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The supporting information includes four sections: 
 S1 provides characteristics of the tertiary wastewater effluent sample.
 S2 provides a transmission electron microscopy (TEM) image showing the NHS-activated 

magnetic IOPs.
 S3 describes the adsorption kinetic models for Pi using PBP-IOPs.
 S4 details the theoretical calculations used to explore the influence of protein and substate 

parameters on phosphate adsorption capacity.

S1. Wastewater Effluent Characterization
The wastewater effluent parameters are shown in Table S1.

Table S1. Tertiary wastewater effluent parameters from the South Shore Water Reclamation 
Facility in Oak Creek, WI. Each measurement was performed in triplicate.

* TSS was measured in accordance with Method 2540D from Standard Methods for the 
Examination of Water and Wastewater (1). DOC was measured in accordance with U.S. EPA 
Method 415.3 using a Shimadzu TOC-VCSN. Other parameters were measured using Single 
Parameter Test Kits from the Hach Company (Loveland, CO).

Parameter* Average ± 1 
Standard Deviation Unit

Total Suspended Solid (TSS) 16 ±3 mg L-1

Dissolved Organic Carbon (DOC) 9.2 ±0.1 mg-C L-1

Total Hardness 327 ±10 mg L-1 as CaCO3

Alkalinity 180 ±10 mg L-1 as CaCO3

Chloride 460 ±10 mg L-1 

Phosphate 1.2 ±0.1 mg  L-1PO3 -
4

Nitrate 8.0 ±0.05  L-1mg NO -
3

Sulfate 224 ±0.13  L-1mg SO2 -
4

Hydrogen Sulfide 0 mg S2- L-1

pH 7.13 ±0.1 ---
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S2. Transmission Electron Microscopy (TEM) of NHS-IOPs
A TEM image showing the NHS-activated magnetic IOPs is shown in Figure S1.

Figure S1. Transmission electron microscopy image of BcMagTM NHS-activated magnetic IOPs 
(image shared by the material supplier, Bioclone Inc., USA). The TEM image depicts the silica 
shell surrounding the iron oxide particles.
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S3. Adsorption Kinetics 
Figure S2 shows the linearized pseudo second-order phosphate adsorption kinetics using PBP-
IOPs. Figure S3 shows the linearized pseudo first-order phosphate adsorption kinetics using 
PBP-IOPs.
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Figure S2. Linearized pseudo second-order Pi adsorption kinetics using the PBP-IOPs at neutral 
pH and 20 ℃. Best fit model parameters: k2 = 45.4 g mg-1min-1,  = 0.023 mg g-1.q𝑒
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Figure S3. Linearized pseudo first-order Pi adsorption kinetics using the PBP-IOPs at neutral pH 
and 20 ℃. Best fit model parameters: k1 = 0.0061 min-1, qe = 0.019 mg g-1. 



S5

S4. Calculation of theoretical capacity 
Theoretical estimates of Pi adsorption were performed to assess the relative influence of the 
protein (or peptide) and the particle on which the protein was immobilized. All estimates were 
made assuming the particle and the PBP or peptide could be modeled as spherical particles. We 
recognize that these modeling scenarios do not fully represent reality (e.g., spherical particle 
modeling, neglecting particle curvature, etc.); however, these back-of-the-envelope theoretical 
estimations enable scenario comparisons and inform directions for fruitful future developments. 

S4.1. Calculation of increases in surface area per mass 
This set of calculations modeled the impact of changes in the surface area per mass ratio of the 
PBP-based adsorbent. Two different scenarios were explored: 1) Pi capacity limited by 
theoretical NHS ligand density (ligand-based) on the particle surface and 2) Pi capacity limited 
by the physical space taken up by the PBP (footprint-based).

S4.1.1. Ligand-based calculations
Ligand-based calculations were made based on the maximum NHS ligand density reported by 
the particle manufacturer (either for IOPs or Sepharose resin). This approach assumed that the 
number of NHS ligands (and therefore coupled PBP) was directly proportional to changes in the 
surface area to mass ratio (and that all other properties remained the same as the baseline IOP or 
NHS scenarios). The surface area to mass ratio of the particles was calculated as the surface area 
divided by particle volume and density, simplified as Eq. S1.

  Eq. S1
63*10

*particle particle

SA
m r 

   
 

Where (SA/m) = surface area to mass ratio (m2 g-1), rparticle = radius of the particle (µm), ρparticle = 
density of the particle (5.24x106 g m-3 for IOP, 0.7x106 g m-3 for Sepharose resin) (g m-3), 
and 106 accounts for unit conversions between µmol and mol.

The theoretical maximum number of PBPs on the particle was calculated using Eq. S2, assuming 
proportional NHS density to particle surface area and 1:1 molar PBP binding to NHS.

  Eq. S2
 
 6

*
10

PBP NHS
PBP

baseline

SAMW mq
SA

m


 
    
 

Where qPBP = capacity of PBP (g PBP (g particle)-1), MWPBP = molecular weight of the PBP = 
35,000 g PBP (mol PBP)-1, ρNHS = maximum NHS ligand density reported by the particle 
manufacturer = 250 µmol NHS (g IOP)-1 or 32.8 µmol NHS (g Sepharose bead)-1, (SA/m) is 
the ratio of surface area to mass compared to the baseline ratio of surface area to mass for the 
particle (m2 g-1), and 106 accounts for unit conversions between µmol and mol.
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To convert the number of PBP on the particle to the Pi-binding capacity, Eq. S3 was used.

  Eq. S334
4 * *10PO

PO PBP
PBP

MWq q
MW



Where qPO4 = capacity of PO4 (mg PO4 (g particle)-1), qPBP = capacity of PBP (g PBP (g particle)-

1), MWPO4 = 94.97 g PO4 mol-1, MWPBP = molecular weight of the PBP = 35,000 g PBP (mol 
PBP)-1, and 103 accounts for unit conversions between mg and g.

S4.1.2. Footprint-based calculations
Eq. S4 was used to estimate the number of proteins or peptides that could physically fit on the 
surface of the particle assuming that the spherical particle’s surface was completely filled with 
peptides (neglecting the impact of curvature). 

  Eq. S4
2

2
,

4particle particle
PBP

X PBP PBP

SA r
N

A r



 

Where NPBP = number of PBP on the particle surface, SAparticle = surface area of the particle 
(µm2), AX,PBP = cross-sectional area of PBP protein (µm2), rparticle = radius of the particle 
(µm), rPBP = radius of PBP protein (3.45x10-3 µm).

To convert the number of peptides on the particle surface to the Pi-binding capacity (assuming 
1:1 molar peptide binding to NHS), Eq. S5 was used.

  Eq. S5
3

4
4

23 3

* *10
46.02*10 * *
3

PBP PO
PO

particle particle

N MWq
PBP r
mol

 


 
 
 

Where qPO4 = capacity of PO4 (mg PO4 (g particle)-1), NPBP = number of PBP on the particle 
surface, MWPO4 = 94.97 g PO4 mol-1, rparticle = radius of the particle (m), ρparticle = density of 
the particle (5.24x106 g m-3 for IOP, 0.7x106 g m-3 for Sepharose resin) (g m-3), and 103 
accounts for unit conversions between mg and g.

S4.2. Calculation of the effects of PBP size reduction 
The PBP size reduction scenario modeled the impact of substituting a PO4-selective peptide 
sequence for the full PBP. This approach assumed that peptides (ranging in size from PBP’s 
PO4-binding site diameter, 4 Å, up to the size of the PBP at 69 Å) 1) retained 1:1 PO4-binding 
and 2) the mass of the peptide binding sequence decreased proportionally to the change in size 
(radius).

Two different scenarios were explored: 1) Pi capacity limited by theoretical NHS ligand density 
(ligand-based) on the particle surface and 2) Pi capacity limited by the physical space taken up 
by the protein/peptide binding sequence (footprint-based).
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S4.2.1. Ligand-based calculations
Ligand-based calculations were made based on the maximum NHS ligand density reported by 
the particle manufacturer (either for IOPs or Sepharose resin). The theoretical maximum number 
of PBP on the particle was calculated using Eq. S6, assuming 1:1 molar PBP binding to NHS.

  Eq. S66

*
10

PBP NHS
PBP

MWq 


Where qPBP = capacity of PBP (g PBP (g particle)-1), MWPBP = molecular weight of the PBP = 
35,000 g PBP (mol PBP)-1, ρNHS = maximum NHS ligand density reported by the particle 
manufacturer = 250 µmol NHS (g IOP)-1 or 32.8 µmol NHS (g Sepharose bead)-1, and 106 
accounts for unit conversions between µmol and mol.

To convert the number of PBP on the particle to the Pi-binding capacity, Eq. S7 was used.

  Eq. S73
4 4* * *10pep

PO PBP PO
PBP

r
q MW MW

r


Where qPO4 = capacity of PO4 (mg PO4 (g particle)-1), MWPBP = molecular weight of the PBP = 
35,000 g PBP (mol PBP)-1, rpep = radius of the peptide (nm), rPBP = radius of PBP = 3.45 nm, 
MWPO4 = 94.97 g PO4 mol-1, and 103 accounts for unit conversions between mg and g.

S4.2.2. Footprint-based calculations
Eq. S8 was used to estimate the number of proteins or peptides that could physically fit on the 
surface of the particle assuming that the spherical particle’s surface was completely filled with 
peptides (neglecting the impact of curvature). 

  Eq. S8
2

2
,

4particle particle
pep

X pep pep

SA r
N

A r



 

Where Npep = number of peptides (or PBP proteins) on the particle surface, SAparticle = surface 
area of the particle (µm2), AX,pep = cross-sectional area of the peptide (or PBP protein) (µm2), 
rparticle = radius of the particle (µm), rpep = radius of the peptide (or PBP protein) (µm).

To convert the number of peptides on the particle surface to the Pi-binding capacity (assuming 
1:1 molar peptide binding to NHS), Eq. S9 was used.

  Eq. S9
3

4
4

23 3

* *10
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3

pep PO
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particle particle

N MW
q

pep r
mol

 


 
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Where qPO4 = capacity of PO4 (mg PO4 (g particle)-1), Npep = number of peptides (or PBP 
proteins) on the particle surface, MWPO4 = 94.97 g PO4 mol-1, rparticle = radius of the particle 
(m), ρparticle = density of the particle (5.24x106 g m-3 for IOP, 0.7x106 g m-3 for Sepharose 
resin) (g m-3), and 103 accounts for unit conversions between mg and g.



S8

S4.2.3. Capacity comparisons
To contextualize our theoretical calculations of PBP adsorbent capacity relative to Pi adsorption 
performance using other adsorbents reported in the literature, we compared values to those 
shown in Table S2. Figure 6 in the main text illustrates the comparisons.

Table S2. Literature reports of Pi adsorption capacity (reported based on Langmuir isotherm 
modeling).

Quartile Adsorbent Capacity, 
mg PO4 (g bead)-1 Reference

RC-BOFS (0.8 – 2.3 mm) 0.4 (2)
NFS 0.5 (3)
HA-MNP 3 (4) 
FMS-0.1 La 6.1 (5)
NLZ 7.7 (6) 
La-Z 8 (6)
Fe-Al 8.2 (7) 
Hydrogel beads 11.7 (8) 
ZrO2@SiO2@Fe3O4 12 (9)
Mg-Biochar 13.2 (10)

1

GO-Zr 13.2 (11)

MG@La 16.6 (12) 
Aluminum hydroxide 19.8 (13) 
RHB 19.9 (14) 
Bauxite 20.6 (15) 
Fe-GAC 21.8 (16) 
ACF-Zr-Fe 29.1 (17) 
ZnFeZR-adsorbent 32.2 (18) 
Diethylamine Zr-OH 38 (19) 

2

Magnetic Fe-Zr 41.9 (20)

Zr hydroxide 46.9 (21)
am-ZrO2 48.5 (22) 
N-Ethylmethylamine Zr-OH 51.8 (19)
Akaganeite 51.8 (23) 
Magnetic Fe-Zr 54.8 (20) 
Fe-Al (Mesoporous spheres) 61.5 (7) 
Akaganeite (β-FeOOH) 71.5 (23) 

Fe-Zr 76.4 (24) 
Pure-Zr-OH 79.1 (19) 

3

Fe-La 90.5 (25) 
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CuFe2O4-2N-La 91.4 (26) 
Fe-Zr 102.4 (24) 
Fe-Cu 107.9 (27) 
Dimethylamine Zr-OH 110 (19) 
Fe-Mn 110.4 (28)
Fe-Cu 122.0 (27) 
Fe3O4@ASC 133 (29) 
MOD 149 (30) 
Al-Mn 183.4 (31) 

4

l-Y(OH)3 244 (32) 
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