Supporting Information

Unveiling the micro-mechanism of H₂O₂ activation and the selective regulation

strategy over single-atom catalysts

Zhengyang Gao^{ab}, Yuanzheng Qu^{ab}, Chu Wang^{ab}, Ruiyang Shi^{ab}, Yixiao Sun^{ab}, Qingqi Yan^{ab}, Chenliang Ye^{ab*},

and Weijie Yang $^{ab^*}$

^a Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China

^b Hebei Key Laboratory of Low Carbon and High-Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, Hebei, China

*Corresponding author:

Weijie Yang(yangwj@ncepu.edu.cn) Chenliang Ye(chenliangye@ncepu.edu.cn)

S1. Computational Details

To demonstrate the stability of the catalyst, we performed binding energy calculations for the single metal atom. The following equation was used to calculate the binding energy (E_{bind}):

$$E_{bind} = E_{sur} - E_{sub} - E_M \tag{1}$$

where E_{sur} , E_{sub} , and E_{M} are the electronic energies of the catalyst, graphene substrate, and single metal atom, respectively.

Adsorption energies (E_{ads}) were computed in accordance with the following equation to examine how strongly the gas molecules adhere to the catalyst surface

$$E_{ads} = E_{absorb} - E_{sur} - E_{gas} \tag{2}$$

 E_{absorb} , E_{sur} , and E_{gas} represent the total energies of the adsorption system, catalyst surface, and gas, respectively.

The reaction energy barrier (E_b) and reaction heat (ΔE) in the reaction pathways were computed based on

$$E_b = G_{TS} - G_{IS} \tag{3}$$

$$\Delta E = G_{FS} - G_{IS} \tag{4}$$

where G_{IS} , G_{TS} , and G_{FS} are the Gibbs free energy energies of the initial, transition, and final states, respectively.

The Gibbs free energies were obtained using the following equation:

$$G(T,P) = E_{ele} + ZPE + \Delta H - TS(T,P) + K_B T \ln \frac{p}{p^0}$$
⁽⁵⁾

where E_{ele} is the system energy in the ground state; *ZPE* is the zero-correction energy; ΔH is the enthalpy variation from 0 K to a given temperature; *T* is the temperature and TS(T,P) is the entropy of the system acquired from vibrational frequency analyses; K_B is the Boltzmann constant, 8.6173303 × 10⁻⁵ eV·K⁻¹; and p^0

is the standing pressure.

Based on Electron Density Difference (EDD), the gain and loss of electrons of each component in the system before and after adsorption can be visualized. The calculation formula for the electron density of each point in the EDD is as follows:

$$\Delta \rho = \rho_{AB} - \rho_A - \rho_B \tag{6}$$

Where ρ_{AB} is the electron density of the adsorption system; ρ_A is the corresponding charge density of the catalyst; ρ_B is the electron density corresponding to the adsorption.

Fig. S1 Schematic diagram of SACs synthesis process

Fig. S2. (a) K point test; (b) Truncation energy test

Fig. S3. Aperture distribution of three kinds of SACs (Fe, Co and Cu).

Fig. S4 SEM of (a)Fe-SAC, (b)Co-SAC, (c)Cu-SAC

Fig. S5 XRD curves of carbonized ZIF-8, Fe-SAC, Co-SAC and Cu-SAC

Fig. S6 XANES spectra of (a)Fe-SAC, (b)Co-SAC, (c)Cu-SAC

Fig. S7. Wavelet transform of EXAFS spectra at Fe K-edge, Cu K-edge, Co K-edge

Fig. S8. Fe-SAC catalyzes the H₂O₂ activation of the reaction 4. (a) $H_2O_2 \rightarrow^*O+H_2O$ (b) $H_2O_2 \rightarrow^*OH+^*OH$ (c) *OH+H₂O₂ \rightarrow^*OOH+H_2O (d) *OH+*OH \rightarrow^*O+H_2O (e) and (f) *O+H₂O₂ $\rightarrow^*OOH+^*OH\rightarrow^1O_2+H_2O$ The brown, red, white, pink, yellow, spheres represent C, O, N, H, Fe, respectively.

Fig. S9. Co-SAC catalyzes the H₂O₂ activation of the reaction (a) $H_2O_2 \rightarrow^*O+H_2O$ (b) $H_2O_2 \rightarrow^*OH+^*OH$ (c) *OH+H₂O₂ \rightarrow^*OOH+H_2O (d) *OH+*OH \rightarrow^*O+H_2O (e) and (f) *O+H₂O₂ $\rightarrow^*OOH+^*OH\rightarrow^1O_2+H_2O$. The brown, red, white, pink, dark blue, spheres represent C, O, N, H, Co, respectively.

Fig. S10 Activation reaction network of H₂O₂ on Co-SAC. (a) Step-1 and Step-2. (b) Step-3. The brown, red, white, pink, dark blue, spheres represent C, O, N, H, Co, respectively.

Fig. S11. Cu-SAC catalyzes the H₂O₂ activation of the reaction (a) $H_2O_2 \rightarrow^*O+H_2O$ (b) $H_2O_2 \rightarrow^*OH+^*OH$ (c) *OH+H₂O₂ \rightarrow^*OOH+H_2O (d) *OH+*OH \rightarrow^*O+H_2O (e) *OOH+*OH $\rightarrow^1O_2+H_2O$. The brown, red, white, pink, blue spheres represent C, O, N, H, Cu, respectively.

|--|

Catalyst		Metal element content	
Catalyst	Mean pore size of adsorption, nm	%wt	
Fe-N ₄ -C	8.744	1.33	
Co-N4-C	16.290	1.07	
Cu-N ₄ -C	5.684	0.98	

Table S2. BET specific surface area of catalyst

Catalyst	BET specific surface	BET specific surface	
	area , m^2/g	Catalyst	area , m^2/g
Fe-N4-C	432.6	TiO ₂ based MnO _x	122.1
Co-N ₄ -C	537.9	$Fe_{2.5}M_{0.5}O_4$	20~50
Cu-N ₄ -C	349.0	SiO ₂ based CuO _x	481.9

Table S3. EXAFS fitting of fresh SACs

Sample	Scattering path	Distance (Å)	C.N.	$\sigma^2({\rm \AA}^2)$	$\Delta E_0 (eV)$	R-factor
Co sample	Co-N	1.89	3.9	0.006	-9.7	0.001
Fe sample	Fe-N	1.98	4.2	0.007	-6.7	0.011
Cu sample	Cu-N	1.93	3.6	0.005	-4.3	0.004

Fe-SAC	E _{ads} (eV)	Q(e)
ОН	-3.09	-1.076
ООН	-1.27	-1.028
$^{1}O_{2}$	-0.18	-0.982

Table S4. Statistics of adsorption energy and transfer charge of different free radicals adsorbed by Fe-SACs

Table S5. Statistics of adsorption energy and transfer charge of different free radicals adsorbed by Co-SACs

Co-SAC	E _{ads} (eV)	Q(e)
ОН	-3.47	-1.299
ООН	-1.87	-1.074
$^{1}O_{2}$	-0.83	-1.076

Table S6. Statistics of adsorption energy and transfer charge of different free radicals adsorbed by Cu-SACs

Cu-SAC	E _{ads} (eV)	Q(e)
ОН	-2.67	-1.032
ООН	-2.30	-1.201
$^{1}O_{2}$	-1.34	-1.202