Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Efficient Solar-Driven Steam Generation for Clean Water Production using a Low-cost and Scalable Natural Rubber Composite Sponge

Parichart Onsri^a, Piyatida Thaveemas^a, Pongthep Prajongtat^b, Whijitra Suvandee^b,

Supanna Techasakul^c, Laemthong Chuenchom^{a,d,*}, and Decha Dechtrirat^{b,c,e,*}

^a Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand

^b Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

^c Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand

^d Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand

^e Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

* Corresponding author; E-mail address: laemthong.c@psu.ac.th, fscidcd@ku.ac.th

Fig. S1 The solar-driven vaporization setup

Fig. S2 Desalination and clean water production setup

Fig. S3 Pore size distributions of all prepared samples measured from SEM images in Fig. 2A

using Image J software and analyzed by Gaussian fitting

Fig. S4 A) SEM/EDS analysis of Fe and O elements and B) Fe atomic% of the composite sponges

Fig. S5 SEM/EDS elemental mapping on the cross-section of NRIO-20 at $\times 1000$ magnification

Fig. S6 XRD patterns of NRIO-20, NR, and IO

Fig. S7 ATR-FTIR spectra of all samples

Fig. S8 A) Reflectance and B) transmittance of all prepared samples

Fig. S9 Water contact angle of A) NR and B) NRIO-20 and C) water absorption ratio of NRIO-20

Fig. S10 Optical microscope images (BX43F, Olympus) of NRIO-20 A) before and B) after ozone treatment for 72 h with an ozone concentration of 50 pphm and a temperature of 40°C

7 days

Fig. S11 The process of chemical corrosion resistance test. The specimen was submerged in an acid solution (pH 1) for 7 days.

Fig. S12 Surface and cross-sectional SEM images of NRIO-20 A) before and

B) after acid treatment for one week

Fig. S13 Salt was rejected by NRIO-20 in 16 mins

Table S1 Comparison of solar absorbers under 1 sun irradiation

Materials	Fabrication procedure	Light absorption (%)	Evaporation rate (kg/m ² /h)	Thermal conductivity (W/m/K)	Efficiency (%)	Ref.
Fe ₃ O ₄ /polypyrrole- coated superhydrophilic porous foam	 Prepare hydrophilic porous polymer foam (HPSS) by a hydrothermal method from sodium <i>p</i>-styrene sulfonate Soak HPSS foam in a solution of FeCl₃·6H₂O and PVP for 48 h, then add N₂H₄·H₂O into the solution and keep the temperature constant at 70°C for 6 h in an oil bath Wash the sample with distilled water and freeze-dry to obtain the black-grey foam Prepare HPSS/Fe₃O₄/PPy by alternately spraying solution A (ammonium persulfate) and solution B (pyrrole, IPA, and phytic acid) on the upper surface of HPSS/Fe₃O₄ several times until the surface of HPSS/Fe₃O₄ becomes completely black Wash the foam with DI water and then dry 	92	1.51	Dry=0.039	94.7	[1]
Electrically conductive and magnetic carbon aerogel	 Preparation of magnetic waste paper (MWP) aerogels 1) Soak shredded waste paper in DI water for 24 h and stir for 3 h 2) Dilute the obtained waste paper pulp with DI water and then add sodium chlorite to the pulp 3) Adjust to pH 4.5 followed by oxidation at 80°C for 2 h under mechanical stirring 4) Wash the treated waste paper pulp with DI water and ethanol and then disperse it in ethanol 5) Prepare iron solution by dissolving FeCl₃·6H₂O in ethylene glycol followed by adding the proper amount of sodium acetate and polyethylene glycol 6) Add the paper pulp into the iron solution, stir for 1 h, and then seal the mixture at 200°C for 24 h to grow Fe₃O₄ nanoparticles 7) Wash the Fe₃O₄-modified cellulose with DI water and ethanol and then disperse it in ethanol 8) Pour the suspension into a mold and then dry at 60°C for 6 h <i>Preparation of magnetic carbon aerogels</i> 9) Pyrolyze the MWP aerogels at 200-1000°C under N₂ for 4 h 10) Activate the external surface using O₂-plasma for 2 min 	~97	1.46	Dry=0.044	~70.3%	[2]
Al-Ti-O PVDF hybrid membrane	 Ball-mill commercial Al and TiO₂ powder to obtain black Al-Ti-O hybrid Wash the ball-milled sample with 0.1M HCl, centrifuge, rinse 	90.23	1.24	-	77.52	[3]

Materials	Fabrication procedure	Light absorption (%)	Evaporation rate (kg/m ² /h)	Thermal conductivity (W/m/K)	Efficiency (%)	Ref.
	with DI water and ethanol multiple times, and dry at 60°C for 12h 3) Produce porous PVDF membrane with black Al-Ti-O hybrid using nonsolvent-induced phase inversion					
Fe ₃ O ₄ /polyvinyl alcohol decorated delignified wood evaporator	 Soak wood sheets in 2 wt% NaClO₂ (pH 4.6) for various periods (0-10 h), rinse with a 1:1 mixture of ethanol and DI water, and then freeze-dry to obtain delignified wood Add PVA in DI water and then heat at 80°C for 30 min Add FeCl₃ in the PVA solution and remove bubbles using ultrasonic treatment Coat the wooden substrates with the FeCl₃/PVA suspension using a flexible writing brush, wipe excess solution off, and then blow with air to remove unattached particles Heat coated samples at 120°C for 12 h 	~97	1.3	Dry=0.22 Wet= 0.29	73	[4]
Fe ₃ O ₄ /diatomite- decorated cotton evaporator	 Tear the cotton into cotton wadding and stir it with Fe₃O₄ dispersion for 6 h Add diatomite and PVA to the dispersion, heat it to 80°C, and then stir until the surface water dries off Press the material into the mold, dry it in an oven at 80°C for 12 h 	93.42	1.32	-	82.9	[5]
CuFeSe ₂ NP-decorated wood membrane	 Dissolve Cu(acac)₂ and Fe(acac)₃ in oleylamine and diphenyl ether and then stir under nitrogen Dehydrate at 110°C for 1.5 h and then heat to 265°C for 1 h Inject the mixture of diphenyl diselenide and oleylamine into the prepared solution and then stir for 1 h to obtain CuFeSe₂ NP Add ethanol into the reaction mixture and then centrifuge Rinse the particles with ethanol-petroleum ether to remove excess oleylamine and disperse the particles in chloroform Submerge a piece of wood into the dispersion of CuFeSe₂ NPs and then vacuum until it becomes black 	~99	~1.06	Dry=0.12 Wet=0.525	67.7	[6]
Cotton-CuS nanocage agarose aerogel	 Disperse Cu₂O in Milli-Q water and react it with thiourea at 90°C for 4 h to create CuS yolk-shell nanocages Centrifuge and wash the obtained particles with water and ethanol several times Disperse CuS nanocages, agarose, and urea in water and ethanol solution and stir at 80°C for 30 min Pour the suspension onto a cotton pad, cool down, and then freeze dry 	97	1.63	Dry=0.04	94.9	[7]

Materials	Fabrication procedure	Light absorption (%)	Evaporation rate (kg/m ² /h)	Thermal conductivity (W/m/K)	Efficiency (%)	Ref.
Polypyrrole coated natural latex foam	 Dip commercial natural rubber latex foam into 1% pyrrole aqueous solution for 2-3 h with proper back and forth extrusion Add ammonium persulfate solution into the above solution Polymerize in an ice bath for 6 h Clean the sample with DI water 	~95	1.76	Dry=0.2257 Wet= 0.5199	98	[8]
Polydopamine coated natural rubber latex sponge	 Ultrasonically clean the natural rubber sponge with ethanol and DI water Adjust the pH of dopamine solution to 8.5 with ammonia Soak the natural rubber sponge in the dopamine solution at RT for 18 h Rinse the sample with ethanol and vacuum-dry at 60°C 	-	1.35	-	84.6	[9]
MXene and protonated- g-C3N4 on natural latex foam	 Prepare MXene powder from Ti₃AlC₂ and LiF in 9 M HCl solution, rinse with DI water, and dry overnight in a vacuum oven Prepare g-C₃N₄ by heating melamine in a furnace at 550°C, mix it into 2 M HNO₃ solution before placing in an oven for 4 h and then washing with DI water Disperse MXene, g-C₃N₄, and PVA in DI water and then brush coat the mixture onto the natural latex foam 	93.1	1.85	-	93.5	[10]
Iron oxide black/natural rubber composite sponge	 Blend the compounding formulation to produce natural rubber/ iron oxide black composite sponge Put the mixture into a silicone mold and vulcanize at 70°C for 2 h Wash the composite sponge and dry it overnight at 90°C 	95	1.20	Dry=0.048 Wet=0.108	77.05	This work

 Table S2 Comparison of water quality

Sample	TDS (ppm)	EC (µS/cm)	References		
Simulated seawater	>9990	43563.33	This work		
Condensed water	23	53.16	This work		
DI water	1	9.10	This work		
Pacific Ocean water	20424	171 5	[11]		
(Before SWRO*)	37434	4/4.5	[11]		
Pacific Ocean water	400	0 1	[11]		
(after SWRO)	409	0.1			
WHO recommendation	<500	<1400	[12]		
for drinking water	~300	~1400			

* SWRO is the seawater reverse osmosis process

References

- J. X. He, F. Liu, C. H. Xiao, H. X. Sun, J. Y. Li, Z. Q. Zhu, W. D. Liang and A. Li, Fe₃O₄/PPy-coated superhydrophilic polymer porous foam: a double layered photothermal material with a synergistic light-to-thermal conversion effect toward desalination, *Langmuir*, 2021, 37, 12397-12408.
- L. X. Li, T. Hu, A. Li and J. P. Zhang, Electrically conductive carbon aerogels with high salt-resistance for efficient solar-driven interfacial evaporation, ACS Appl. Mater. Interfaces., 2020, 12, 32143-32153.
- L. Yi, S. Ci, S. Luo, P. Shao, Y. Hou and Z. Wen, Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination, *Nano Energy*, 2017, 41, 600-608.
- L. Song, X.-F. Zhang, Z. Wang, T. Zheng and J. Yao, Fe₃O₄/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation, *Desalination*, 2021, 507, 115024.

- Z. Bai, H. Xu, B. Yang, J. Yao, G. Li, K. Guo, N. Wang and N. Liang, Fe₃O₄/diatomitedecorated cotton evaporator for continuous solar steam generation and water treatment, *Materials*, 2022, 15, 6110.
- H. Liu, C. Chen, H. Wen, R. Guo, N. A. Williams, B. Wang, F. Chen and L. Hu, Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification, *J. Mater. Chem. A.*, 2018, 6, 18839-18846.
- X. Wu, M. E. Robson, J. L. Phelps, J. S. Tan, B. Shao, G. Owens and H. Xu, A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation, *Nano Energy*, 2019, 56, 708-715.
- Y. Xu, J. Wang, F. Yu, Z. Guo, H. Cheng, J. Yin, L. Yan and X. Wang, Flexible and efficient solar thermal generators based on polypyrrole coated natural latex foam for multimedia purification, ACS Sustain. Chem. Eng., 2020, 8, 12053-12062.
- 9. H. Yu, Y. Shi, A. Ding, J. Liao, H. Gui and Y. Chen, Polydopamine-coated natural rubber sponge for highly efficient vapor generation, *Polymers*, 2022, **14**.
- R. T. Ginting, H. Abdullah and V. Fauzia, Facile preparation of MXene and protonatedg-C₃N₄ on natural latex foam for highly efficient solar steam generation, *Mater. Lett.*, 2022, **313**, 131779.
- 11. F. Pontius, Treatability of a highly-impaired, saline surface water for potential urban water use, *Water*, 2018, **10**, 324.
- J. Kavindra, A. Churniya, Ravindra, V. Gatiyala, K. Chaudhary and S. Sharma, Evaluation of TDS and electrical conductivity in groundwater's of Udaipur, Rajasthan and its significance, *Int. J. Fish. Aquat. Stud.*, 2020, 8, 203-206.