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Figure S1. DLS measurement of trisodium citrate and free-base hydrazine hydrate in AuCls
model system at room temperature depicting size increase over the course of three triplicate
readings
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Figure S2. DLS measurement of trisodium citrate and free-base hydrazine hydrate in AuCls
model system at 70 °C depicting stable size over the course of three triplicate readings
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Figure S3. XPS spectra of AuNPs on polysulfide material signal showing the presence of Au (0)
form, but with a much lower intensity in comparison to the XPS spectra of AUNPs on cellulose.
Possibly indicative of Au(0) embedded in the porous structure of polysulfide material.
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AuCly
Temperature during catalyst synthesis

Size range (nm) 10°C 25°C 40°C 80°C 100°C

Oto 10 5% 10% 2% 9% 4%
10to 20 51% 64% 53% 27% 43%
20to0 30 32% 14% 39% 39% 31%
30to 40 8% 11% 4% 19% 18%
40to 50 3% 1% 1% 3% 4%

50 plus 1% - - - 0%

Table S1 Effect of temperature during catalyst synthesis on AuNPs size distribution for gold
chloride model systems. Downward catalytic function as temperature during catalyst
synthesis is attributed to the increase in size of resulting AuNPs generated at higher

temperatures.
Aulg
Temperature during catalyst synthesis

Size range (nm) 10°C 25°C 40°C 80°C 90°C
Oto 10 67% 72% 68% 70% 55%

10to 20 26% 15% 29% 22% 36%

20to0 30 6% 5% 3% 3% 6%

30to 40 1% 8% - 4% 2%

40 to 50 1% - - - 1%

50 plus - - - - 1%

Table S2 Effect of temperature during catalyst synthesis on AuNPs size distribution for gold
chloride model systems. Negligible effect of temperature on the size of the resulting AuNPs,
and hence a negligible effect of temperature during catalyst synthesis on the resulting AUNPs

catalytic function.
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AuNPs description Kapp [$7] Kapp [MIiN™] | kapp [N"] | Calculated | Reference
using
Colloidal 22 nm 0.0044 0.264 15.84 In(At/Ao)
20 nm 0.0075 0.450 27.00 )
14 nm 0.0264 1.584 95.04
Colloidal 4nm 0.0208 1.247 74.82 In(Ao/At)
16 nm 0.0061 0.363 21.78
40 nm 0.0039 0.234 14.04 2
117 nm 0.0296 1.776 106.56
134 0.0727 4.364 261.84
Colloidal 8to35nm 0.0054 0.322 19.31 -In(Ct/Co)
Cellulose N/A 0.0043 0.257 15.41 3
20to 40 nm 0.0017 0.103 6.17
Cellulose 14 nm 0.0045 0.268 16.09 In(At/Ao) 4
16 nm 0.0037 0.222 13.32
26 nm 0.0021 0.128 7.67
Cellulose 10to 20 nm 0.0006 0.036 2.18 In(At/Ao) >
0.0007 0.041 2.43
0.0007 0.040 2.42
0.0005 0.031 1.84
0.0005 0.031 1.84
lonic 1to20 nm 0.0753 4.518 271.08 N/A 6
cellulose 0.0746 4.476 | 268.56
0.0741 4.446 266.76
0.0735 4.410 264.60
0.0731 4.386 263.16
Nanocrystal 2nm 0.0024 0.141 8.46 In (At/Ao) 7
Cellulose 4nm 0.0014 0.086 5.17
5m$m 0.0003 0.016 0.94
PMMA 5to 15 nm 0.0070 0.420 25.20 In (At/Ao) 8
Colloidal 33 nm 0.0026 0.158 9.47 In (Ct/Co) 9
155 nm 0.0057 0.344 20.63
AuCly Sodium 1.5E-06 0.000 0.01
squarate

S6




AuCly Ascorbic 5.5E-05 0.003 0.20
acid
AuCly Trisodium 6.4E-05 0.004 0.23
citrate
AuCly Sodium 8.2E-05 0.005 0.29
borohydride
AuCly Hydrazine 9.8E-04 0.059 3.52
AuCly Hydrazine & 9.6E-04 0.058 3.47
trisodium
citrate
Auly Hydrazine 9.9E-04 0.060 3.57
Auly Hydrazine & 1.0E-03 0.060 3.59
Trisodium
citrate

In (At/Ao)

This work

Table S3. Psudeo first order rate constants of literature and this work
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Figure S4. Spot EDS and surface mapping of PGM bead derived from e-waste depicting

ML-3-231-B(3) Image Nam(le: ML»EL—Z31—§J3)
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majority Au and Ag, but unable to determine the presence of Pd

Average BMLed e-waste (g/kg) Average g/kg raw e-waste
Sn 2.84 15.18
Co 0.00 0.00
Ni 1.54 4.89
Fe 10.27 72.66
Al 4,90 27.11
Mn 0.30 2.35
Pb 6.66 3.98
Cr 2.54 1.61
Zn 0.23 14.38
Cu 0.72 191.63
Mg 0.19 1.10
Au 0.19 0.11

Table S4. Metal content of e-waste in base-metal leached and raw e-waste
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