# Supplementary Information

## A supported Au/HZSM-5 catalyst for toluene removal by air plasma

# catalytic oxidation using cycled storage-discharge (CSD) mode

Amin Zhou<sup>a</sup>, Xiao-Song Li<sup>a,\*</sup>, Jing-Lin Liu<sup>a</sup>, Lan-Bo Di<sup>b,\*</sup>, Ai-Min Zhu<sup>a</sup>

<sup>a</sup> Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024,

China

<sup>b</sup> College of Physical Science and Technology, Dalian University, Dalian 116622, China

\* E-mail: <u>lixsong@dlut.edu.cn</u>; <u>dilanbo@163.com</u>

#### **S1. Experimental section**

#### S1.1 Materials

Chloroauric acid (HAuCl<sub>4</sub>), >99.8%, (metals basis Au >49%) was purchased from Alfa Aesar. Silver nitrate (AgNO<sub>3</sub>) was bought from Sinopharm Chemical Reagent Co., Ltd. Ammonia liquor (NH<sub>3</sub>·H<sub>2</sub>O) was purchased from Tianjin Kermel Chemical Reagent Co. Ltd. Commercial high-silica HZ molecular sieve (SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> = 360, specific surface area of 341 m<sup>2</sup>/g) was provided by Nankai University Catalyst Co., Ltd.

High purity oxygen (O<sub>2</sub>,  $\geq$ 99.999%), hydrogen (H<sub>2</sub>,  $\geq$ 99.999%), and nitrogen (N<sub>2</sub>,  $\geq$ 99.999%), argon (Ar,  $\geq$ 99.999%) were purchased from Dalian Institute of Chemical Physics, Chinese Academy of Sciences.

#### S1.2 Catalysts characterization

The size and morphology of Au nanoparticles in the Au/HZ catalysts were observed using transmission electron microscopy (TEM-2100, JEOL Ltd., Japan). The elemental chemical composition and valence states of the Au catalyst were characterized by X-ray photoelectron spectroscopy (XPS, ESCALAB250, Thermo VG, USA) using an Al K $\alpha$  target (hv = 1486.6 eV) as the X-ray source, with a tube voltage of 15 kV, power of 300 W, and a scanning step of 0.05 eV. The C1s peak position was calibrated to 284.6 eV as the reference for peak calibration. To confirm the presence of Au<sup>0</sup> in the samples, UV-vis analysis of HZ and Au/HZ catalysts was conducted using a UV spectrophotometer (UV-2600, SHIMADZU, Japan) for diffuse reflectance spectroscopy (DRS) characterization, with a wavelength range of 200-800 nm. Hydrogen temperature-programmed reduction (H<sub>2</sub>-TPR) is applied to analyze the Au<sup> $\delta+</sup>$ </sup> species in Au/HZ using a chemisorption apparatus (Autochem II 2920, Micromeritics Instrument Corp.,

USA). Moreover, a CO-TPR experiment was also conducted on the Au/HZ catalysts under a 1400 ppm CO/He atmosphere using a mass spectrometer (Agilent 5975C, Agilent Technologies, USA) to investigate the Au<sup> $\delta^+$ </sup> species.

Temperature-programmed-desorption (TPD) technology was applied to analyze  $C_7H_8$  and CO adsorption ability on the catalysts. To determine the carbon balance of the reaction and the surface intermediates on the catalysts, temperature-programmed-oxidation (TPO) technology was adopted. The TPD and TPO experiments are described previously[1].

The adsorption characteristics of CO on the surfaces of the HZ, Au/HZ, and Ag/HZ catalysts were characterized by *in situ* diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). A certain amount of the catalysts was placed in the DRIFT cell, pre-treated at 80 °C under Ar atmosphere for 30 min, then cooled to room temperature. After collecting the background, the atmosphere was switched to 5% CO/He for CO adsorption experiments, followed by infrared spectroscopy data collection.

#### S1.3 Measurement of the discharge parameters

Input power ( $P_{in}$ ) is measured by using a wattmeter. The discharge voltage and frequency are measured by using an oscilloscope (DPO4108B, Tektronix) with a high-voltage probe (P6015A, Tektronix). Discharge power ( $P_{dis}$ ) is calculated from a charge-voltage Lissajous figure measured by a sampling capacitor. At  $P_{in}$  of 7 W,  $P_{dis}$  in the dry and wet air is about 1.5 W.

S1.4 Definitions of  $C_7H_8$  conversion,  $CO_x$  selectivities, carbon balance, and CO conversion  $C_7H_8$  conversion  $\begin{pmatrix} X_{C_7H_8} \end{pmatrix}$ , CO selectivity  $(S_{CO})$ , CO<sub>2</sub> selectivity  $\begin{pmatrix} S_{CO_2} \end{pmatrix}$  for air plasma-catalytic oxidation of  $C_7H_8$  are determined as follows:

$$X_{C_7H_8}(\%) = \left(1 - \frac{n_{C_7H_8}^{unconv}}{n_{C_7H_8}^0}\right) \times 100\%$$
(E1)

$$S_{CO}(\%) = \frac{n_{CO}^{alls}}{7(n_{C_7H_8}^0 - n_{C_7H_8}^{unconv})} \times 100\%$$
(E2)

$$S_{CO_2}(\%) = \frac{n_{CO_2}^{dis}}{7\left(n_{C_7H_8}^0 - n_{C_7H_8}^{unconv}\right)} \times 100\%$$
(E3)

 $n_{C_7H_8}^{0}$  and  $n_{C_7H_8}^{unconv}$  are initial amount of C<sub>7</sub>H<sub>8</sub> and unconverted C<sub>7</sub>H<sub>8</sub>, respectively.  $n_{C0}^{dis}$  and  $n_{C0_2}^{dis}$  are amount of CO and CO<sub>2</sub> generated at discharge stage.  $n_{TP0}^{TC}$  is the amount of total carbon produced in TPO process after discharge stage. Therefore, carbon balance  $(B_C)$  can be defined as :

$$B_{C}(\%) = \frac{n_{CO_{2}}^{dis} + n_{CO}^{dis} + n_{TPO}^{TC}}{7n_{C_{7}H_{8}}^{0}} \times 100\%$$
(E4)

In this work, no  $C_7H_8$  or other gaseous intermediates were detected in outlet of the reactor, indicating that  $C_7H_8$  conversion attains 100%. Therefore, CO and CO<sub>2</sub> selectivity calculation formula for the plasma oxidation of gaseous  $C_7H_8$  in simulated air are as follows:

$$S_{CO_2} = \frac{C_{CO_2}^{out}}{7C_{C_7H_8}^{in}} \times 100\%$$
(E5)

$$S_{CO} = \frac{C_{CO}^{out}}{7C_{C_7H_8}^{in}} \times 100\%$$
(E6)

### **S2.** Supplementary figures



Fig. S1.  $CO_x$  selectivities of  $C_7H_8$  oxidation in CSD mode over the 0.6 wt.% Au/HZ catalysts prepared by air plasma and thermal treatment. Thermal treatment conditions: 100 mL/min of simulated air, calcined at 200 °C for 2 h. Air plasma pretreatment conditions:  $P_{in}$ =7 W, 100 mL/min of simulated air,  $t_{dis}$ =20 min. Conditions of  $C_7H_8$  oxidation with dry air plasma:

$$n_{C_7H_8}^0 = 23.2 \,\mu\text{mol}, P_{\text{in}} = 7.0 \,\text{W}, t_{\text{dis}} = 20 \,\text{min}, F = 100 \,\text{mL/min}.$$



Fig. S2 UV-vis DRS spectra of Au/HZ and HZ.



Fig. S3  $C_7H_8$  breakthrough capacities of HZ, Ag/HZ, and Au/HZ. Adsorption conditions: 100

mL·min<sup>-1</sup> of dry simulated air with 105 ppm of  $C_7H_8$ , m<sub>cat</sub>=0.20 g, 25 °C.



Fig. S4 (a) CO<sub>2</sub> concentration in TPO tests, (b) CO<sub>2</sub> produced in TPO and carbon balance ( $B_C$ ) of Au/HZ catalysts with different Au loadings. Conditions: 100 mL·min<sup>-1</sup> of 10%O<sub>2</sub>/Ar, 10

°C·min<sup>-1</sup>.



Fig. S5 CO conversion of HZ, Ag/HZ (1.2 wt.%Ag) and Au/HZ (0.6 wt.% Au) at 100 °C.

Conditions: 100 mL·min<sup>-1</sup> of simulated air with 1030 ppm of CO,  $m_{cat}$ =0.20 g.

### References

[1] A. Zhou, J. L. Liu, B. Zhu, X. S. Li and A. M. Zhu, *Chemical Engineering Journal*, 2022, 433, 134338.