Supplementary Information (SI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

A mini-review on performance metrics for electrochemically mediated ammonia recovery from wastewater

Weikun Chen^{1,2} and Taeyoung Kim^{3,4*}

¹School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang,
³²⁵⁰³⁵, China
²Zhejiang Provincial Engineering Laboratory of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, China

³Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, United States

⁴Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY, 13699, United States

*Corresponding Author: tkim@clarkson.edu

Sources	Initial ammonia concentration (mM)	Projected area (cm²)	Flow rate (mL min ⁻¹) ^a	Nitrogen flux (g N m ⁻² d ⁻¹)	Current density (A m ⁻²)	Ammonia removal	Membranes used ^b	Productivity (mmol N g ⁻¹ membrane h ⁻¹)*	Energy consumption (kWh kg ⁻¹ N)	References
Electrolysis										
A				51	10	38%		1.2	13.1	
digestate	151	64	0.3	90	20	58%	1 CEM	2.0	16.7	1
				94	30	63%		2.1	26.0	
Lluina	364	64	0.2	235	40	76%	1 CEM	5.3	14.7	2
UTIlle	343 04 0.5 275 40 75%		6.2	12.7	Ζ					
Source-	202	100	0.6	NAG	20	87%	1 CEM	9.1	2.9e	2
urine	392	100	0.0	IN.A.*	20	67% ^d	I CEM	7.0	3.6	
			0.2	78	10	82%		1.8	8.5	5 3 .6 4
Urine	243	100	0.4	151	20	73%	1 CEM	3.4	7.3	
			1.0	342	50	73%		7.7	15.6	
			0.2	82	20	89%		1.8	4.0	
Urine	236	100	1.1	335	50	63%	1 CEM	7.6	3.9	5
			0.2	89	50	92%		2.0	13.2	
Urine	535	64	1.7	1710	100	60%	1 CEM	38.6	8.5	6
Luine	220	100	0.0		20	49%	1 CEM	6.4	4.6	_
Urine	550	100	0.9	N.A.°	20	45%		5.8	5.9	/
Anaerobic digestate	263	40	1.1	N.A.°	200	86%f	1 CEM	28.4	11.6	8

Table S1. Detailed parameters for calculation of productivity.

Sources	Initial ammonia concentration (mM)	Projected area (cm ²)	Flow rate (mL min ⁻¹) ^a	Nitrogen flux (g N m ⁻² d ⁻¹)	Current density (A m ⁻²)	Ammonia removal	Membranes used ^b	Productivity (mmol N g ⁻¹ membrane h ⁻¹)*	Energy consumption (kWh kg ⁻¹ N)	References
			0.1		13	99% ^g		1.3	8.2	
Anomahia			0.2		25	99% ^g		2.7	12.2 ^h	
digestate	57	10	0.4	N.A.°	50	98% ^g		5.3	17.0 ^h	9
			0.6		75	96% ^g		7.8	19.7 ^h	
			0.8		100	94% ^g		9.2	29.5	
Urine	360	64	0.5	N.A.°	100	83%	1 CEM	10.7	17.0	10
Synthetic				63 23%	8.8	8.7				
livestock	200	40	1.7	N.A.°	125	38%	1 CEM	14.3	13.1 ⁱ	11
wastewater					250	48%	-	18.1	23.6 ⁱ	
Bipolar membrane electrodialysis										
Synthetic sludge reject water	84	64	1.1	N.A.°	N.A.°	85%	1 CEM 1 AEM 1 BPM	1.4	5.3	12
Synthetic			1.2	202	25	81%	1 CEM	1.5	3.4	
dewatering centrate	111	100	2.3	364	50	74%		2.7	4.7	13
			4.7	819	100	78%		6.2	5.1	9 10 11 12 13 14
			2.4		26 V ^j	60% ^k		5.0	16.1 ¹	
Dewatering	05	27	2.4		35 V ^j	95%	1 CEM	7.9	13.0 ^k	14
centrate	85	37	4.8	N.A. ^c	35Vj	87%	1 BPM	14.5	7.7	14
			4.8		26 V ^j	43% ^k	-	7.1	11.5 ¹	

Sources	Initial ammonia concentration (mM)	Projected area (cm ²)	Flow rate (mL min ⁻¹) ^a	Nitrogen flux (g N m ⁻² d ⁻¹)	Current density (A m ⁻²)	Ammonia removal	Membranes used ^b	Productivity (mmol N g ⁻¹ membrane h ⁻¹)*	Energy consumption (kWh kg ⁻¹ N)	References
			5.7			50%		10.0	14.4 ^m	
			4.5		30 V ^j	60%		9.4	15.0	
Dewatering	95	27	3.0	ΝΑα		70%	1 CEM	7.3	18.7 ^m	15
centrate	05	57	3.2	IN.A. ^s		50%	1 BPM	5.7	9.6 ^m	15
			2.4		20 V ^j	60%		5.0	10.2 ^m	
			1.2			70%		2.9	17.8 ^m	
Synthetic							1 CEM			
Synthetic	269	50	1.2	739	200	68%	1 AEM	4.2	7.2 ⁿ	16
							1 BPM			
Anaerobic digestate 35			24.2	179	50	53%	1 CFM	1.3	11.8	
	35	484	31.1	144	50	34%°		1.1	17.7 17	17
			36.2	193	75	41%°		1.5	35.8	
Synthetic dewatering	50	29	1.7	431	84	75%	1 CEM	2.4	8.0 ⁿ	18
centrate	50	25	1.0	264	51	76%	1 BPM	1.5	5.9 ⁿ	10
Flow-electrode capacitive deionization										
Synthetic			2.6	36	12	79% ^p	1 CEM	0.4	6.0 ^q	
domestic	2.9	35	1.7	27	12	90% ^p		0.3	13.1 ^q	19
wastewater			1.3	22	12	96% ^p		0.2	25.1ª	
Domestic wastewater	3.0	50	1.7	13	6.8	75% ^r	1 CEM	0.1	18.9 ^t	20
Synthetic urine	268	38	0.4	265	27	82%s	1 AEM	3.0	7.8 ^t	20

Sources	Initial ammonia concentration (mM)	Projected area (cm ²)	Flow rate (mL min ⁻¹) ^a	Nitrogen flux (g N m ⁻² d ⁻¹)	Current density (A m ⁻²)	Ammonia removal	Membranes used ^b	Productivity (mmol N g ⁻¹ membrane h ⁻¹)*	Energy consumption (kWh kg ⁻¹ N)	References
Synthetic domestic wastewater	1.4	35	1.8	N.A.°	1.2 V ^j	87%	1 CEM 1 AEM	0.1	4.7 ^u	21
Synthetic domestic wastewater	3.1	35	1.7	N.A.°	6.0	75% ^v	1 CEM 1 AEM	0.3	35.4	22
Synthetic gray water	18	24	1.0	N.A.°	9.8	41% 60%	1 CEM 1 AEM	0.7	4.5 2.0	23
Proton-coupled electron transfer										
Synthetic domestic wastewater	5.0	7	0.5	30 34 39	4.8 9.6 19	44% ^w 50% ^w 57% ^w	2 CEMs	0.3 0.4 0.4	1.2 3.2 12.6	24
Prussian blue analogues (electrode)										
Domestic wastewater	3.4	7	0.3	N.A.°	0.2 V ^j	85%	1 AEM	0.6	1.5	25
Synthetic domestic wastewater	5.0	7	0.3	N.A.°	0.3 V ^j	100%	1 AEM	1.0	2.4	26
Synthetic domestic wastewater	5.0 10 17	7	0.3	N.A.°	0.3 V ^j	100% 70% 47%	1 AEM	1.0 1.4 1.6	1.0 0.6 0.4	27

Sources	Initial ammonia concentration (mM)	Projected area (cm ²)	Flow rate (mL min ⁻¹) ^a	Nitrogen flux (g N m ⁻² d ⁻¹)	Current density (A m ⁻²)	Ammonia removal	Membranes used ^b	Productivity (mmol N g ⁻¹ membrane h ⁻¹)*	Energy consumption (kWh kg ⁻¹ N)	References
Synthetic domestic wastewater	5.0	9	3	N.A.°	0.5 V ^j	80%	1 AEM	6.1	1.1	28
Synthetic domestic wastewater	10	64	9	N.A.°	0.1 V ^j 0.4 V ^j 0.8 V ^j 1.2 V ^j	21% ^x 63% ^x 78% ^x 57% ^x	- 1 AEM	1.3 4.0 5.0 3.6	0.2 ^y 1.1 ^y 2.1 ^y 5.3 ^y	29
Prussian blue analogues (membrane)										
Synthetic domestic wastewater	5.0	7	0.3	13 ^{aa}	3.4	42%	1 CEM	0.3	11.8	30
Domestic wastewater	4.4 ^z	7	0.3	21ªª	3.4	64%		0.5	9.9	

*Productivity was calculated using Eq. 1 in the main text, wherein the concentration of separated ammonia was calculated from the initial ammonia concentration and ammonia removal.

^aFor batch mode experiments, the flow rate was calculated based on the volume of treated wastewater, the running time, and the number of repeating units.

^bFor multiple cell-pair configurations, the repeating unit was considered.

^cNot available.

^dEstimated from Figure 2.

^eEstimated from SI Table S7.

^fEstimated from Figure 4a.

^gEstimated from Figure 2a.

^hEstimated from Figure 3a.

ⁱEstimated from Figure 2d.

^jApplied voltage. ^kEstimated from Figure 3. ¹Estimated from Figure 5. ^mEstimated from Figure 7. ⁿExcluding energy for electrodes. ^oEstimated from Figure 2a. ^pEstimated from Figure 3b. ^qEstimated from SI Table S1. ^rEstimated from SI Figure S9a. ^sEstimated from SI Figure S10. ^tEstimated from Figure 5b. ^uEstimated from Figure 5d. ^vEstimated from SI Figure S1b. ^wEstimated from Figure 3d. ^xEstimated from SI Figure S5a. ^yEstimated from Figure 3c. ^zEstimated from Figure 3. ^{aa}Estimated from Figure 2a.

Catalysts	Productivity (mmol N g ⁻¹	Productivity (mmol N	Capital-cost-based productivity	Doforonaas
Catalysis	catalyst h ⁻¹)	\$ ⁻¹ catalyst h ⁻¹) ^a	(mmol N \$ ⁻¹ h ⁻¹) ^b	Kelerences
7% Fe/CeO ₂	0.2	7.8	0.04	31
20% Fe–BaH ₂	1.7	85.2	0.4	32
2.8% Fe/γ-Al ₂ O ₃	$1.2 imes 10^{-4}$	6×10^{-3}	3×10^{-5}	33
Fe (95%) Co (5%)	0.8	41	0.2	34
1.2% Fe/BaCeO _{3-x} H _y N _z	6.8	340	1.7	35
Fe ₉₁ Zr ₉	0.07	3.6	0.02	36
Fe–5LiH	4.8	242	1.2	37
Fe/LiH	11.4	571.4	2.9	38
10% Fe/C	14.4	720	3.6	39
80% Fe/Ce _{0.8} Sm _{0.2} O _{2-δ}	8.7	435	2.2	40
FePc	14	700	3.5	41
Fe-Metal organic	30.4	1520	7.6	42
framework		1020	,	12
Fe _{1-x} O	11.9	595	3.0	43
1% Fe/BaTiO _{3-x} H _x	14	700	3.5	44
FeOOH/Al ₂ O ₃	32.9	1642.5	8.2	45
FeO $Fe^{2+}/Fe^{3+} = 4.62$	96.5	4825	24.1	46
Fe-cat. (KMI)	37.8	1890	9.5	47
A301 catalyst (FeO)	22.3	1115	5.6	48
Fe-based K/Fe/MWNT	0.1	6.5	0.03	49
KMI (Fe catalyst)	33.5	1674.1	8.4	50
Average	17.1	855.7	4.3	

Table S2. Productivity and capital-cost-based productivity for Fe-based Haber-Bosch processes from literature.

^aThe productivity (mmol N $^{-1}$ catalyst h^{-1}) was converted from the mass-based productivity (mmol N $^{-1}$ catalyst h^{-1}) the price of KM1R (0.02 USD/g).⁵¹ ^bThe capital-cost-based productivity (mmol N $^{-1}$ h^{-1}) was converted from the productivity (mmol N $^{-1}$ h^{-1}) based on the ratio of catalyst to capital cost in iron-based Haber-Bosch process (0.5%).⁵²

References	Productivity (mmol N m ⁻² h ⁻¹)	Membranes used ^a	Productivity (mmol N \$ ⁻¹ membrane h ⁻¹) ^b	Capital-cost-based productivity (mmol N \$ ⁻¹ h ⁻¹) ^c
		Electrolys	is	
	152.6		2.5	0.5
1	266.8	1 CEM	4.4	0.9
	281.0		4.7	1.0
2	699.4	1 CEM	11.7	2.4
2	818.5	I CEM	13.6	2.9
2	1198.4	1 CEM	20.0	4.2
3	921.9	I CEM	15.4	3.2
	233.0		3.9	0.8
4	449.4	1 CEM	7.5	1.6
	1018.2		17.0	3.6
	244.0		4.1	0.9
5	997.0	1 CEM	16.6	3.5
	264.9		4.4	0.9
6	5089.3	1 CEM	84.8	17.8
7	849.3	1 CEM	14.2	3.0
1	767.6	ICEM	12.8	2.7
8	3748.3	1 CEM	62.5	13.1
	352.1		2.9	0.6
	704.3	1 CEM	5.9	1.2
9	1397.1	I CEMI 1 AEM	11.6	2.4
	2059.3		17.2	3.6
	2441.6		20.3	4.3
10	1407.4	1 CEM	23.5	4.9

	Table S3. Productivit	ty and capital-cost-based r	productivity for IEM-ba	sed electrochemical processes.
--	-----------------------	-----------------------------	-------------------------	--------------------------------

References	Productivity (mmol N m ⁻² h ⁻¹)	Membranes used ^a	Productivity (mmol N \$ ⁻¹	Capital-cost-based productivity
			membrane h ⁻¹) ^b	(mmol N \$ ⁻¹ h ⁻¹) ^c
	1155		19.3	4.0
11	1882.5	1 CEM	31.4	6.6
	2385		39.8	8.3
Average	1222.5		18.1	3.8
		Bipolar membrane el	ectrodialysis	
12	748.0	1 CEM, 1 AEM, 1 BPM	3.1	0.7
	601.5	1 CEM	3.3	0.7
13	1081.8		6.0	1.3
	2437.8		13.5	2.8
14	1983.3		11.0	2.3
	3140.2	1 CEM	17.4	3.7
	5751.5	1 BPM	32.0	6.7
	2822.9		15.7	3.3
	3966.6		22.0	4.6
	3718.7		20.7	4.3
15	2892.3	1 CEM	16.1	3.4
15	2253.7	1 BPM	12.5	2.6
	1983.3		11.0	2.3
	1156.9		6.4	1.3
16	2200	1 CEM, 1 AEM, 1 BPM	9.2	1.9
	532.1		3.0	0.6
17	429.2		2.4	0.5
	575.3	I BPM	3.2	0.7
18	1282.7	1 CEM	5.3	1.1
10	785.7	1 BPM	3.3	0.7

References	Productivity (mmol N m ⁻² h ⁻¹)	Membranes used ^a	Productivity (mmol N \$ ⁻¹	Capital-cost-based productivity				
Average	2017.2		10.9					
	201112	Flow-electrode capacit	ive deionization					
	107.7		0.9	0.2				
10	<u> </u>	1 CEM	0.3	0.2				
17	64.0	1 AEM	0.7	0.1				
	04.9	1.0514	0.3	0.1				
20	39.6	I CEM	0.3	0.07				
	/8/.8	I AEM	6.6	1.4				
21	38.2	1 CEM, 1 AEM	0.3	0.07				
22	66.9	1 CEM, 1 AEM	0.6	0.1				
22	190.7	1 CEM	1.6	0.3				
23	279.0	1 AEM	2.3	0.5				
Average	184.0		1.5	0.3				
Proton-coupled electron transfer								
	88.3		0.7	0.2				
24	100.7	2 CEMs	0.8	0.2				
	115.1		1.0	0.2				
Average	101.3		0.8	0.2				
		Prussian blue analogu	ues (electrode)					
25	73.6	1 AEM	1.2	0.3				
26	128.1	1 AEM	2.1	0.4				
	128.6		2.1	0.5				
27	180	1 AEM	3.0	0.6				
	205.9		3.4	0.7				
28	800	1 AEM	13.3	2.8				

References	Productivity (mmol N m ⁻² h ⁻¹)	Membranes used ^a	Productivity (mmol N \$ ⁻¹ membrane h ⁻¹) ^b	Capital-cost-based productivity (mmol N \$ ⁻¹ h ⁻¹) ^c			
	176.3		2.9	0.6			
29	529.9		8.8	1.9			
	660.7	I AEM	11.0	2.3			
	476.7		7.9	1.7			
Average	336.0		5.6	1.2			
Prussian blue analogues (membrane)							
30	39.7	1 CEM	0.7	0.1			
	61.1	I CEIVI	1.0	0.2			
Average	50.4		0.8	0.2			

^aFor multiple cell-pair configurations, the repeating unit was considered.

^bThe productivity (mmol N $^{-1}$ membrane h^{-1}) was calculated from the productivity (mmol N $m^{-2} h^{-1}$) using the midpoint price of IEMs,⁵³ which was 60 \$ m^{-2} for a cation exchange membrane or an anion exchange membrane, and 120 \$ m^{-2} for a bipolar membrane as well as the number of membranes used in the repeating unit.

^cThe midpoint contribution of ion exchange membrane (IEM) materials (21%) to the capital cost in representative IEM processes (desalination, resource recovery, and energy storage and chemical production) was used to convert the productivity (mmol N $^{-1}$ membrane h^{-1}) to capital-cost-based productivity (mmol N $^{-1}$ h^{-1}).⁵⁴

Figure S1. Energy-productivity plot created using the literature data (energy consumption, kWh kg⁻¹ N). Two dashed lines indicate the benchmarking energy consumption against the Haber-Bosch process⁵⁵ and the average ammonia synthesis rate available from iron-based catalysts (Refs. 31–50). BMED: bipolar membrane electrodialysis; FCDI: flow-electrode capacitive deionization; PCET: proton-coupled electron transfer; PBA: Prussian blue analogue.

References

- Desloover, J.; Abate Woldeyohannis, A.; Verstraete, W.; Boon, N.; Rabaey, K. Electrochemical Resource Recovery from Digestate to Prevent Ammonia Toxicity during Anaerobic Digestion. *Environ. Sci. Technol.* 2012, *46*, 12209–12216. https://doi.org/10.1021/es3028154.
- (2) Luther, A. K.; Desloover, J.; Fennell, D. E.; Rabaey, K. Electrochemically Driven Extraction and Recovery of Ammonia from Human Urine. *Water Res.* 2015, 87, 367–377. https://doi.org/10.1016/j.watres.2015.09.041.
- (3) Christiaens, M. E. R.; Gildemyn, S.; Matassa, S.; Ysebaert, T.; De Vrieze, J.; Rabaey, K. Electrochemical Ammonia Recovery from Source-Separated Urine for Microbial Protein Production. *Environ. Sci. Technol.* **2017**, *51*, 13143–13150. https://doi.org/10.1021/acs.est.7b02819.
- (4) Kuntke, P.; Rodríguez Arredondo, M.; Widyakristi, L.; ter Heijne, A.; Sleutels, T. H. J. A.; Hamelers, H. V. M.; Buisman, C. J. N. Hydrogen Gas Recycling for Energy Efficient Ammonia Recovery in Electrochemical Systems. *Environ. Sci. Technol.* 2017, 51, 3110–3116. https://doi.org/10.1021/acs.est.6b06097.
- (5) Rodríguez Arredondo, M.; Kuntke, P.; ter Heijne, A.; Hamelers, H. V. M.; Buisman, C. J. N. Load Ratio Determines the Ammonia Recovery and Energy Input of an Electrochemical System. *Water Res.* 2017, 111, 330–337. https://doi.org/10.1016/j.watres.2016.12.051.
- (6) Tarpeh, W. A.; Barazesh, J. M.; Cath, T. Y.; Nelson, K. L. Electrochemical Stripping to Recover Nitrogen from Source-Separated Urine. *Environ. Sci. Technol.* 2018, 52, 1453–1460. https://doi.org/10.1021/acs.est.7b05488.
- (7) Christiaens, M. E. R.; Udert, K. M.; Arends, J. B. A.; Huysman, S.; Vanhaecke, L.; McAdam, E.; Rabaey, K. Membrane Stripping Enables Effective Electrochemical Ammonia Recovery from Urine While Retaining Microorganisms and Micropollutants. *Water Res.* 2019, *150*, 349–357.
- (8) Aung, S. L.; Choi, J.; Cha, H.; Woo, G.; Song, K. G. Ammonia-Selective Recovery from Anaerobic Digestate Using Electrochemical Ammonia Stripping Combined with Electrodialysis. *Chem. Eng. J.* 2024, 479, 147949. https://doi.org/10.1016/j.cej.2023.147949.
- (9) Liu, F.; Moustafa, H.; He, Z. Simultaneous Recovery of Nitrogen and Phosphorus from Actual Digester Centrate in an Electrochemical Membrane System. *Resour. Conserv. Recycl.* 2024, 203, 107463. https://doi.org/10.1016/j.resconrec.2024.107463.
- (10) Kogler, A.; Sharma, N.; Tiburcio, D.; Gong, M.; Miller, D. M.; Williams, K. S.; Chen, X.; Tarpeh, W. A. Long-Term Robustness and Failure Mechanisms of Electrochemical Stripping for Wastewater Ammonia Recovery. ACS Environ. Au 2024, 4, 89–105. https://doi.org/10.1021/acsenvironau.3c00058.
- (11) Choi, S.; Lee, W.; Kim, H.; Lee, G.; Lee, C.; Cheong, D.-Y.; Son, W.-K.; Kim, K. Ammonia Concentration and Recovery in an Up-Scaled Electrochemical Cell through Screening of Cation Exchange Membrane. *Front. Water* **2024**, *6*, 1367315. https://doi.org/10.3389/frwa.2024.1367315.
- (12) van Linden, N.; Bandinu, G. L.; Vermaas, D. A.; Spanjers, H.; van Lier, J. B. Bipolar Membrane Electrodialysis for Energetically Competitive Ammonium Removal and Dissolved Ammonia Production. J. Clean. Prod. 2020, 259, 120788. https://doi.org/10.1016/j.jclepro.2020.120788.
- (13) Rodrigues, M.; de Mattos, T. T.; Sleutels, T.; ter Heijne, A.; Hamelers, H. V. M.; Buisman, C. J. N.; Kuntke, P. Minimal Bipolar Membrane Cell Configuration for Scaling Up Ammonium Recovery. ACS Sustain. Chem. Eng. 2020, 8, 17359–17367. https://doi.org/10.1021/acssuschemeng.0c05043.
- (14) Mohammadi, M.; Guo, H.; Yuan, P.; Pavlovic, V.; Barber, J.; Kim, Y. Ammonia Separation from Wastewater Using Bipolar Membrane Electrodialysis. *Electrochem. Sci. Adv.* 2021, 1, e2000030. https://doi.org/10.1002/elsa.20200030.

- (15) Guo, H.; Yuan, P.; Pavlovic, V.; Barber, J.; Kim, Y. Ammonium Sulfate Production from Wastewater and Low-Grade Sulfuric Acid Using Bipolar- and Cation-Exchange Membranes. J. Clean. Prod. 2021, 285, 124888. https://doi.org/10.1016/j.jclepro.2020.124888.
- (16) Li, Y.; Wang, R.; Shi, S.; Cao, H.; Yip, N. Y.; Lin, S. Bipolar Membrane Electrodialysis for Ammonia Recovery from Synthetic Urine: Experiments, Modeling, and Performance Analysis. *Environ. Sci. Technol.* 2021, 55, 14886–14896. https://doi.org/10.1021/acs.est.1c05316.
- (17) Ferrari, F.; Pijuan, M.; Molenaar, S.; Duinslaeger, N.; Sleutels, T.; Kuntke, P.; Radjenovic, J. Ammonia Recovery from Anaerobic Digester Centrate Using Onsite Pilot Scale Bipolar Membrane Electrodialysis Coupled to Membrane Stripping. *Water Res.* 2022, 218, 118504. https://doi.org/10.1016/j.watres.2022.118504.
- (18) Chen, W.; Grimberg, S.; Rogers, S.; Kim, T. Bipolar Membrane Electrodialysis for Nutrient Recovery from Anaerobic Digestion Dewatering Sidestream. *Chem. Eng. J.* 2024, 488, 150834. https://doi.org/10.1016/j.cej.2024.150834.
- (19) Zhang, C.; Ma, J.; He, D.; Waite, T. D. Capacitive Membrane Stripping for Ammonia Recovery (CapAmm) from Dilute Wastewaters. *Environ. Sci. Technol. Lett.* 2018, 5, 43–49. https://doi.org/10.1021/acs.estlett.7b00534.
- (20) Zhang, C.; Ma, J.; Song, J.; He, C.; Waite, T. D. Continuous Ammonia Recovery from Wastewaters Using an Integrated Capacitive Flow Electrode Membrane Stripping System. *Environ. Sci. Technol.* 2018, *52*, 14275–14285. https://doi.org/10.1021/acs.est.8b02743.
- (21) Fang, K.; Gong, H.; He, W.; Peng, F.; He, C.; Wang, K. Recovering Ammonia from Municipal Wastewater by Flow-Electrode Capacitive Deionization. *Chem. Eng. J.* 2018, 348, 301–309. https://doi.org/10.1016/j.cej.2018.04.128.
- (22)Zhang, C.; Ma, J.; Waite, T. D. Ammonia-Rich Solution Production from Wastewaters Using Chemical-Free Flow-Electrode Capacitive Deionization. ACS Sustain. Chem. Eng. 2019, 7, 6480–6485. https://doi.org/10.1021/acssuschemeng.9b00314.
- (23) Chen, T.; Xu, L.; Wei, S.; Tang, X.; Chen, H. Enhanced Ammonia-Rich Solution Production and Electrode Separation Using Magnetic Nickel-Loaded Carbon Black in Flow-Electrode Electrochemical Deionization (FEED). *Desalination* 2022, 544, 116152. https://doi.org/10.1016/j.desal.2022.116152.
- (24) Chen, W.; Grimberg, S.; Rogers, S.; Kim, T. Ammonia Recovery from Domestic Wastewater Using a Proton-Mediated Redox Couple. ACS Sustain. Chem. Eng. 2021, 9, 12699–12707. https://doi.org/10.1021/acssuschemeng.1c05144.
- (25) Kim, T.; Gorski, C. A.; Logan, B. E. Ammonium Removal from Domestic Wastewater Using Selective Battery Electrodes. *Environ. Sci. Technol. Lett.* 2018, 5, 578–583. https://doi.org/10.1021/acs.estlett.8b00334.
- (26) Son, M.; Aronson, B. L.; Yang, W.; Gorski, C. A.; Logan, B. E. Recovery of Ammonium and Phosphate Using Battery Deionization in a Background Electrolyte. *Environ. Sci.: Water Res. Technol.* 2020, 6, 1688–1696. https://doi.org/10.1039/D0EW00183J.
- (27) Son, M.; Kolvek, E.; Kim, T.; Yang, W.; Vrouwenvelder, J. S.; Gorski, C. A.; Logan, B. E. Stepwise Ammonium Enrichment Using Selective Battery Electrodes. *Environ. Sci.: Water Res. Technol.* 2020, 6, 1649–1657. https://doi.org/10.1039/D0EW00010H.
- (28) Wang, Q.; Wu, Q.; Meng, S.; Liu, H.; Liang, D. Selective Removal of Ammonium Ions with Transition Metal Hexacyanoferrate (MHCF) Electrodes. *Desalination* 2023, 558, 116646. https://doi.org/10.1016/j.desal.2023.116646.
- (29) Tsai, S.-W.; Cuong, D. V.; Hou, C.-H. Selective Capture of Ammonium Ions from Municipal

Wastewater Treatment Plant Effluent with a Nickel Hexacyanoferrate Electrode. *Water Res.* 2022, 221, 118786. https://doi.org/10.1016/j.watres.2022.118786.

- (30) Chen, W.; Akinyemi, P.; Kim, T. Selective Separation of Ammonium from Wastewater Using Ion Conducting Channels of a Prussian Blue Analogue. *Environ. Sci. Technol. Lett.* 2024, *11*, 280–286. https://doi.org/10.1021/acs.estlett.3c00932.
- (31) Murakami, K.; Tanaka, Y.; Sakai, R.; Toko, K.; Ito, K.; Ishikawa, A.; Higo, T.; Yabe, T.; Ogo, S.; Ikeda, M.; Tsuneki, H.; Nakai, H.; Sekine, Y. The Important Role of N₂H Formation Energy for Low-Temperature Ammonia Synthesis in an Electric Field. *Catal. Today* 2020, 351, 119–124. https://doi.org/10.1016/j.cattod.2018.10.055.
- (32) Gao, W.; Guo, J.; Wang, P.; Wang, Q.; Chang, F.; Pei, Q.; Zhang, W.; Liu, L.; Chen, P. Production of Ammonia via a Chemical Looping Process Based on Metal Imides as Nitrogen Carriers. *Nat. Energy* 2018, *3*, 1067–1075. https://doi.org/10.1038/s41560-018-0268-z.
- (33) Homs, N.; De La Piscina, P. R.; Fierro, J. L. G.; Sueiras, J. E. Catalytic Activity for Ammonia Synthesis of Iron Supported Catalysts Prepared from an Acid-Modified λ-Al₂O₃ Method. Z. Anorg. Allg. Chem. 1984, 518, 227–233. https://doi.org/10.1002/zaac.19845181123.
- (34) Smith, P. J.; Taylor, D. W.; Dowden, D. A.; Kemball, C.; Taylor, D. Ammonia Synthesis and Related Reactions over Iron-Cobalt and Iron-Nickel Alloy Catalysts: Part II. Catalysts Reduced above 853 K. *Appl. Catal.* **1982**, *3*, 303–314. https://doi.org/10.1016/0166-9834(82)80265-0.
- (35) Kitano, M.; Kujirai, J.; Ogasawara, K.; Matsuishi, S.; Tada, T.; Abe, H.; Niwa, Y.; Hosono, H. Low-Temperature Synthesis of Perovskite Oxynitride-Hydrides as Ammonia Synthesis Catalysts. J. Am. Chem. Soc. 2019, 141, 20344–20353. https://doi.org/10.1021/jacs.9b10726.
- (36) Baiker, A.; Baris, H.; Schlögl, R. Ammonia Synthesis over a Supported Iron Catalyst Prepared from an Amorphous Iron-Zirconium Precursor: III. Mechanism of Nitrogen Adsorption and Ammonia Synthesis Kinetics. J. Catal. 1987, 108, 467–479. https://doi.org/10.1016/0021-9517(87)90194-1.
- (37) Wang, P.; Xie, H.; Guo, J.; Zhao, Z.; Kong, X.; Gao, W.; Chang, F.; He, T.; Wu, G.; Chen, M.; Jiang, L.; Chen, P. The Formation of Surface Lithium–Iron Ternary Hydride and Its Function on Catalytic Ammonia Synthesis at Low Temperatures. *Angew. Chem., Int. Ed.* 2017, *56*, 8716–8720. https://doi.org/10.1002/anie.201703695.
- (38) Wang, P.; Chang, F.; Gao, W.; Guo, J.; Wu, G.; He, T.; Chen, P. Breaking Scaling Relations to Achieve Low-Temperature Ammonia Synthesis through LiH-Mediated Nitrogen Transfer and Hydrogenation. *Nat. Chem.* 2017, *9*, 64–70. https://doi.org/10.1038/nchem.2595.
- (39) Hagen, S.; Barfod, R.; Fehrmann, R.; Jacobsen, C. J.; Teunissen, H. T.; Chorkendorff, I. Ammonia Synthesis with Barium-Promoted Iron–Cobalt Alloys Supported on Carbon. J. Catal. 2003, 214, 327. https://doi.org/10.1016/s0021-9517(02)00182-3.
- (40) Humphreys, J.; Lan, R.; Chen, S.; Tao, S. Improved Stability and Activity of Fe-Based Catalysts through Strong Metal Support Interactions Due to Extrinsic Oxygen Vacancies in Ce_{0.8}Sm_{0.2}O_{2-δ} for the Efficient Synthesis of Ammonia. J. Mater. Chem. A 2020, 8, 16676–16689. https://doi.org/10.1039/D0TA05238H.
- (41) Morlanés, N.; Almaksoud, W.; Rai, R. K.; Ould-Chikh, S.; Ali, M. M.; Vidjayacoumar, B.; Al-Sabban, B. E.; Albahily, K.; Basset, J.-M. Development of Catalysts for Ammonia Synthesis Based on Metal Phthalocyanine Materials. *Catal. Sci. Technol.* 2020, 10, 844–852. https://doi.org/10.1039/C9CY02326G.
- (42) Yan, P.; Guo, W.; Liang, Z.; Meng, W.; Yin, Z.; Li, S.; Li, M.; Zhang, M.; Yan, J.; Xiao, D.; Zou, R.; Ma, D. Highly Efficient K-Fe/C Catalysts Derived from Metal-Organic Frameworks towards Ammonia

Synthesis. Nano Res. 2019, 12, 2341-2347. https://doi.org/10.1007/s12274-019-2349-0.

- (43) Jafari, A.; Ebadi, A.; Sahebdelfar, S. Effect of Iron Oxide Precursor on the Properties and Ammonia Synthesis Activity of Fused Iron Catalysts. *React. Kinet. Mech. Catal.* 2019, *126*, 307–325. https://doi.org/10.1007/s11144-018-1498-6.
- (44) Tang, Y.; Kobayashi, Y.; Masuda, N.; Uchida, Y.; Okamoto, H.; Kageyama, T.; Hosokawa, S.; Loyer, F.; Mitsuhara, K.; Yamanaka, K.; Tamenori, Y.; Tassel, C.; Yamamoto, T.; Tanaka, T.; Kageyama, H. Metal-Dependent Support Effects of Oxyhydride-Supported Ru, Fe, Co Catalysts for Ammonia Synthesis. *Adv. Energy Mater.* 2018, *8*, 1801772. https://doi.org/10.1002/aenm.201801772.
- (45) Fan, H.; Huang, X.; Kähler, K.; Folke, J.; Girgsdies, F.; Teschner, D.; Ding, Y.; Hermann, K.; Schlögl, R.; Frei, E. In-Situ Formation of Fe Nanoparticles from FeOOH Nanosheets on γ-Al₂O₃ as Efficient Catalysts for Ammonia Synthesis. *ACS Sustain. Chem. Eng.* 2017, *5*, 10900–10909. https://doi.org/10.1021/acssuschemeng.7b02812.
- (46) Liu, H.; Liu, C.; Li, X.; Cen, Y. Effect of an Iron Oxide Precursor on the H₂ Desorption Performance for an Ammonia Synthesis Catalyst. *Ind. Eng. Chem. Res.* 2003, 42, 1347–1349. https://doi.org/10.1021/ie0202524.
- (47) Kowalczyk, Z.; Jodzis, S. Activity and Thermoresistance of Fused Iron Catalysts for Ammonia Synthesis. *Appl. Catal.* **1990**, *58*, 29–34. https://doi.org/10.1016/S0166-9834(00)82276-9.
- (48) Liu, H.-Z.; Li, X.-N.; Hu, Z.-N. Development of Novel Low Temperature and Low Pressure Ammonia Synthesis Catalyst. Appl. Catal. A Gen. 1996, 142, 209–222. https://doi.org/10.1016/0926-860X(96)00047-6.
- (49) Spencer, N. Iron Single Crystals as Ammonia Synthesis Catalysts: Effect of Surface Structure on Catalyst Activity. J. Catal. **1982**, 74, 129–135. https://doi.org/10.1016/0021-9517(82)90016-1.
- (50) Brown, D. E.; Edmonds, T.; Joyner, R. W.; McCarroll, J. J.; Tennison, S. R. The Genesis and Development of the Commercial BP Doubly Promoted Catalyst for Ammonia Synthesis. *Catal. Lett.* 2014, 144, 545–552. https://doi.org/10.1007/s10562-014-1226-4.
- (51) Yoshida, M.; Ogawa, T.; Ishihara, K. N. Economic Limitation of Recent Heterogeneous Catalysts for Ammonia Synthesis. *Clean. Chem. Eng.* **2024**, *10*, 100119. https://doi.org/10.1016/j.clce.2024.100119.
- (52) Bañares-Alcántara, R.; Iii, G. D.; Fiaschetti, M.; Grünewald, P.; Lopez, J. M.; Tsang, E.; Yang, A.; Ye, L.; Zhao, S. Analysis of Islanded Ammonia-Based Energy Storage Systems. *University of Oxford* **2015**.
- (53) Hand, S.; Guest, J. S.; Cusick, R. D. Technoeconomic Analysis of Brackish Water Capacitive Deionization: Navigating Tradeoffs between Performance, Lifetime, and Material Costs. *Environ. Sci. Technol.* 2019, 53, 13353–13363. https://doi.org/10.1021/acs.est.9b04347.
- (54) Reimonn, G.; Kamcev, J. Techno-Economic Perspective on the Limitations and Prospects of Ion-Exchange Membrane Technologies. *Curr. Opin. Chem. Eng.* 2025, 47, 101077. https://doi.org/10.1016/j.coche.2024.101077.
- (55) Maurer, M.; Schwegler, P.; Larsen, T. A. Nutrients in Urine: Energetic Aspects of Removal and Recovery. *Water Sci. Technol.* 2003, *48*, 37–46. https://doi.org/10.2166/wst.2003.0011.