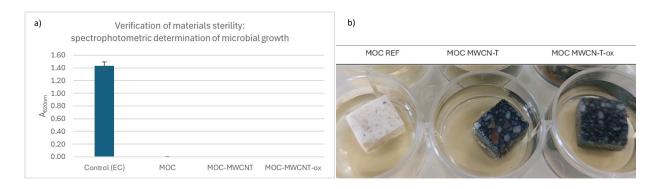
Supplementary Information (SI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2025

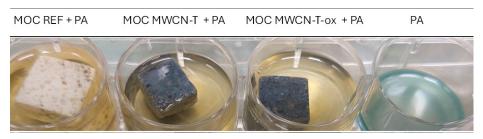
Ecotoxicological Assessment of MWCNT-Reinforced MOC Composites: Impacts on Model Bacteria and Eukaryotes with Environmental Relevance

SUPPORTING INFORMATION

Ecotoxicological Assessment of MWCNT-Reinforced MOC Composites: Impacts on Model Bacteria and Eukaryotes with Environmental Relevance


Simona Lencova^{1,2}, Jana Kofronova^{2,3}, Vaclav Peroutka¹, Anna-Marie Lauermannova², Adela Jirickova², Michal Lojka², Ondrej Jankovsky², Radek Vurm²

- ¹ Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
- ² Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Czech Republic
- ³ Department of Environmental Chemistry, University of Chemistry and Technology, Prague, Czech Republic


^{*}corresponding author: Simona Lencova, lencovas@vscht.cz

Ecotoxicological Assessment of MWCNT-Reinforced MOC Composites: Impacts on Model Bacteria and Eukaryotes with Environmental Relevance

Figure S1: Verification of MOC-REF, MOC-MWCNT and MOC-MWCNT-ox sterility: a) spectrophotometric measurement of microbial growth after materials cultivation in TSB medium, *E. coli* served as a control; b) materials in a solid form after the cultivation in TSB medium with clear TSB medium confirming materials sterility.

Figure S2: *P. aeruginosa* (PA) suspension after the incubation with MOC materials; PA did not turn blue-green at high pH, while coloured as usually in a control well.

