Supporting information for:

Phenotypic profiling reveals polystyrene nanoplastics elicit sublethal and lethal

effects on cellular morphology in rainbow trout gill epithelial cells

Authors: Lissett G Diaz¹ and Rebecca Klaper¹

¹School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee,

Wisconsin, USA

Pages: 11

Tables: 2

Figures: 8

Ston 1	Seed cells at 50 000 per well in 96-well
	nlate
Stop 2	Crow colla poor 85% confluence in LL 75
Step 2	Glow cells hear 65% confidence in 0-75
Step 3	I reat cells with particles for 24-hours
Step 4	Prior to take down, prepare live-cell
	Mito I racker staining solution. Final
	concentration of 500 nM.
Step 5	Remove cell solution from plates, and
	leave enough residual volume if about 60-
	70uL to prevent disturbing the cells
Step 6	Add 200uL of MitoTracker to each well.
Step 7	Incubate the plate at 19°C in the dark for
•	30 min
Step 8	Prepare the phalloidin and Hoesct
	staining solution in 50 mL of 1% (wt/vol)
	of BSA in PBS(1X) solution 5 ul/ml
	phalloidin and 5 ug/ml Hoesct
	Also prepare 4% Parafomaldebyde in
	PBS.
Step 9	Remove Mitotracker from plates, and
•	leave enough residual volume if about 60-
	70uL to prevent disturbing the cells.
Step 10	Add ~200uL of 4% PFA to each well for a
	final concentration of ~3.2% PFA.
Step 11	Incubate cells in the dark at RT for 20 min
Step 12	Wash cells once with 200µL of 1xPBS
Step 13	To permeabilize the cells, remove the
	PBS and add 200 μ L of 0.1% (y/y) Triton
	X 100 solution for each well
Stop 14	Incubate for 10.20 min at PT in the dark
Step 14	Mash solls with 200 µl. 2x with 1xDPS
Step 15	Demous DDC and add 200 uL at ataining
Step 10	Remove PBS and add 2000L of staining
	solution from step 8.
Step 17	Incubate the plates in the dark for 30 min
	at RI
Step 18	Wash cells with 200uL of 1xPBS, with no
	final aspiration. Image immediately or
	store at 4°C wraped in foil for up to 2 wks

Supplementary Table S1: Cell Painting Modified Protocol (3 channels)

This table contains Bray et al., 2016 Cell Painting, a high-content image-based assay

for morphological profiling using multiplexed fluorescent dyes protocol.

Feature	VIP
Image_Granularity_13_Mitochondria1	2.30930532
Mean_Cell_AreaShape_CentralMoment_1_2	2.256167586
Image_Granularity_9_Mitochondria1	2.145745084
Mean_Mit_per_cell_AreaShape_NormalizedMoment_0_3	1.878118247
Mean_Nucleus_AreaShape_BoundingBoxMinimum_Y	1.819675791
Image_Granularity_10_Mitochondria1	1.810699511
Mean_Mit_per_cell_AreaShape_Zernike_6_0	1.775395641
Mean_Mit_per_cell_AreaShape_Zernike_3_3	1.774584718
Mean_Mit_per_cell_AreaShape_Zernike_5_3	1.769501322
Mean_Mit_per_cell_AreaShape_Zernike_4_0	1.765831758

Supplementary Table S2: VIP Scores of Reference Chemicals

This table contains the top 10 variable importance in projection (VIP) scores for the PS NPs. These VIP scores were derived from the PLS-DA plots indicating features that influenced the separation between the response groups.

Supplementary Figure S1: 3,4-Dichloroaniline (3,4-DCA) was used to demonstrate the sensitivity of the RTgill-W1 cell line to AB (p-value < 0.05, n=3) according to the OECD Test No. 249: Fish Cell Line Acute Toxicity (OECD, 2021).

Supplementary Figure S2: Validation of Caspase-3/7 Red CellEvent Assay using 2 μ M of Camptothecin (p-value < 0.001) positive control using 0.1% DMSO control

and L-15 Media as negative controls (n=3).

Supplementary Figure S3: Example of a threshold mask applied to mitochondria to include all areas of biological interest across the z-stacks by choosing a pixel cutoff to quantify colocalization on.

Supplementary Figure S4: (a) Zeta potential of PS NPs were measured in phenol redand FBS-free L-15 growth media, UltraPure[™] Distilled Water, and phosphate buffered saline (PBS). (b) Diameter of PS NPs were measured in both phenol red- and FBS-free L-15 growth media and UltraPure[™] Distilled Water, and phosphate buffered saline (PBS). Asterisks indicate significant differences in size or zeta potential (p-value < 0.05).

Supplementary Figure S5: after 24 hours exposure, PS NP agglomerates can be observed at larger concentrations on the fluorescent microscope at high concentrations of 100 μ g mL⁻¹ (Molecular Devices, California, USA). Scale bars are the same for all images.

Supplementary Figure S6: Size of particles post 24 hours quantified via HCI data. This further supports that both the aggregation of the particles and sedimentation have occurred (n=5).

Supplementary Figure S7: Caspase-3/7 Red CellEvent Assay with NH₂-PS NP

treatments (n=4) via high-content imaging. Average Caspase Intensity.

Supplementary Figure S8: Orthogonal projections for RTgill-W1 colocalized with PS NPs. (a) PS-NH₂ vs mitochondria, (b) PS-COOH vs mitochondria, (c) PS-PLAIN vs mitochondria, (d) PS-NH₂ vs actin, (e) PS-COOH vs actin, (f) PS-PLAIN vs actin, (g) PS-NH₂ vs nuclei, (h) PS-COOH vs nuclei, (i) PS-PLAIN vs nuclei. Image contrast was increased for visualization purposes on ImageJ. Scale bars are the same for all images.