Polystyrene Nanoplastics Trigger Changes in Cell Surface Properties of Freshwater and Marine Cyanobacteria

Nigarsan Kokilathasan¹, Basirath Raoof¹, and Maria Dittrich^{1,2*}

¹Biogeochemistry Group, Department of Physical and Environmental Sciences, University of

Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4, Canada

²Department of Earth Sciences, University of Toronto St, George, 22 Ursula Franklin Street,

Toronto, ON, M5S 3B1, Canada

*Corresponding author: Maria Dittrich, m.dittrich@utoronto.ca

1. Supplementary Information

1.1. Cyanobacteria Cell Cultures

ASN-III consists of 25.0 g L⁻¹ NaCl, 3.5 g L⁻¹ MgSO₄·7H₂O, 2.0 g L⁻¹ MgCl₂·6H₂O, 0.75 g L⁻¹ NaNO₃, 0.75 g L⁻¹ K₂HPO₄·3H₂O, 0.50 g L⁻¹ CaCl₂·2H₂O, 0.50 g L⁻¹ KCl, 0.02 g L⁻¹ NaCO₃, 3.0 mg L⁻¹ Citric acid, 3.0 mg L⁻¹ Fe-ammonium citrate, 500.0 μ g L⁻¹ Mg-EDTA, 10.0 μ g L⁻¹ Vitamin B₁₂, 2.86 mg L⁻¹ H₃BO₃, 1.81 mg L⁻¹ MnCl₂·4H₂O, 22.0 μ g L⁻¹ ZnSO₄·7H₂O, 390.0 μ g L⁻¹ NaMoO₄·2H₂O, 79.0 μ g L⁻¹ CuSO₄·5H₂O, and 49.4 μ g L⁻¹ Co(NO₃)₂·6H₂O. The pH of the growth medium was adjusted to 7.4 ± 0.03 using 1 M HCl under sterile conditions¹. The zeta potential of the ASN-III medium was 5.53 ± 0.83 mV.

Zarrouk Medium consists of 16.8 g L⁻¹ NaHCO₃, 0.5 g L⁻¹ K₂HPO₄, 2.5 g L⁻¹ NaNO₃, 1.0 g L⁻¹ NaCl, 1.0 g L⁻¹ K₂SO₄, 0.2 g L⁻¹ MgSO₄·7H₂O, 0.2 g L⁻¹ CaCl₂·2H₂O, 0.01 g L⁻¹ FeSO₄·7H₂O, 0.08 g L⁻¹ EDTA, 2.86 mg L⁻¹ H₃BO₃, 1.81 mg L⁻¹ MnCl₂·4H₂O, 22 μ g L⁻¹ ZnSO₄·7H₂O, 390 μ g L⁻¹ Na₂MoO₄·2H₂O, and 80 μ g L⁻¹ CuSO₄·5H₂O. The pH of the medium was 8.0 ± 0.2². The zeta potential of the Zarrouk medium was -12.73 ± 0.40 mV.

1.2. Cell Count Calibration Curves

Cell cultures were diluted and washed twice with Milli-Q water before filtering through black 0.2 µm Nucleopore polycarbonate (PC) filters. Cell enumerations were performed at a magnification of 1000x for *Syn*. PCC8806 and 100x for *Spirulina* with 10 random microscope fields using the cellSens® imaging system of an Olympus IX 51 microscope with TRITC filter (543/22 nm Excitation, 593/40 nm Emission). Total cell count (cells L⁻¹) was determined using calibration curves of absorbance (OD650 and OD680) against cell enumerations¹ (**Fig. S1**).

Fig. S1. Cell count calibration curves. Cell enumerations (cells L⁻¹) against optical density readings (OD 650 and OD 680) for **a.** PCC8806 and **b.** *Spirulina*.

1.3. Particle Number Concentration (PNC) and Particle Size Distribution

The number of particles in a solution can be determined by the particle number concentration (PNC). PNC is calculated based on the following equation:

$$\frac{\text{Mass Concentration}}{\text{PNC} = \text{Mass per Nanoparticle}} = \frac{3 \times \text{Mass Concentration}}{4\pi \times r^3 \times \rho} \text{ (particles L^{-1})}$$

Where the density of PS (ρ) = 1.05 g · cm³ = 1050 mg · cm³, and *r* is the average radius of the nanoparticle (274.75 nm = 2.7475 × 10⁻⁵ cm); mass concentrations are 2, 10, or 20 mg L⁻¹.

PNCs for 2, 10, and 20 mg L^{-1} are 2.2 x 10^{10} particles L^{-1} , 1.1 x 10^{11} particles L^{-1} and 2.2 x 10^{11} particles L^{-1} , respectively.

Fig. S2. Particle Size Distribution of PS NPIs. The size distribution of PS NPIs is based on TEM images (n = 100).

1.4. Zeta Potential of PS NPIs

Fig. S3. Measurements of PS NPIs under a constant electrolyte. Average a. ZPs and b. HDs of the three PS NPIs concentrations in 0.1 M NaNO₃ at pH 4 to 10. Values are shown as mean \pm SD, n = 9.

Spirulina PCC8806 Th Th

1.5. TEM Images and Cell Wall Thickness

Fig. S4. Ultrastructure of PCC8806 and *Spirulina* **exposed to PS NPIs.** TEM images of PCC8806 and *Spirulina* cells at the exponential phase: **a**, **b**. Control, **c**, **d**. exposed to 2 mg L⁻¹

PCC8806

Fig. S5. Ultrastructure of PCC8806 exposed to PS NPIs at various magnifications. TEM images of PCC8806 at the exponential phase: **a-c**. Control, **d-f**. exposed to 2 mg L⁻¹ PS NPIs, **g-i**. exposed to 10 mg L⁻¹ PS NPIs, **j-l**. exposed to 20 mg L⁻¹ PS NPIs. A PS NPI was observed adjacent to, but not interacting with, the cell surface of PCC8806.

Fig. S6. Ultrastructure of Spirulina exposed to PS NPIs at various magnifications. TEM

images of *Spirulina* at the exponential phase: **a-c**. Control, **d-f**. exposed to 2 mg L⁻¹ PS NPls, **g-i**. exposed to 10 mg L⁻¹ PS NPls, **j-l**. exposed to 20 mg L⁻¹ PS NPls. A few PS NPls were observed adjacent to the cell surfaces of *Spirulina*, with stained organic matter.

Fig. S7. TEM images of PS NPIs. TEM images of **a.** PS NPIs after undergoing the same sample preparation. **b.** PS NPIs were observed adjacent to the cell surfaces of *Spirulina* exposed to 20 mg L⁻¹ PS NPIs.

Fig. S8. Cell wall thickness of PCC8806 and *Spirulina* cells. Values are shown as mean \pm STD, n = 15. Different letters indicate significant differences between treatments (p < 0.05) within each cyanobacterial species.

Fig. S9. Distribution of cell wall thickness of PCC8806 and *Spirulina* cells (n = 15).

Table S1. Raw cell wall thickness measurements of PCC8806 and *Spirulina*. Values are shown as mean \pm STD, n = 15. Different letters indicate significant differences between treatments (p < 0.05) within each cyanobacterial species.

Cell Wall Thickness	PCC8806	Spirulina
(nm)		
Control	34.52 ± 3.32^a	48.26 ± 4.86^a
2 mg L ⁻¹	$38.27\pm3.03^{\text{b}}$	$47.95\pm3.97^{\mathrm{a}}$
10 mg L ⁻¹	49.51 ± 2.18°	64.57 ± 4.04^{b}
20 mg L ⁻¹	$50.56 \pm 3.02^{\circ}$	$65.19\pm3.39^{\mathrm{b}}$

1.6. ATR-FTIR Spectra and Tables

Table S2. Assignments of peaks found on the PCC8806 ATR-FTIR spectra^{4, 5}.

	Waven	umber (cm ⁻¹)			
	Р	CC8806		Dools Assignments	
Control	2 mg L ⁻¹	10 mg L ⁻¹	20 mg L ⁻¹	Peak Assignments	
	NPls	NPls	NPls		
669, 701	663, 706	663, 699	669, 699	C-H out-of-plane bending	
				vibrations and C-H of aromatic	

				rings
763	763	763	763	Out-of-plane bending vibrations
855	854	854	855	vN-H wag from the presence of primary and secondary amines
955	954	927, 954	955	v _s , v _{as} P-OH and P-O-P of phosphate groups in phosphate oligomers; May contain contributions from glycosidic linkage
994, 1044	995, 1037	995, 1021, 1044	994, 1044	vC-O and C-C of pyranose
1079	1078	1078	1077	vsP=O of general phosphoryl groups present in the phosphodiester backbone of nucleic acid (DNA and RNA); May contain contributions from the presence of phosphorylated proteins and polyphosphate
1152	1152	1152	1152	vC-O of C-O-C glycosidic bridges in polysaccharides
1244	1243	1243	1244	v _{as} P=O of general phosphoryl groups present in the phosphodiester backbone of nucleic acid (DNA and RNA) or polyphosphate
1340	1335	1342	1340	vC-O of carboxylic acid or esters
1399	1403	1399	1399	δCH_2 and δCH_3 and $v_{s,} \delta C$ -OH of carboxylic groups (COO ⁻)
1453	1452	1452	1453	δCH ₂ and δCH ₃ of proteins; CH ₃ scissoring (amide III band)
1536	1536	1536	1536	δN-H, vC-N, and vC=O of amides in proteins (amide II band)
1656	1657	1657	1656	vC=O of amides in proteins; (amide I band)
1739	1740	1768	1739	vC=O of protonated carboxylic acid groups (COOH) and of ester functional groups in lipids

 δ = bending, v = stretching, v_{as} = asymmetric stretching, v_s = symmetric stretching

Table S3. Assignments of peaks found on the Spirulina ATR-FTIR spectra⁴⁻⁶.

	Wavenur	nber (cm ⁻¹)			
	Spi	rulina		Book Assignments	
Control	2 mg L ⁻¹ NPls	10 mg L ⁻¹ NPls	20 mg L ⁻¹ NPls	r eak Assignments	
619, 701,	619, 701,	619, 701,	619, 701,	C-H out-of-plane bending	
721	719	719	719	vibrations and C-H of aromatic	
				rings	
741	742	742	741	Out-of-plane bending vibrations	
882	883	883	846, 883	vN-H wag from the presence of	
				primary and secondary amines	
921, 979	923, 983	924, 984	924, 985	v_{s} , v_{as} P-OH and P-O-P of	
				phosphate groups in phosphate	
				oligomers; May contain	
				contributions from glycosidic	
				linkage	
1042	1045	1045	1029	vC-O and C-C of pyranose	
1154	1158	1158	1155	vC-O of C-O-C glycosidic	
				bridges in polysaccharides	
1262	1259	1259	1261	v _{as} P=O of general phosphoryl	
				groups present in the	
				phosphodiester backbone of	
				nucleic acid (DNA and RNA) or	
				polyphosphate	
1342	1340	1324	1324	vC-O	
				of carboxylic acid or esters	
1402	1399	1414, 1427	1413, 1427	δCH_2 and δCH_3 and $v_{s,\delta} \delta C$ -OH of	
				carboxylic groups (COO ⁻)	
1440, 1501	1441, 1502	1502	1501	δCH_2 and δCH_3 of proteins; CH_3	
				scissoring (amide III band)	
1537	1538	1538	1557	δ N-H, C-N stretching, and vC=O	
				of amides in proteins (amide II	
				band); May also contain	
				contributions from vC=N	
1655	1657	1657	1661	vC=O of amides in proteins	
				(amide I band)	
1771	1773	1773	1776	vC=O of protonated carboxylic	
				acid groups (COOH) and of	
				ester functional groups in lipids	

 δ = bending, v = stretching, v_{as} = asymmetric stretching, v_s = symmetric stretching

Fig. S10. Peak Area Ratio of Polysaccharides and Proteins under the Presence of PS NPIs. Ratios of the peak area of PCC8806 and *Spirulina* at **a**. ~990 cm⁻¹ and **b**. ~1656 cm⁻¹ under PS NPI exposure compared to the peak area of the control. Peak areas were determined using deconvolution analysis. The peak at ~990 cm⁻¹ represents polysaccharides, whereas the peak at ~1656 cm⁻¹ represents proteins.

Table S4. FTIR deconvolution analysis of PCC8806 peaks at ~990 cm⁻¹ (polysaccharides) and ~1656 cm⁻¹ (proteins).

PCC8806	Peak Center	Area Fit	Adjusted R ²
	(cm ⁻¹)		Value
	995.6	121.0	0.020
Control	1656.3	62.1	0.939
2 mg I -1	993.4	129.7	0.969
2 mg L ⁻¹	1655.9	121.1	0.909

	996.1	93.5	
10 mg L ⁻¹			0.979
	1656.4	103.1	
	993.9	158.7	
20 mg L ⁻¹			0.919
20 mg L	1652.6	88.1	0.919

Table S5. FTIR deconvolution of *Spirulina* peaks at ~990 cm⁻¹ (polysaccharides) and ~1656 cm⁻¹ (proteins).

Spirulina	Peak Center	Area Fit	Adjusted R ²
	(cm ⁻¹)		Value
Control	977.2	3.2	0.986
Control	1657.1	92.3	0.900
2 mg L ⁻¹	977.4	3.3	0.004
	1656.5	84.7	_ 0.794
10 mg I -1	978.0	3.4	0.002
10 mg L ¹	1657.9	81.0	_ 0.992
20 mg L ⁻¹	978.3	3.5	0.080
	1660.9	69.6	0.989

Fig. S11. **Zoomed-in ATR-FTIR Spectra**. ATR-FTIR Spectra of **a**. PCC8806 and **b**. *Spirulina* at 950-1150 cm⁻¹.

The penetration depth (d_p) of ATR-FTIR can be calculated from the following equation⁴:

$$d_{\rm p} = \frac{\lambda}{2\pi \left[n_{\rm c}^2 \times \sin^2\theta - n_{\rm s}^2\right]^{1/2}}$$

Where θ is the angle of incidence, λ is the wavelength of the beam (cm⁻¹), and n_s and n_c are the refractive indices of the sample and ATR crystal, respectively. For a diamond crystal (refractive index = 2.4) with an incident angle of 45°, and assuming the refractive index of bacterial cells is approximately 1.39, d_p is around 0.908 µm at 1800 cm⁻¹ and about 2.725 µm at 600 cm⁻¹.

1.7. XPS Spectra and Table

From the initial survey XPS spectra (**Fig. S7**), the high-resolution spectra of carbon, nitrogen, and oxygen peaks were linked and convoluted to specific functional groups (**Figs. S8** and **S9**), and molar ratios relative to total carbon were estimated to define their relative proportion

(Tables 2 and 3).

The carbon peak was deconvolved into four components, with the most significant peak for PCC8806 and *Spirulina* found at the binding energy of ~248.8 eV (C1s), assigned to carbon bound only to carbon and hydrogen, commonly associated with lipids or amino acids. The other carbon components detected include at ~286.0 eV (C1s A), assigned to carbon singly bound to oxygen or nitrogen, which includes ether, alcohol, amine, and amide groups; at ~287.5 eV (C1s B), assigned to a double-bonded carbon with oxygen (C=O) or two single-bonded oxygen with carbon (O-C-O), including carbonyl, carboxyl, amide, acetyl, and hemiacetal groups^{7, 8}; and at ~288.5 eV (C1s C), associated with carbon forming one double bond and a single bond with oxygen (O-C=O), which corresponds to carboxyl or ester groups.

The oxygen peak was deconvolved into three components: A peak at ~530.7 eV (O1s) assigned to oxygen forming a double bond with carbon (O=C), a double bond with phosphorus (O=P), or oxygen forming a single bond with phosphate (P-O-Ring) in esters, amides, and phosphate groups; a peak at ~531.7 eV (O1s A) attributed to hydroxide groups, acetal, and hemiacetal; and a peak at ~532.7 eV (O1s B) corresponded to oxygen forming a single bond with hydrogen (HO-C), such as hydroxyl groups or carbon (C-O-C), such as acetal and hemiacetals^{7,9}.

The nitrogen peak was deconvolved into two components: A peak at ~399.5 eV (N1s) is attributed to unprotonated amine or amide functional groups, whereas a peak at ~400.5 eV (N1s A) is assigned to protonated amine or amide functional groups.

Fig. S12. Low-resolution XPS Spectra. Survey XPS spectra of **a**. PCC8806 and **b**. *Spirulina* at the exponential phase under control and NPI-exposed conditions. The Na1s peak was attributed to the washing procedure of the cells.

Fig. S13. High-resolution XPS Spectra of PCC8806. High-resolution XPS spectra of carbon (C1s), nitrogen (N1s), and oxygen (O1s) of PCC8806. **a-c.** Control, **d-f**. with 2 mg L⁻¹ PS NPls, **g-i.** with 10 mg L⁻¹ PS NPls, **j-l**. with 20 mg L⁻¹ PS NPls.

Fig. S14. High-resolution XPS Spectra of *Spirulina*. High-resolution XPS spectra of carbon (C1s), nitrogen (N1s), and oxygen (O1s) of *Spirulina*. **a-c.** Control, **d-f**. with 2 mg L⁻¹ PS NPls, **g-i**. with 10 mg L⁻¹ PS NPls, **j-l**. with 20 mg L⁻¹ PS NPls.

Table S6. Raw XPS data of PCC8806 at the exponential phase. FWHM – Full Width at Half Maximum.

Name Peak Energy FWHM Area Atom

		eV	eV	P (CPS.eV)	(%)
	C1s	284.68	1.37	126727.42	36.66
	N1s	399.64	1.6	39316.67	7.33
	Ols	531.74	1.9	96621.22	11.56
DCC8806	C1s A	286.08	1.4	69060.17	19.99
Control	C1s B	287.68	1.18	29732.74	8.62
Control	C1s C	288.58	1.2	10752.69	3.12
	Ols A	530.64	1.27	33711.13	4.03
	O1s B	532.83	2.23	67095.81	8.04
	N1s A	400.99	1.49	3511.66	0.66
	C1s	284.63	1.34	154776.31	41.83
	N1s	399.59	1.53	40134.17	6.99
	Ols	531.80	1.49	88499.04	9.90
PCC8806	C1s A	285.98	1.16	53508.59	14.47
2 mg L ⁻¹	C1s B	287.42	1.64	30883.30	8.36
	C1s C	288.34	1.34	13661.53	3.70
	O1s A	530.80	1.42	70291.43	7.85
	O1s B	532.82	1.53	61614.45	6.89
	C1s	284.69	1.49	62964.16	30.09
	N1s	399.65	1.76	19994.51	6.16
	O1s	531.56	1.67	98642.46	19.50
PCC8806	C1s A	286.08	1.44	35096.38	16.79
10 mg L ⁻¹	C1s B	287.68	1.08	11995.70	5.74
	C1s C	288.48	1.16	5678.85	2.72
	O1s A	530.66	1.27	31252.06	6.17
	O1s B	532.83	1.9	64828.98	12.83
	C1s	284.52	1.35	81841.55	33.79
PCC8806	N1s	399.56	1.60	27578.13	7.34
20 mg L ⁻¹	Ols	531.45	1.64	87880.90	15.01
	C1s A	285.90	1.38	43498.70	17.98

C1s B	287.49	1.53	19418.79	8.03
C1s C	288.29	1.31	5524.87	2.29
Ols A	530.60	1.31	34191.36	9.64
O1s B	532.63	1.71	56409.25	5.84
N1s A	401.51	1.14	303.85	0.08

Table S7. Raw XPS data of *Spirulina* at the exponential phase. FWHM – Full Width at HalfMaximum.

	Nama	Peak Energy	FWHM	Area	Atomic
	Ivanie	eV	eV	P (CPS.eV)	(%)
	C1s	284.61	1.3	99353.00	29.24
	N1s	399.53	1.69	15546.76	2.95
	O1s	530.65	1.37	224686.67	27.34
Spirulina	C1s A	285.97	1.32	34072.36	10.04
Control	C1s B	287.61	1.63	18327.09	5.4
	C1s C	288.88	1.45	38125.64	11.25
	Ols A	531.52	1.16	67328.48	8.2
	O1s B	532.59	1.42	45816.58	5.58
	C1s	284.59	1.27	99692.10	27.45
	N1s	399.65	1.59	28647.34	5.08
	O1s	531.43	1.31	67098.62	7.64
Snirulina	C1s A	286.07	1.38	72983.46	20.12
$2 \text{ mg } \text{L}^{-1}$	C1s B	287.62	1.42	32030.99	8.84
2 mg 1	C1s C	288.74	1.51	16761.26	4.63
	Ols A	530.58	1.34	96805.73	11.02
	O1s B	532.53	1.66	127158.71	14.49
	N1s A	400.54	1.39	4130.51	0.73
Spirulina	C1s	284.62	1.24	107751.41	30.86
10 mg L ⁻¹	N1s	399.59	1.58	19441.22	3.59

	O1s	530.76	1.50	228477.55	27.05
	C1s A	286.05	1.27	47195.89	13.53
	C1s B	287.53	1.38	18535.91	5.32
	C1s C	288.75	1.53	35532.02	10.20
	O1s A	532.18	1.06	56292.92	6.67
	O1s B	532.98	0.86	23295.93	2.76
	C1s	284.60	1.2	127462.72	34.77
	N1s	399.67	1.5	26771.54	4.71
	O1s	531.82	1.31	58943.86	6.65
Snirulina	C1s A	285.82	1.09	47151.56	12.87
20 mg L ⁻¹	C1s B	286.48	0.89	21333.34	5.83
20 mg 1	C1s C	287.95	1.97	54400.28	14.87
	Ols A	530.82	1.48	83387.85	9.40
	O1s B	532.76	1.60	94188.36	10.64
	N1s A	398.61	1.31	1497.49	0.26

Fig. S15. XPS Survey and High-Resolution Spectra of PS NPIs. a. Survey XPS spectrum and High-resolution XPS spectra of **b.** Carbon (C1s) and **c.** Oxygen (O1s) of PS NPIs.

Fable S8. Raw XPS data of PS NP	ls. FWHM – Full	Width at Half Maximum.
--	-----------------	------------------------

Nama	Peak Energy	FWHM	Area	Atomic
Iname	eV	eV	P (CPS.eV)	(%)
C1s	284.79	1.33	299309.26	88.64
Ols	532.38	1.77	18164.02	2.23
C1s A	285.98	0.94	18722.32	5.55

C1s B	286.78	0.98	7539.79	2.24
Ols A	533.61	1.54	8523.81	1.05
O1s B	534.43	1.51	2488.98	0.31

Table S9. Binding Energies (eV), mass fractions (%), and high-resolution XPS spectral band

 assignments of PS NP1s^{7, 10}.

Element/Ratio	Peak Energy eV	PS NPls Mass Fraction (%)	Assignment
Total C	284.29	96.4	
Total O	532.18	3.6	
O/C		0.0	
C1s	$284.79 \pm$	91.9	C-(C, H)
	0.51		
C1s A	285.98	5.8	C-O
C1s B	286.78	2.3	С=0; О-С-О
Ols	532.13 ±	62.1	O=C
	0.35		
Ols A	533.37 ±	29.2	С-ОН; С-О-С
	0.35		
Ols B	534.19 ±	8.6	НО-С
	0.35		

1.8. EPS Determination and Visualization

Fig. S16. Glucose standard calibration curves. Glucose concentrations (mg L⁻¹) against optical density readings at 490 nm (OD 490).

Table S10. Raw EPS concentrations of PCC8806 and *Spirulina* under NPI exposure. Values are shown as mean \pm SD, n = 9. Different letters indicate significant differences between treatments (p < 0.05).

NPI Concentration (mg L ⁻¹)	EPS Concentration (mg L ⁻¹)		
	PCC8806	Spirulina	
Control	4.79 ± 0.88^{a}	$5.44 \pm 1.33^{\rm a}$	
2	7.50 ± 2.46^{ab}	$11.99\pm4.63^{\text{b}}$	
10	$8.99\pm3.65^{\text{b}}$	$18.40\pm4.37^{\circ}$	
20	$9.27\pm2.73^{\text{b}}$	$25.49\pm4.36^{\text{d}}$	

Spirulina а b С Control 5 µm 5 µm 5 µm d е f 2 mg L⁻¹ NPls 5 µm 5 µm 5 µm h g 10 mg L⁻¹ NPls 5 µm 5 µm 5 µm j k 20 mg L⁻¹ NPIs 5 µm 5 µm 5 µm Chlorophyll Overlay CW

Fig. S17. EPS Secretion of *Spirulina* **under NPI Exposure.** LSCM images of *Spirulina* cells at the exponential phase. **a-c**. Control, **d-f**. with 2 mg L⁻¹ PS NPIs, **g-i**. with 10 mg L⁻¹ PS NPIs, **j-l**. with 20 mg L⁻¹ PS NPIs. The scale bar is 5 μ m. Cells were stained with calcofluor white (CW) for polysaccharides. Images (c, f, i, l) represent the overlay of CW staining and chlorophyll fluorescence. A purple color indicates a higher presence of polysaccharides.

1.9. Stokes' Law

The sedimentation rate of NPI aggregates can be estimated using Stokes' law. Stokes' velocity (V_s) is calculated from the following equation:

$$V_{\rm S} = \frac{d^2 \times g \times (\rho_{\rm p} - \rho_{\rm m})}{18 \times \mu}$$

Where d = hydrodynamic diameter of the NPl aggregates in the medium, the density of PS (ρ_p) = 1.05 g · cm³ = 1050 kg · m³, the density of the medium (ρ_m) = 1.01 g · cm³ = 1010 kg · m³ for Zarrouk (FM) and ρ_m = 1.03 g · cm³ = 1030 kg · m³ for ASN-III (MM), the viscosity of Zarrouk (μ) = 7.49 × 10⁻⁴ kg · m⁻¹s⁻¹ and the viscosity of ASN-III (μ) = 9.11 × 10⁻⁴ kg · m⁻¹s⁻¹, and the acceleration due to gravity (g) = 9.8 m² · s.

Table S11. Average Stokes' velocity of NPI aggregates in ASN-III and Zarrouk.

	ASN	III	Zarrouk	
NPI Concentrations	Stokes' Velocity (mm ⁻ day ⁻¹)	Settling Distance after 48 Days (mm)	Stokes' Velocity (mm ⁻ day ⁻¹)	Settling Distance after 12 Days (mm)
2 mg L ⁻¹ NPls	7.0	333.6	1.7	20.0
10 mg L ⁻¹ NPls	4.4	210.5	1.8	21.3
20 mg/ L ⁻¹ NPls	2.7	131.2	1.6	19.6

1.10. Statistical Outputs

Table S12. The statistical outputs of the overall one-way analysis of variance (ANOVA) on PCC8806 and *Spirulina* growth rates, zeta potential (ZP) of cyanobacterial cells, and EPS concentrations in the presence of PS NPls (2, 10, and 20 mg L⁻¹ NPls); significant *p* values (p < 0.05) are displayed in bold text. *df* – degrees of freedom and F values are displayed.

Strain	Parameter	Total df	F value	p-value
	Growth Rates	11	1.7952	0.2259
	ZP – pH 4	59	84.0424	< 0.0001
	ZP – pH 5	59	25.7212	< 0.0001
	ZP – pH 6	59	366.6037	< 0.0001
PCC8806	ZP – pH 7	59	206.1858	< 0.0001
	ZP – pH 8	59	180.8379	< 0.0001
	ZP – pH 9	59	162.1354	< 0.0001
	ZP – pH 10	59	132.9779	< 0.0001
	EPS Concentration	35	5.5031	0.0037
	Growth Rates	11	1.7539	0.2334
	ZP – pH 4	59	7.8469	0.0002
	ZP – pH 5	59	39.5902	< 0.0001
	ZP – pH 6	59	40.7148	< 0.0001
Spirulina	ZP – pH 7	59	1.8779	0.1438
	ZP – pH 8	59	2.6268	0.0592
	ZP – pH 9	59	1.7040	0.1766
	ZP – pH 10	59	2.2462	0.0929
	EPS Concentration	35	43.2814	< 0.0001

Table S13. The statistical outputs of the overall one-way analysis of variance (ANOVA) on zeta potential and hydrodynamic diameter of PS NPIs in 0.1 M NaNO₃; significant *p* values (p < 0.05) are displayed in bold text. *df* – degrees of freedom and F values are displayed.

Zeta Potential	Total df	F value	p-value
pH 4	26	11.9406	0.0003
рН 5	26	4.4528	0.0227
рН б	26	35.2049	< 0.0001
рН 7	26	40.9619	< 0.0001
pH 8	26	49.6618	< 0.0001
рН 9	26	41.3219	< 0.0001
pH 10	26	57.6533	< 0.0001
Hydrodynamic Diameter	Total df	F value	p-value
<i>Hydrodynamic Diameter</i> pH 4	Total df 26	<i>F value</i> 492.5740	<i>p-value</i> < 0.0001
Hydrodynamic DiameterpH 4pH 5	Total df 26 26	<i>F value</i> 492.5740 416.1877	<i>p-value</i> < 0.0001 < 0.0001
Hydrodynamic DiameterpH 4pH 5pH 6	Total df 26 26 26 26	<i>F value</i> 492.5740 416.1877 25.4597	<i>p-value</i> < 0.0001 < 0.0001 < 0.0001
Hydrodynamic DiameterpH 4pH 5pH 6pH 7	Total df 26 26 26 26 26 26	<i>F value</i> 492.5740 416.1877 25.4597 13.7522	<i>p-value</i> < 0.0001 < 0.0001 < 0.0001 < 0.0001
Hydrodynamic DiameterpH 4pH 5pH 6pH 7pH 8	Total df 26 26 26 26 26 26 26 26	<i>F value</i> 492.5740 416.1877 25.4597 13.7522 1.5398	p-value < 0.0001
Hydrodynamic DiameterpH 4pH 5pH 5pH 6pH 7pH 8pH 9	Total df 26 26 26 26 26 26 26 26 26 26	<i>F value</i> 492.5740 416.1877 25.4597 13.7522 1.5398 10.6984	p-value < 0.0001

2. References

- A. Liang, C. Paulo, Y. Zhu and M. Dittrich, CaCO₃ biomineralization on cyanobacterial surfaces: Insights from experiments with three *Synechococcus* strains, *Colloids and Surfaces B: Biointerfaces*, 2013, **111**, 600-608.
- 2. B. Raoof, B. D. Kaushik and R. Prasanna, Formulation of a low-cost medium for mass production of *Spirulina*, *Biomass and Bioenergy*, 2006, **30**, 537-542.
- 3. G. Hedenskog and A. V. Hofsten, The Ultrastructure of *Spirulina platensis* A New Source of Microbial Protein, *Physiologia Plantarum*, 1970, **23**, 209-216.
- 4. M. Dittrich and S. Sibler, Influence of H⁺ and Calcium Ions on Surface Functional Groups of *Synechococcus* PCC 7942 Cells, *Langmuir*, 2006, **22**, 5435-5442.

- 5. M. Tavafoghi, S. Garg, Korenevski. A. and M. Dittrich, Environmentally friendly antibiofilm strategy based on cationized phytoglycogen nanoparticles, *Colloids and Surfaces B: Biointerfaces*, 2021, **207**.
- 6. E. Kavitha, L. Devaraj Stephen, B. Fatema Hossain and S. Karthikeyan, Two-trace twodimensional (2T2D) correlation infrared spectral analysis of *Spirulina platensis* and its commercial food products coupled with chemometric analysis, *Journal of Molecular Structure* 2021, **1244**, 130964.
- 7. C. Paulo, J. Kenney, P. Persson and M. Dittrich, Effects of Phosphorus in Growth Media on Biomineralization and Cell Surface Properties of Marine Cyanobacteria *Synechococcus*, *Geosciences*, 2018, **8**, 471.
- A. Gélabert, O. S. Pokrovsky, J. Schott, A. Boudou, A. Feurtet-Mazel, J. Mielczarski, E. Mielczarski, N. Mesmer-Dudons and O. Spalla, Study of diatoms/aqueous solution interface. I. Acid-base equilibria and spectroscopic observation of freshwater and marine species, *Geochimica et Cosmochimica Acta*, 2004, 68, 4039-4058.
- J. J. Ojeda, M. E. Romero-González, R. T. Bachmann, R. G. J. Edyvean and S. A. Banwart, Characterization of the Cell Surface and Cell Wall Chemistry of Drinking Water Bacteria by Combining XPS, FTIR Spectroscopy, Modeling, and Potentiometric Titrations, *Langmuir*, 2008, 24, 4032-4040.
- 10. Y. Dong, M. Gao, Z. Song and W. Qiu, As(III) adsorption onto different-sized polystyrene microplastic particles and its mechanism, *Chemosphere*, 2020, **239**, 124792.