SUPPLEMENTARY MATERIALS

The sulphidation of ZnO nanoparticles enhances zinc recovery in the Zn-starved barley (*Hordeum vulgare* L.): The interplay of metal acquisition and cellular homeostasis

Izabela Jośko¹, Mikołaj Feculak¹, Patryk Oleszczuk², Bożena Czech², Mohammed Alyafei³, Magdalena Sozoniuk¹, Mohamed Sheteiwy³

¹ Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, 20-950 Lublin, Poland.

² Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland.

³ Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates

* Correspondence to: Izabela Jośko, Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, 20–950 Lublin, 13 Akademicka Street, Poland, tel. +48 81 4456675, fax. +48 81 4456031, e-mail: izabela.josko@up.lublin.pl

Number of pages: 6 Number of tables: 5 Number of figures: 4

Materials and Methods

Sampla	S-/ZnO	c ZnO	ZnS efficiency
Sample		$(mol \cdot dm^{-3})$	(wt%)
1	0.002	0.500	82.70
2	0.010	0.100	78.95
3	0.020	0.050	87.65
4	0.040	0.025	77.53
5	0.100	0.010	56.79

Tab. S1. Initial Concentrations of nZnO and related S/ZnO ratio.

Fig. S1. XPS pattern of sulph-nZnO.

Tab.	S2.	The pro	operties	of the	pristine	and sul	phidized	ZnO	ENPs.
------	-----	---------	----------	--------	----------	---------	----------	-----	-------

ENPs	\mathbf{S}_{BET}	V _p	V _m	R _p	D _A	ζ
nZnO	10.1 ± 0.7	0.029 ± 0.001	1.41 ± 0.04	114.4 ± 3.3	1646 ± 27	+30.1
sulph-nZnO	29.2 ± 0.9	0.231 ± 0.007	1.53 ± 0.04	316.5 ± 9.3	2117 ± 115	+3.83

 $\overline{S_{BET}}$ - BET surface area (m²/g), V_p - pore volume (cm³/g), V_m - micropore volume (0.10⁻³ cm³/g), R_p - pore radius (Å), D_A - mean aggregates diameter (nm), ζ - zeta potential (mV).

Name	Medium	Treatments*
control (-)	Zn ion-free Hoagland solution	no additives
control (+)	Hoagland solution (with ZnSO ₄)	no additives
nZnO s	Zn ion-free Hoagland solution	nZnO (0.5 mg Zn/L)
sulph-nZnO	Zn ion-free Hoagland solution	sulph-nZnO (0.5 mg Zn/L)
ZnSO ₄	Zn ion-free Hoagland solution	$ZnSO_4$ (0.5 mg Zn/L)

Tab. S3. The list of treatments.

The additives (ENPs or metal salt) were added to the solution at a tillering stage of barley growth (BBCH:21).

Gene	Primer	Primer $(5' \rightarrow 3')$ sequence	NCBI/ Phytozome	Localization
			Acc. number	(UniProt)
71D1	F	TTCATCTATGTCGCCATCAACCACCTC	IBSC contig	
ZIF I	R	CTATGCCAGTGAGCACACCGAAGAAC	_2164938	
7102	F	GTGAGGCCATCCACCATCAA	E1208001	
ZIFS	R	CACCCAAGCCTATGCCTTCA	FJ208991	
7104	F	GCGAGGAAGAAGCAGAAGATGG	AV260169	
ZIPO	R	AAGACCTGGTGGAAGGAGAGC	AK309108	Cell membrane
7100	F	CGCTCTTCTTCTCACTCACC	E1208002	
ZIP8	R	GGAGAGGTTTACGATGACCTG	FJ208995	
71010	F	GACCTCATTGCTGCTGATTT	AV262010	
ZIPIU	R	AGCTAGGCAACAGGTCGTAGT	AK303919	
71014	F	CACAGATGCACGATCAGAGAA	AV240059	
ZIP14	R	CCACAATATCCACGGAACTCA	AK249938	
MTD1	F	ACAGCCATAATTCATCACCG	AM286705	Vacuole membrane
IVI I F I	R	CGAGGTGTTACCGGCAT	Alv1200793	
		GGTGACACGACTAATGGAT		Cytosol,
Cu/Zn	F		U60526 1	chloroplast,
SOD		TGACGGACTTCATCTTCTG	009330.1	peroxisome.
	R			mitochondria
ADP	F	AGGTTCTTGATGCTGATGTG	EE405061 1	
	R	CGGAGTCCAACTACTGAATG	EF403901.1	
ACT	F	GGACGCACAACAGGTATC	CO220790 1	
AUI	R	CGAGGTCAAGACGAAGGA	00339780.1	

Tab. S4. Sequences of primers and internal reference used for RT-PCR.

Results

Tab. S5. The properties of ENPs in Hoagland solutions before plant exposure. Different letters indicate significant differences among the treatments (Tukey test, p < 0.05).

ENPs	ζ-potential	Average aggregate size
	[mV]	[nm]
nZnO	$-8.8\pm0.9^{\mathrm{a}}$	350.1 ± 82
sulph-nZnO	$\textbf{-10.9}\pm0.2^{b}$	OOR

OOR - the result was out of measuring range (0.3nm - 15μ m).

Fig. S2. The microscopic images (A) and elemental composition (B) of tip roots exposed to nZnO and sulph-ZnO for 1 day. The images and elemental analysis were performed with Scanning Electron Microscopy integrated with Energy Dispersive Spectroscopy (QuantaTM 3D FEG, FEI with EDAX SDD Apollo detector). The percentage of elements is the average content of elements collected from 6 scans of EDAX.

Tab. S6. The ratios of DOC or TOC (measured in HGL medium after plant exposure) to the dry weight of barley roots. The control (-) and the control (+) mean the untreated plants grown in HGL solutions without or with Zn ions (as $ZnSO_4$), respectively. The treatments of ENPs or ZnSO₄ at the rate of 0.5 mg Zn/L were performed.

Treatments	DOC/DW _{roots}		TOC/DW _{roots}		
	1 day 7 days		1 day	7 days	
control (-)	10.2	12.2	10.9	13.1	
control (+)	8.3	6.9	8.8	7.3	
nZnO	7.5	8.0	7.8	8.3	
sulph-nZnO	8.7	8.7	9.2	9.3	
ZnSO ₄	8.6	10.3	8.9	11.1	

Fig. S3. The heatmaps present the translocation factors of metals in plants exposed to Zn compounds for 1 day (A) and 7 days (B). The control (-) and the control (+) mean the untreated plants grown in HGL solutions without or with Zn ions (as $ZnSO_4$), respectively. The dendrograms were performed based on the Pearson factors.