Supplementary Information (SI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2025

Seasonal variation and removal efficiency of microplastics in wastewater treatment: A year-long study across three municipal water reclamation plants

Sirajum Monira^a, Linhua Fan^a, Will McCance^b, Rajeev Roychand^a, Muhammed Ali Bhuiyan^a, Kalpit Shah^a, Michael Thomas^b, Biplob Kumar Pramanik^a*

^aSchool of Engineering, RMIT University, Melbourne, VIC 3000, Australia.

^bBarwon Water, Geelong, Victoria, Australia

Corresponding author Email*: biplob.pramanik@rmit.edu.au

Telephone number: +613 9925 9419

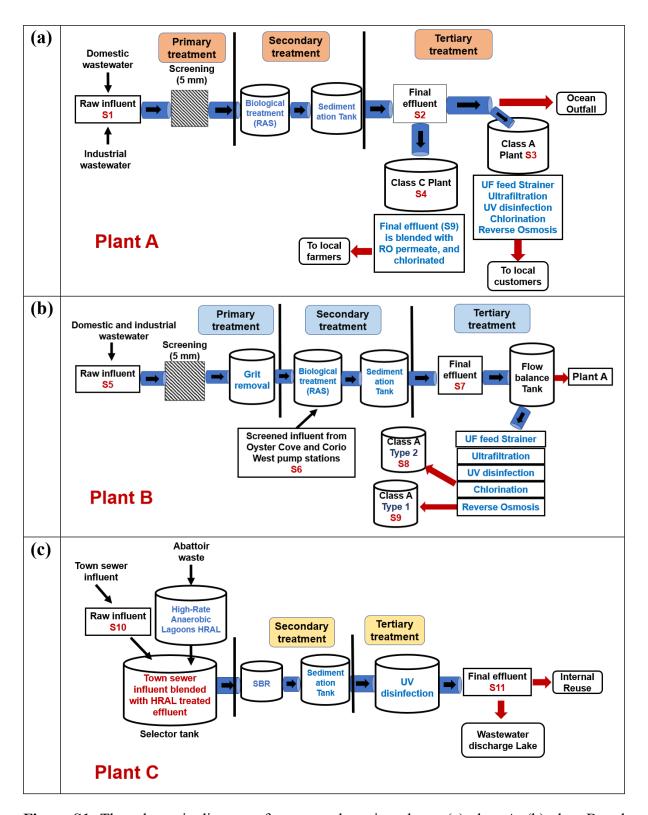

Supplementary Information

Table S1: Specifications and operating conditions of the water reclamation plants.


WRP	Catchment	Treatment	Plant	Permanent	Peak	Total sewer
	description	processes	inflow/d	Population	Population	connections
Plant A	Domestic	Screening,	60-170	305,178	452,420	134,707
	(~85%) and	biological	ML			
	industrial	treatment,	(yearly			
	(~15%)	sedimentation,	average			
		UF, RO, UV	of 77			
		disinfection,,	ML)			
		chlorination				
Plant B	Domestic (up to	Screening, grit	3-11 ML	0	45,570	13,675
	30%) and	removal (DAF),	(average			
	industrial	biological	of 6 ML)			
	including trade	treatment,				
	waste inputs	sedimentation,				
	(~70-100%)	UF, UV				
		disinfection, RO,				
		chlorination				
Plant C	Domestic	Screening,		11,790	17,760	5,643
	$(\sim 75\%)$ and	biological	2-17 ML			
	industrial	treatment, UV	(average			
	including trade	disinfection	of 6 ML)			
	waste inputs					
	(~25%)					

WRP	Sampling period				Sampling Method	Sample volume	Field Blank
	Autumn 2023	Winter 2023	Spring 2023	Summer 2023-2024			
A	10-16 May	15-22 Aug	7-14 Nov	1-7 Feb	Grab samples from each	3L	3L
В	11-17 May	15-21 Aug	1-7 Nov	5-12 Feb	location to make composite	3L	3L
С	11-18 May	14-28 Aug	2-9 Nov	3-10 Feb	samples	3L	3L

Table S2: Wastewater sample collection dates and methods.

Figure S1: The schematic diagram of water reclamation plants: (a) plant A, (b) plant B and (c) plant C. All The three plants have different processes for wastewater treatment in the primary, secondary and tertiary treatment stages. The sampling points are showing as S1, S2, S3 and S4 for plant A, S5, S6, S7, S8 and S9 for plant B and S10 and S11 for plant C.

Figure S2: (a) Wastewater samples were sieved using a microplastic fractionation rig with a series of stainless-steel sieves with different mesh sizes, (b) organic matter removal by digestion method using H_2O_2 , (c) particles staining by Nile red dye, (d) separating particles by vacuum filtration system and (e) dried filter papers.

Microplastics identification using Nile red dye

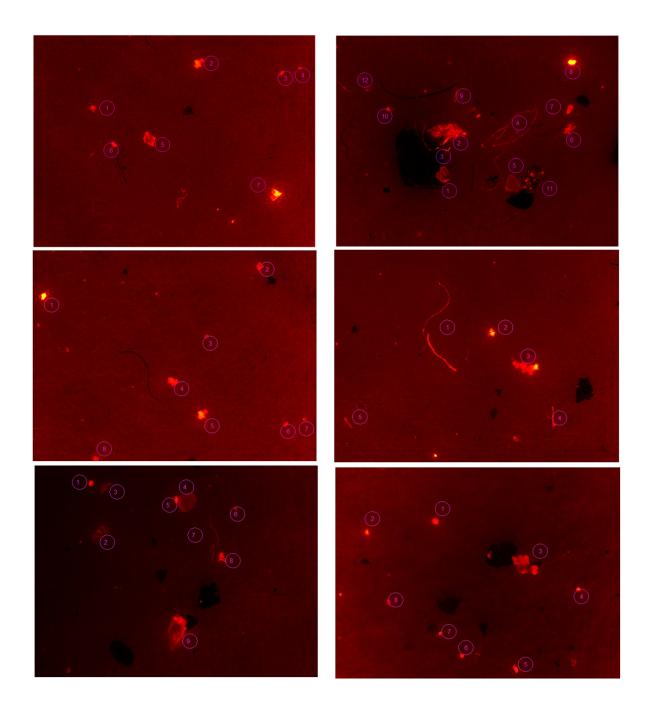
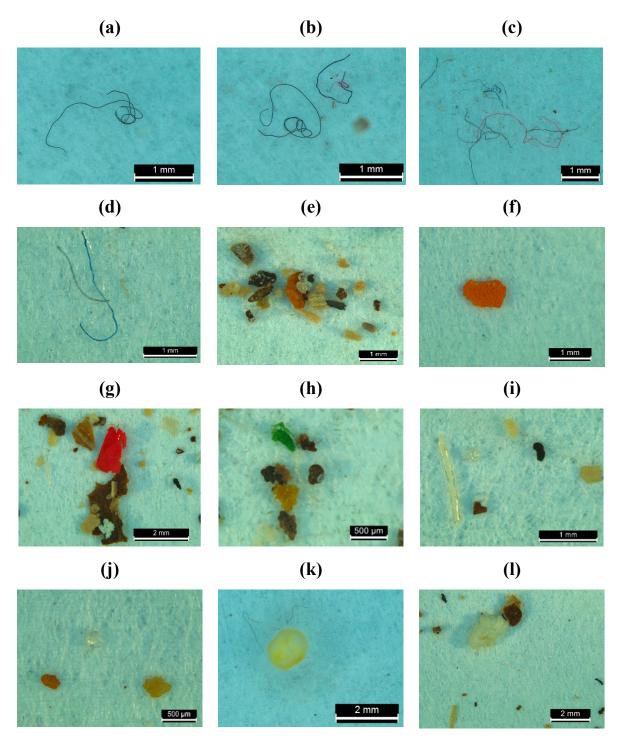



Figure S3: Microplastics identification and quantification by Nile red staining.

Microplastics identification using optical microscope

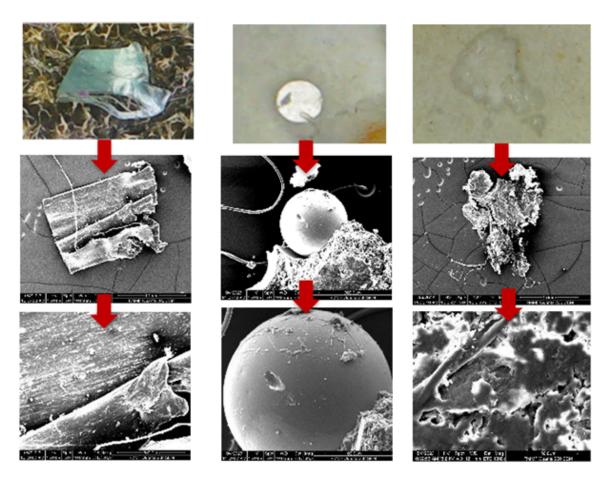


Figure S4: Presence of microplastic particles in different stages of each water reclamation plant detected by an optical microscope: (a, b, c, d) black, blue, and red fibers, (e, f, g) orange

and red fragments, (h) yellow and green films, (i) yellow films and transparent bead, (j) transparent bead and (k, l) yellow/white foams.

Table S3: The proportion of each polymer type in samples taken from each plant.

			Plant A		Plant B		Plant C	
Type	Analyte	Abbreviation	Min	Max	Min	Max	Min	Max
Influent	Polyethylene							
	terephthalate	PET	3	12	5	11	4	8
	Polyester fabric	PES	8	23	10	20	7	17
	Polystyrene foam	PS	2	11	1	5	2	8
	Polyethylene	PE	2	9	1	7	1	5
	Polypropylene	PP	1	6	0	4	0	2
	Microplastic							
	Particles	MP/L	16	61	17	47	14	40
Effluent	Polyethylene							
	terephthalate	PET	0	1	0	0	0	1
	Polyester fabric	PES	2	4	0	1	2	2
	Polystyrene foam	PS	0	0	0	0	0	0
	Polyethylene	PE	0	0	0	0	0	0
	Polypropylene	PP	0	0	0	0	0	0
	Microplastic							
	Particles	MP/L	2	5	0	1	2	3

Figure S5: Surface roughness of the MPs detected in overall wastewater samples collected from three water reclamation plants.