanoparticles. The data reveals that small-sized Ag 

nanoparticles without coating or functional groups exhibit low cell viability, while 

small TiO2 nanoparticles without coating demonstrate safety. Similar patterns of 

high cell viability are observed for Au, chitosan, and SiO2 nanoparticles at small 

sizes.

Ag is quite intriguing. Even though most of the data on Ag demonstrate low 

cell viability, specific data show good cell viability. We further demonstrated this to 

see if the viability was impacted by the cell type or test conditions.
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Figure S5: Plot of material, cell type, and cell viability. The plot represents the 

relationship between material type, cell type, and cell viability of nanoparticles. The 

data reveals that Ag nanoparticles tested with HeCat and HeLa cell types exhibit low 

cell viability. There are instances of Ag-tested HeCat cells demonstrating high cell 

viability. Additionally, Ag nanoparticles tested with A549, J774A1, HDF, and L929 

cell types indicate high cell survivability. 
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Figure S6: Plot of material, coat/functional group, cell type, and cell viability. 

Building upon the previous figure's analysis, this figure highlights many non-coated 

Ag nanoparticles tested with either HeLa or HeCat cell types, demonstrating low cell 

viability.



9

Figure S7: Plot of cell type and cell viability. There are specific data in which lung 

cancer cell line A549 is associated with a high level of cell viability, and this 

characteristic is also observed in the hepatocellular carcinoma-derived Hep G2 cell 

line. Their high cell viability is probably due to cancer cell proliferation. 

Intriguingly, much of the data reveals associations between the HeLa and HeCat cell 

types and low cell viability.
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- Stratification

Stratification was used to ensure that the classes are well represented in training and 

test sets, improving model generalization and reducing bias toward the majority 

class. Class distribution in the training set (Stratified) is Class 1: 3253, Class 0: 935, 

and class distribution in the test set (Stratified) is Class 1: 1394 and Class 0: 401. 

Below are graphs of the preprocessed data. The data was split using stratified 

sampling to ensure a balanced class distribution. After a split, it was standardized 

using StandardScaler to prevent potential data leakage, where the model gains prior 

knowledge of the test set. It standardizes data by subtracting the mean and dividing 

it by the standard deviation, resulting in a distribution with a mean of 0 and a 

standard deviation of 1. The mean of each feature is near zero, and the standard 

deviation is approximately 1. 

There are also other methods to handle class imbalance, such as cost-sensitive 

learning, data resampling, etc. For cost-sensitive learning, higher penalties are 

assigned for misclassifying minority classes, making the model more sensitive to 

them. However, stratification was selected because it is simple, computationally 

efficient, and fair in performance evaluation. Methods like cost-sensitive learning 

and oversampling techniques could be explored for further enhancement.
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(a)

(b)
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(c)

Figure S8: Histogram of data (a) whole data set before scaling and stratification, (b) 

and (c) the training and test data, respectively, after scaling and stratification.
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S3. Evaluation metrics for classification supervised machine learning

- Receiver Operating Characteristic (ROC)

ROC is a valuable tool for determining the likelihood of a binary result. It plots the 

false positive rate as the x-axis and the true positive rates as the y-axis for many candidate 

threshold values between 0.0 and 1.0. The true positive rate (also called sensitivity) can be 

calculated using the following formula: True positive rate = True positives/(True positives + 

False negatives). False positive rate = False positives/(False positives + True negatives). The 

larger values on the y-axis for the positive rates denote a successful prediction, while a small 

number of false positive rates is expected. A clever model will, on average, place a higher 

probability on a randomly selected actual positive occurrence than a negative occurrence. 

Effective models are typically depicted by curves that bow upward and to the top left of the 

plot. A line drawn diagonally from the plot's bottom left to its top right represents a model 

with no skill at each threshold, and it has an Area Under Curve (AUC) of 0.5. The AUC 

describes the area under the ROC curve's integral or a close approximation.

Table S1: Classification evaluation metrics 
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- Classification report of XGBoost model 

The model’s performance was also evaluated using precision, recall, and F1-score on 

the test set. The metrics in Fig. 4(c) show the model’s predictive capabilities for 

class 0 and class 1. The model could perform well in the majority class (class 1, high 

cell viability) but showed a slight drop in recall for class 0 (low cell viability). When 

predicting class 1, the model shows a strong predictive capability for all metrics. 

This suggests that further optimization may be needed to improve the model’s 

performance for the minority class. 

  

Figure S9: Classification report in % obtained from the 4 features with high feature 

importance of the XGBoost model.

The model utilizing features selected from ARM demonstrates limited effectiveness 

in detecting low cell viability (Class 0), capturing recall in merely 35% of actual 

cases (See Fig. S10). In contrast, it achieves a high recall of 95% for high cell 

viability (Class 1). Similarly, the F1-score for Class 0 indicates weak performance, 

highlighting challenges in accurately identifying low cell viability cases, while the 

model performs well for Class 1 predictions.
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Figure S10: Classification report in % obtained from the four features based on 

ARM’s key features. 

The model shows strong predictive capability for high cell viability (Class 1) but 

struggles with low cell viability (Class 0) predictions. This performance discrepancy 

is likely due to the imbalanced nature of the dataset, which biases the learning 

process. Therefore, further improvements such as data augmentation or class 

rebalancing techniques are recommended to enhance the model’s ability to 

accurately predict low cell viability cases.
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S4. Unsupervised machine learning: t-SNE algorithm

Figure S11: Scatter plots of data analysis using the t-SNE algorithm (n_components 

= 2, perplexity = 30). The figure caption denotes the scatter plots from data analysis 

conducted with the t-SNE algorithm. 
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Table S2: Feature importance based on decision tree (DT) and XGBoost models of 

the whole dataset (5,983 rows x 16 columns).  

Material characters: material, coat, diameter, type of inorganic/organic

Experimental parameters: cell morphology, cell tissue, test, time

Feature DT XGBoost

Material 0.337 0.094

coat 0.042 0.113

Cell morphology 0.062 0.079

diameter 0.227 0.074

Cell_tissue 0.025 0.068

test 0.066 0.067

Type_organic_inorganic 0 0.06

time 0.048 0.059

Cell_age 0 0.058

Human_animal_cells 0 0.057

Cell_source 0 0.057

Cell line_primary cell 0.002 0.057

Test indicator 0.043 0.056

cells 0.042 0.057

concentration 0.106 0.051
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S5: Association Rule Mining (ARM) 

The columns (features) to be considered in ARM consist of material, type, shape, 

coat, synthesis, surface charge, cell_type, test, test-indicator, time_sort human-

animal cell, cell_source, cell_tissue, cell_morphology, cell_age, cell_line, time_sort, 

diameter_sort, and conc_sort. The numeric data were discretized into different 

ranges as listed below:

Time Range 1 2 3 4

hr 1-24 25-48 49 – 72 72 – 96

Diameter 
Range

1 2 3 4 5 6

nm 1- 30 31 – 50 50-100 101 – 150 151-280 281-957

Conc 
Range

1 2 3 4 5 6 7 8 9

µg/ml 0.001 
– 0.1

0.1 - 1 1-3 3.1 – 6 6.1-10 10.1-
60

60.1 – 
150

150.1 
– 1000

>1000.
1

*It should be noted that the concentration unit of µg/ml was chosen in ARM analysis since 

more data points were listed in this unit. Converting continuous data into categorical 

features can lead to loss of information during discretization. As a result, ARM findings 

may oversimplify complex interactions or misrepresent associations. Binning strategies can 

be employed to mitigate the issues and preserve finer distinctions in the data. The impact of 

different binning strategies, such as adaptive binning (Automatically adjusting bin widths 

based on data density), in evaluating ARM metrics should be further explored.
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Table S3: The example of the materials vs. cell viability by sorting the lift values 

with confidence greater than 70%. 

Antecedents (Material) Consequents (Cell viability) support confidence lift

PLGA High 0.024 1.000 1.279

HAP High 0.011 0.951 1.216

IronOxide High 0.052 0.933 1.193

TiO2 High 0.059 0.922 1.179

Iron oxide High 0.061 0.867 1.109

Bi High 0.022 0.864 1.104

Polystyrene High 0.026 0.861 1.101

Carbon NP High 0.011 0.859 1.098

Au High 0.091 0.850 1.086

MWCNT High 0.017 0.837 1.070

Carbon Nanotubes High 0.012 0.835 1.068

Dendrimer High 0.038 0.833 1.065

SiO2 High 0.067 0.799 1.022

Chitosan High 0.025 0.794 1.015

Al2O3 High 0.010 0.783 1.001
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Table S4: Association Rule Mining (ARM) Analysis with the two input features 

(material, coating, and cell viability) 

Antecedents 

(coating/functional)

consequents support confidence lift

COOH High 0.021 0.980 1.253

Silica High 0.012 0.955 1.221

PEG High 0.032 0.944 1.208

Dextran High 0.014 0.941 1.203

Citrate High 0.030 0.906 1.159

PVP High 0.019 0.860 1.100

PEG-PEI High 0.013 0.800 1.023

Chitosan High 0.017 0.786 1.005

NH2 High 0.019 0.766 0.979

PEI High 0.014 0.721 0.921
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Table S5: Multiple antecedents (features: material, coating, type of material). The 

multiple columns relating to the material characteristics, including material, coating, 

and type of material) and cell viability were used. 

Antecedents Consequents support confidence lift

SLN low 0.011 0.602 2.705

SLN, O low 0.011 0.602 2.705

None, Ag, I low 0.047 0.535 2.404

None, Ag low 0.047 0.535 2.404

Ag low 0.059 0.469 2.107

Ag, I low 0.059 0.469 2.107

I, ZnO low 0.022 0.355 1.597

ZnO low 0.022 0.355 1.597

None, I, ZnO low 0.020 0.337 1.515

None, ZnO low 0.020 0.337 1.515

Pt, I low 0.013 0.311 1.397

Pt low 0.013 0.311 1.397

None, I, SiO2 low 0.018 0.291 1.306

None, SiO2 low 0.018 0.291 1.306

None, I low 0.135 0.284 1.278
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Table S6: Multiple antecedents (features: material, cell tissue, and test) 

Antecedents Consequents support confidence lift

Cervix, Ag low 0.021 0.774 3.477

SLN low 0.011 0.602 2.705

MTT, Ag low 0.017 0.561 2.522

Skin, Ag low 0.024 0.549 2.468

Ag low 0.059 0.469 2.107

Embryo low 0.014 0.446 2.003

Cervix low 0.030 0.399 1.794

ZnO low 0.022 0.355 1.597

AlamarBlue low 0.015 0.329 1.477

Pt low 0.013 0.311 1.397

NR low 0.011 0.302 1.357

Skin low 0.036 0.299 1.343
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Table S7: ARM analysis between experimental parameters and cell viability: 

considering the lift more than 1.2. Low means “Low cell viability”.

Antecedents Consequents support confidence lift

Cell morphology and viability

Keratinocyte low 0.022 0.432 1.982

low Keratinocyte 0.022 0.100 1.982

Test and viability

low LDH 0.016 0.074 1.949

LDH low 0.016 0.425 1.949

AlamarBlue low 0.013 0.329 1.508

low AlamarBlue 0.013 0.060 1.508

NR low 0.011 0.271 1.242

low NR 0.011 0.049 1.242

Test indicator and viability

LDH activity assay kit low 0.016 0.400 1.835

low LDH activity 

assay kit

0.016 0.072 1.835

AlamarBlue low 0.016 0.350 1.605

low AlamarBlue 0.016 0.075 1.605

low toluene red 0.011 0.049 1.212

toluene red low 0.011 0.264 1.212
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Table S8: ARM of the features from experimental conditions (concentration, time, 

cell tissue, and test). LDH is the test; one denotes the time_sort in the range of 24 

hrs., and conc_sort has none (no data reported). It is seen that cell tissue is an 

embryo, indicating the high confidence of the low viability. 

Antecedents Consequents Support Confidence Lift

(none, one, LDH) low 0.013988 0.457944 2.101084

(Embryo) low 0.011704 0.445652 2.044688
(none, LDH) low 0.015701 0.44 2.018756
(one, LDH) low 0.014416 0.43913 2.014766
(LDH) low 0.016129 0.424812 1.949072

Table S9: ARM analysis of the antecedents’ features: material, type of organic or 

inorganic, coat, and diameter.

Antecedents Consequents support confidence lift

(Ag, None, first, I) (low) 0.03811 0.646489 2.966145

(Ag, None, first) (low) 0.03811 0.646489 2.966145

(Ag, first, I) (low) 0.042963 0.59252 2.718528

(Ag, first) (low) 0.042963 0.59252 2.718528

(SLN, O) (low) 0.010277 0.590164 2.70772

Ag is material, and the type of organic/inorganic is I. First is the diameter_ranked, 

referring to small sizes; none is from “Coat.” Ag, CuO (data not shown), ZnO (data 

not shown), Pt (data not shown), and SiO2 (data not shown) show a significant 

impact on the low cell viability.
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S6. Chi-square test of antecedents and consequents from ARM analysis

The observed frequencies can be obtained from the contingency_table, while the 

expected frequencies can be computed based on the assumption that antecedents and 

consequents are independent . The Chi-square test is 
𝐸𝑖𝑗 =

(𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙 𝑥 𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙)
𝑔𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙

calculated as: , where  is the observed frequency and  is the 
𝜒2 = ∑(𝑂𝑖𝑗 ‒ 𝐸𝑖𝑗)2

𝐸𝑖𝑗 𝑂𝑖𝑗 𝐸𝑖𝑗

expected frequency. The p-value indicates the probability of observing such a 

relationship by chance. 

A p-value was then computed to investigate the statistical significance, in which a p-

value less than 0.05 indicates a significant association. The function chi_square_test 

(not shown) applied the Chi-Square test to each rule (antecedent -> consequent) 

using contingency tables. Then, a bar plot in the figure below visualizes the top 10 

significant association rules based on p-values in agreement with the ARM analysis. 

Figure S12: Chi-square test of antecedents and consequents from ARM analysis.
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