Supporting information for 'Identification of catalyst optimization trends for electrocatalytic $CO_{(2)}$ reduction to ethylene'

Stefan J. Raaijman,^a Maarten P. Schellekens,^{a,b} Yoon Jun Son,^a Marc T.M. Koper^{b,*} and Paul J. Corbett^{a,**}

^a Energy Transition Campus Amsterdam, Shell Global Solutions International B.V. Grasweg 31, 1031 HW Amsterdam, the Netherlands ^b Leiden Institute of Chemistry, Leiden University PO Box 9502, 2300 RA Leiden, the Netherlands

* Leiden Institute of Chemistry, Leiden Universi *m.koper@lic.leidenuniv.nl

** paul.corbett@shell.com

1.	Dataset origins	2
2.	Dataset description	3
2.1.	Metallic and oxide-derived Cu	3
2.1.1	l. Metallic copper	3
2.1.2	2. Oxide-derived copper	6
2.2.	Cu/M systems resembling oxide-derived copper: Al, B and Mg	12
2.2.1	L. Al/Cu	
2.2.2	2. B/Cu	14
2.2.3	3. Mg/Cu	16
2.3.	Cu/M systems containing transition and post-transition metal co-elements: Zn, S	n, Pd, Pb, Ni,
0,0	5a, Fe, Au, Ag	1/
2.3.1	L. Zn/Cu	17
2.3.2	2. Sn/Cu	19
2.3.3	B. Pd/Cu	20
2.3.4	ι. Pb/Cu	22
2.3.5	5. Ni/Cu	23
2.3.6	5. Co/Cu	25
2.3.7	7. Ga/Cu	27
2.3.8	3. Fe/Cu	28
2.3.9	9. Au/Cu	29
2.3.1	10. Ag/Cu	31
2.4.	Elements forming non-reducible oxides: Zr, Hf, Ti, Si, and the lanthanide series	35
2.4.1	Zr & Hf/Cu (combined due to their chemical similarities)	35
2.4.2	2. Ti/Cu	37
2.4.3	3. Si/Cu	
2.4.4	I. Lanthanides: Ce, La, Pr, Nd, Eu, Sm, Gd, Er, Tb/Cu	41

2.5.	Various forms of carbon and carbon-derivatives44
2.6.	Bi-metallics with too limited data: Pt, Sb, Bi, Sr, Se, [Mo, Mn, Ru, Rh, Sc, Ge, In, W]50
2.6.1	. Pt/Cu
2.6.2	. Sb/Cu
2.6.3	. Bi/Cu
2.6.4	. Sr/Cu
2.6.5	. Se/Cu
2.6.6	. Mo, Mn, Ru, Rh, Sc, Ge, In, W/Cu51
2.7.	Multi-elemental systems (3+)53
2.8.	(In-)organic polymer modification through core/shell & overlayer structures
3.	References

1. Dataset origins

The electrocatalysts described in this manuscript were obtained through various means over the course of ca. 2 years, including i) a very broad search term in SCOPUS, ii) going through various review articles regarding CO2RR electrocatalysts¹⁻⁸³, iii) cross-referencing relevant publications for new citations and iv) catalyst summaries provided in the supporting information of numerous publications. For metallic copper and oxide-derived copper, we only included catalysts where the maximum C_2H_4 faradaic efficiency (FE) was ≥40%. For bi-elemental and multi-elemental catalysts, we decreased this selection criterium to catalysts making (approximately) \geq 25% C₂H₄ to increase the likelihood of obtaining a statistically relevant quantity of sources on a per-element basis for those systems. Photocatalysts and pulse-operated catalysts were omitted from this work on account of us not having sufficient expertise in the field of photocatalysis, and pulsed operation representing dynamic catalyst conditions that cannot (in our opinion) be meaningfully compared to static (non-pulsed) operating conditions. However, we acknowledge that pulsing is a viable C_2H_4 improvement strategy⁸⁴⁻⁸⁸ with various systems having been reported with high C₂H₄ selectivity⁸⁹⁻⁹¹, and refer the reader to reviews dedicated to this topic.⁹² Throughout this SI, high performance will be used interchangeably with high selectivity. Finally, although we have opted to include alkaline CO₂ systems in our summary tables on account of their ubiquity in literature, we exclude these catalysts from our analysis whenever we feel the sample size is sufficient without these systems. We have opted for this approach because i) the pH effect⁹³ cannot realistically be deconvoluted from inherent catalytic activity and ii) the industrial irrelevance of such systems on account of the costs associated with maintaining a local alkaline pH in the presence of acidic CO₂.94

Faradaic efficiencies, current densities and voltages were preferentially extracted from tables provided in either the main manuscript or the supporting information, or alternatively from numbers provided in the text. If both are available, preference is given to tabulated values. If the sum of faradaic efficiencies in a table is significantly higher than 100%, the maximum C_2H_4 FE for a condition where the total FE is closer to 100% is reported instead. If no tabulated/written information was available, values were extracted through image analysis. If only a single electrolyte is stated, it is assumed that both anolyte and catholyte are of the same composition (if it concerns a cell configuration that has both anolyte and catholyte). If a range of current densities are given, the average is reported herein. Ambient conditions are taken to be standard temperature and pressure, which we report as 25 °C and 1 atm. If a cell is labeled as a 'flow cell', it is assumed that the electrolyte(s) is (are) actively circulated even if not specified in text. Nafion membranes are categorized as cation-exchange membranes (CEMs), even in such cases where the authors refer to it differently (e.g., anion-exchange membranes etc.). Footnotes have been added for those situations where we did not follow these rules or where we believe clarification to be necessary. For bi-elemental catalyst systems (excluding Cu/C systems) we tabulate a catalyst category, wherein we provide a description that we believe best suits the morphology of the catalyst. The following categories were identified over the course of this study: i) single atom-type, ii) alloyed/doped-type, iii) atomically-mixed/crystalline-type, iv) core/shell-type, v) mixed-phase/janus-type, vi) A-supports-B type and vii) overlayer-type systems.

Single atom-type catalysts have morphologies where one component is present in such a low quantity that no chemical bonds exist between two atoms of that component. Alloyed/doped-type catalysts have morphologies where one component can be considered to be dissolved into another component, but need not be homogeneously distributed throughout the system. Catalyst of the atomically-mixed/crystalline-type have morphologies where the catalyst forms a stable phase with a specific stoichiometry than can be observed via e.g., XRD. Core/shell-type catalysts consist of systems where a particle acts as a core and is fully surrounded by a second component. The surrounding layer is assumed to fully coat the surface of the core particle. Then we have the more generic mixed-phase/janus-type category which consists of catalysts where multiple phases are intermixed. If mixed phases exist, and one component is substantially larger than the other component and they are attached to one-another then we consider the catalyst to be of the A-supports-B type. Finally, if multiple catalyst layers with different components were sequentially deposited, we consider the catalyst system to be of the overlayer-type. Depending on the circumstances, a catalyst system can belong to multiple of these categories.

2. Dataset description

2.1. Metallic and oxide-derived Cu

2.1.1. Metallic copper

A summary of best-performing metallic copper catalysts is provided in Table S1. The metallic copper catalyst dataset is derived from 49 unique publications and comprises a total of 56 catalyst systems, with 15 using CO as a reactant and 15 having been identified as alkaline CO₂ systems. A total of 21 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55%, though 11 of those are reported under alkaline CO₂ reduction reaction (CO2RR) conditions. In our analysis, we will exclude such alkaline CO2RR systems, resulting in a final sample size of 41 catalysts. This number of catalysts is somewhat smaller than we would have initially expected, though it can be explained by realizing that we consider metallic copper to be different from oxide derived copper. As can be seen in Table S1, a maximum C_2H_4 FE of ca. 50%-60% can be reliably achieved on metallic copper catalysts using either CO₂ or CO as a reactant, with outliers yielding 77%⁹⁵ and (reportedly) 93%⁹⁶. The fact that both CO and CO₂ reactants are present at the top-end of the spectrum serves to validate our decision to investigate both molecules as a potential feedstock from a catalyst perspective. Importantly, most of the high-performance catalysts have been shown to work under current densities >|-100| mA/cm², though this is not true for the two outliers. This observation is rather promising from an industrial perspective. However, we feel it is pertinent to point out that the metallic copper catalyst dataset is highly skewed, with a large proportion of metallic copper

catalysts consisting of (arguably nearly identical) sputter-deposited Cu systems. As such, the number of unique catalysts is significantly smaller than the size of the table implies.

	Table S1. Metallic Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C2H4 FE	Reference
1	Commercial 70 nm Cu NPs with chitosan bio-based polymeric binder, on Toray TGP-H-60 GDL	Metallic Cu	Cu	Chitosan	(Gas-phase reactant, supplied from behind)	-	Sustainion X- 37 50 grade	CO ₂	-0.53 V vs. RHE	-10 mA/cm²	94	97
2	Commercial Cu NPs (25 nm), on a GDL with custom MPL, hotpressed onto a Nafion membrane	Metallic Cu	Cu	Nafion	(Gas-phase reactant, supplied from behind)	-	Nafion 117	CO ₂	-1.7 V vs. Ag/AgCl	-7.5 mA/cm ²	93	96
3	60 nm step site-rich Cu NPs blow-dried with Ar, on GDL	Metallic Cu	Cu	Sustainion XA-9	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAA- 3-PK-75	CO ₂	-0.58 V - iR vs. RHE	-710 mA/cm ²	80	98
4	CO ₂ RR pre-activated defective Cu NWs, on glassy carbon (tested in semi-pulsed electrolysis mode)	Metallic Cu	Cu	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion	CO ₂	-1.01 V - iR vs. RHE	-22 mA/cm ²	77	95
5	Right bipyramidal (100)-rich Cu NPs with stacking faults, on GDL	Metallic Cu	Cu	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAA-3-PK-75	CO ₂	-0.63 V - iR vs. RHE	-325 mA/cm ²	67	99
6	Metallic Cu NPs mixed with PTFE, dropcast on GDL	Metallic Cu	Cu	Nafion, PTFE	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	Selemion DSVN	со	-1.38 V - iR vs. RHE	-600 mA/cm ²	67	100
7	25 nm-thick Cu layer, evaporated on GDL	Metallic Cu	Cu	-	(Gas-phase reactant,	10 M KOH	Fumasep FAB-	CO ₂	-0.54 V - iR	-275	66	101
8	25 nm-thick Cu layer, evaporated on GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	5.5 M KOH + 4	Fumasep FAB- PK-130	CO ₂	-0.62 V - iR vs. RHE	-500 mA/cm ²	65	101
9	Ultrasonically detached N2 atmosphere/high current density- electroplated Cu dendrites, on GDL	Metallic Cu	Cu	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	? (X37–50 Grade 60)	CO2	-1.24 V vs. RHE	-37 mA/cm ²	60	102
10	(100)-rich Cu NCs, on GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAB- PK-130	CO ₂	-0.70 V - iR vs. RHE	-200 mA/cm ²	60	103
11	Cu NCs, on GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	10.0 M KOH	Fumasep FAB- PK-130	CO ₂	-0.47 V - iR vs. RHE	-75 mA/cm ²	60	104
12	Metallic Cu NPs, on GDL	Metallic Cu	Cu	Nafion	(Gas-phase reactant,	1.0 M	NEOSEPTA,	со	-0.69 V - iR	?	60	105
13	Cu NPs, on GDL	Metallic Cu	Cu	Nafion	(Gas-phase reactant,	2.5 M Kac	FAA-3-50	CO ₂	-0.99 V - iR	-1250	59	106
14	Cu NWs after 15 h synthesis, on GDL	Metallic Cu	Cu	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH	?	CO ₂	-1.08 V vs. RHE	-123 mA/cm ²	59	107
15	Ultrasonically detached N2 atmosphere/high current density-	Metallic Cu	Cu	Nafion	(Gas-phase reactant,	-	X37–50 Grade	CO ₂	-1.0 V	-134	58	102
16	Cu nanorods (control sample), on GDL (poorly described synthesis, inaccurate reference)	Metallic Cu	Cu	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH	Fumapem FAA-3-PK-130	CO ₂	-0.59 V - iR vs. RHE	?	57	108
17	Commercial Cu NPs, on GDL	Metallic Cu	Cu	Nafion	(Gas-phase reactant, supplied from behind)	14) 1.0 M KOH (pH 14)	Sustainion, X37-50 Grade T	со	?	-150 mA/cm ²	56	109
18	Commercial Cu NPs (100 nm), on GDL	Metallic Cu	Cu	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAA- PK-130	СО	-0.69 V - iR vs. RHE	-934 mA/cm²	56	110
19	1000 nm-thick Cu layer, sputtered on GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	"Fumasep"	CO ₂	-4.23 V vs. Ag/AgCl	-250 mA/cm ²	56	111
20	Cu electrosputtered on electrospun PVDF-HFP-based GDL with 0.2 µm pore size	Metallic Cu	Cu	poly-(vinyliden- fluoride-co- hexafluorpropylene)	(Gas-phase reactant, supplied from behind)	1.0 M KCI	Nafion 117	CO2	-1 V - iR vs. RHE	-200 mA/cm ²	55	112
21	25 nm-thick Cu layer, evaporated on GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	5.38 M NaClO4	Nafion 117	CO ₂	-0.88 V - iR vs. RHE	-106 mA/cm ²	55	113
22	In-house metallic Cu NPs, on mesoporous carbon/PTFE-modified carbon paper	Metallic Cu	Cu	Nafion	(Solution-phase reactant, supplied in front)	1.0 M KOH (pH 14)	?	со	-0.70 V vs. RHE	-22 mA/cm ²	53	114
23	Cu layer sporting 50-80 nm Cu NPs, sputtered on GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH + 0.2 M Csl	Fumasep FKS- 50	CO ₂	-0.63 V - iR vs. RHE	-247 mA/cm ²	53	115
24	Commercial Cu NPs (60-80 nm), on GDL	Metallic Cu	Cu	Nafion	(Gas-phase reactant, supplied from behind)	1.0M KHCO3	Nafion 117	со	?	-300 mA/cm ²	52	116
25	(100)-rich Cu NCs, on GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	1.2 M KCI	Fumasep FAB- PK-130	CO ₂	-0.80 V - iR	-200 mA/cm ²	52	103
26	Electropolished (i.e., defective) Cu(911) single crystal	Metallic Cu	Cu	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	-	CO ₂	-1.36 V vs. RHE	-5 mA/cm ²	51	117
27	Star decahedron-shaped 30 nm Cu NPs, on glassy carbon RDE	Metallic Cu	Cu	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	?	CO ₂	-0.98 V - iR vs. RHE	-17 mA/cm ²	51	118
28	275 nm-thick Cu layer, evaporated on e-PTFE GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	"Sustanion"	CO ₂	-0.96 V - iR vs. RHF	-214 mA/cm ²	51	119
29	EDTA-assisted electrodeposited hollow porous copper microspheres, on carbon paper	Metallic Cu	Cu	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-0.82 V - iR vs. RHE	-8 mA/cm ²	50	120
30	60 nm step site-rich Cu NPs blow-dried with Ar, on GDL (6-cell stack)	Metallic Cu	Cu	Sustainion XA-9	(Gas-phase reactant, supplied from behind)	-	Home-made BPM	CO ₂	-4.35 V	-56 mA/cm ²	50	98
31	Mechanically polished and electropolished (i.e., defective) Cu(100) single crystal	Metallic Cu	Cu	-	(Solution-phase reactant, supplied in front)	0.1 M KI (pH 3.8)	Selemion CMV	CO ₂	-1.18 V - iR vs. RHE	-7 mA/cm ²	49 ⁺ - metalli c,1	121
32	Electropolished Cu plate	Metallic Cu	Cu	-	(Solution-phase reactant,	0.1 M	"Selemion"	CO ₂	-1.40 V - iR	-5 m4/cm ²	48	122
33	Electropolished Cu plate	Metallic Cu	Cu	-	(Solution-phase reactant,	0.1 M KCl	"Selemion"	CO ₂	-1.44 V - iR	-5	48	123
34	Commercial metallic Cu NWs, on GDL	Metallic Cu	Cu	?	(Gas-phase reactant,	1.0 M	?	со	-0.7 V	-92	48	124
35	Cu sputtered on PTFE GDL	Metallic Cu	Cu	-	supplied from behind) (Gas-phase reactant,	- -	X37-50 Grade	со	vs. RHE -2.2 V	mA/cm ² -25	48	125
36	Cu NPs (25 nm, Sigma Aldrich), on carbon paper GDL	Metallic Cu	Cu	LSC-D520 (Dupont, D-	supplied from behind) (Gas-phase reactant,	-	RT Sustainion	CO ₂	vs. ANODE -3.69 V	mA/cm ²	48	126

				520 = Nafion)	supplied from behind)		X37-50 Grade RT		vs. ANODE	mA/cm ²		
37	Commercial Cu NPs, on GDL	Metallic Cu	Cu	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FKB-PK-130	со	-0.67 V - iR vs. RHE	-500 mA/cm ²	47	127
38	Commercial 50 nm Cu NPs, on GDL	Metallic Cu	Cu	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3 (CO atmosphe re)	Nafion 117	со	-1.04 V - iR vs. RHE	-300 mA/cm ²	46	128
39	Cu-sputtered on GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK-130	со	-0.8 V vs. RHE	-93 mA/cm ²	46	129
40	Electropolished (i.e., defective) Cu(100) single crystal	Metallic Cu	Cu	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMV	CO ₂	-1.0 V vs. RHE	?	45	86
41	Cu overlayer sputtered on GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	Fumasep FAA- 3-PK-75	CO ₂	-1.61 V - iR vs. SHE	-300 mA/cm ²	45	130
42	Magnetron sputtered Cu layer on GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	0.5 M KOH	Fumasep FAA- 3-PK-75	со	-1.44 V - iR vs. SHE	-100 mA/cm ²	45	131
43	Cu electrosputtered on electrospun PVDF-HFP-based GDL with 0.2 μm pore size	Metallic Cu	Cu	poly-(vinyliden- fluoride-co- hexafluorpropylene)	(Gas-phase reactant, supplied from behind)	1.0 M KCl	Nafion 117	СО	?	-30 mA/cm ²	44	112
44	Commercial Cu NPs (25 nm) mixed with PTFE, on GDL	Metallic Cu	Cu	PTFE	(Gas-phase reactant, supplied from behind)	1.0 M KOH	"Sustanion"	СО	-0.60 V vs. RHE	-600 mA/cm ²	44	132
45	Metallic Cu layer, evaporated on GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAA- PK-130)	со	-0.64 V - iR vs. RHE	?	43	133
46	60 nm step site-rich Cu NPs blow-dried with Ar, on GDL	Metallic Cu	Cu	Sustainion XA-9	(Gas-phase reactant, supplied from behind)	-	Home-made BPM	CO ₂	-4.3 V vs. ANODE	-300 mA/cm ²	43	98
47	In-house Cu NPs, on GDL	Metallic Cu	Cu	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK-130,	со	-0.88 V - iR vs. RHE	-818 mA/cm ²	43	134
48	Oleylamine-stabilized Cu-NWs on glassy carbon, cleaned (ligand removal) via photonic curing method	Metallic Cu	Cu	-	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.1 V - iR vs. RHE	-19 mA/cm ²	42	135
49	44 nm Cu NCs, on glassy carbon	Metallic Cu	Cu	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMV	CO ₂	-1.1 V vs. RHE	-3 mA/cm ²	41	136
50	Magnetron sputtered Cu layer (100 nm) on GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	Nafion 212	CO ₂	-3.4 V vs. RHF	-200 mA/cm ²	40	137
51	Cu(100) crystal prepared via PVD of Cu on Si(100) crystal	Metallic Cu	Cu	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Selemion AMV	CO ₂	-0.97 V - iR vs. RHF	-4 mA/cm ²	39	138
52	Cu (400 nm) sputtered on a GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-50	CO ₂	-0.69 V - iR vs. RHE	-200 mA/cm ²	38	139
53	Electrochemically polished Cu foil	Metallic Cu	Cu	-	(Solution-phase reactant, supplied in front)	0.1 M KOH	Selemion AMV	со	-0.68 V vs. RHE	-1.4 mA/cm ²	38	140
54	Well-defined porous copper layer with controlled pore size (30 nm), depth (40 nm) and interspacing, on stainless steel	Metallic Cu	Cu	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMV	CO ₂	-1.7 V - iR vs. RHE	-15 mA/cm ²	37	141
55	Cu layer magnetron-sputtered on GDL	Metallic Cu	Cu	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO2	-1.17 V vs. RHE	-222 mA/cm ²	37	142
56	60 nm step site-rich Cu NPs blow-dried with Ar, on GDL	Metallic Cu	Cu	Sustainion XA-9	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAA- 3-PK-75	со	-0.43 V - iR vs. RHE	-67 mA/cm ²	29	98
	*_metallc.1We report here the highest C2H4 value with a total FE close to 100% (being 49 % as opposed to 50 %)											

2.1.2. Oxide-derived copper

As a follow-up of metallic copper, we now address 'oxide-derived' copper systems. Herein, oxidederived copper is liberally interpreted as including copper paired with any of the following elements: Li, Na, K, Rb, Cs, N, O, P, S, F, Cl, Br and/or I. We have decided on this grouping because all these catalysts share the same property, namely that one would expect these types of catalysts to reconstruct into (defective) metallic copper because of thermodynamic considerations, although this is not universally agreed upon by the community. Possibly more agreeable would be to state that these catalysts all share the property that they contain many undercoordinated, catalytically active sites such as e.g., kink sites, step sites, oxygen vacancies, defect sites etc.

Assuming herein that these oxide-derived copper systems typically reconstruct into defective metallic copper under CO2RR conditions, we consider it most logical to compare oxide-derived catalysts to metallic copper catalysts. A summary of best-performing oxide-derived catalysts for C_2H_4 production is given in Table S2. The oxide-derived copper catalyst dataset is derived from 134 unique publications and comprises a total of 157 catalyst systems, with 23 using CO as a reactant and 60 having been identified as alkaline CO₂ systems. A total of 83 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55%, though 37 of those were measured under alkaline CO2RR conditions. In our analysis, we will exclude such alkaline CO2RR systems, resulting in a total remaining sample size of 97 catalysts. Contrary to the size of the metallic Cu catalysts table, the quantity of oxide-derived catalysts matches better with expectations. Maximum C_2H_4 FEs for high performance oxide-derived catalysts are reliably observed in the 60%-70% range, with both CO and CO₂ reactants being well-represented. Outliers sporting maximum C_2H_4 FEs of 76%¹⁴³ and 78%¹⁴⁴, 83%¹⁴⁵ and 85%¹⁴⁶ are observed, with CO being used as a reactant for the catalysts yielding 76% and 78% C₂H₄. Regarding applied current densities, we find that most highselectivity oxide-derived catalysts were measured at <1-50 | mA/cm². Thus, when we compare oxidederived copper catalysts to metallic copper catalysts, we find that oxide-derived copper yields higher C_2H_4 FEs for top-performing systems (ca +10% in absolute terms), but at overall lower current densities. Both show a 'healthy' mix of CO and CO_2 being used as reactants (ca 1:1 ratio) for the high-performance segment, although we should clarify that this is only true because we specifically exclude alkaline CO2RR conditions in our analysis.

Having formed an informed opinion on what copper by itself is capable of, we now discuss catalyst systems where copper is paired with a second element; bi-elemental systems (Cu/M). We have opted to describe reported catalysts on a per-element basis, where we have grouped elements with similar behavior together. Importantly, as the sample sizes for the multi-elemental systems are too limited on a per-element basis for Cu/M systems we have opted to include alkaline CO2RR conditions in our analysis of these catalyst systems unless stated otherwise.

	Table S2. Oxide-derived Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C ₂ H4 FE	Reference
1	Template-assisted electroplated nanoporous (20 nm pore diameter) CuOx overlayer on Cu foam	Oxide-derived	Cu, O	-	(Gas-phase reactant, supplied from behind)	-	X37-50 Grade 60	CO ₂	-3.0 V vs. ANODE	-368 mA/cm ²	86	147
2	Amorphous CuOx film evaporation-deposited on GDL	Oxide-derived	Cu, O	-	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	"Nafion"	CO ₂	-1.3 V - iR vs. RHE	-32 mA/cm ²	85	146
3	KOH anodization-derived CuO nanoplate on Cu-sputtered GDL	Oxide-derived	Cu, O	-	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-50	CO ₂	-0.81 V - iR vs. RHF	-100 mA/cm ²	84	148
4	Defective CuO-derived Cu nanosheets, on glassy carbon	Oxide-derived	Cu,	Nafion	(Solution-phase reactant,	0.1 M	Nafion 117	CO2	-1.18 V - iR	-60	83	145
5	Pre-reduced, CuO-derived Cu quantum dots (5 nm), on a GDL	Oxide-derived	Cu,	-	(Gas-phase reactant,	1.0 M	FAA-3-PK-75	CO ₂	-0.93 V -iR	-1100	82	149
6	Calcined (in Al foil!) electroplated Cu dendrites, on GDL	Oxide-derived	Cu,	Nafion	(Gas-phase reactant,	3.0 M	Sustainion	со	?	-100	78	144
			O, Al (?)		supplied from behind)	КОН	X37-50 Grade T			mA/cm ²		
7	Amorphous CuOx film evaporation-deposited on GDL	Oxide-derived	Cu, O	-	(Solution-phase reactant, supplied in front)	-	FBAPK-13	CO ₂	-1.75 V vs. ANODE	-113 mA/cm ²	78	146
8	Porous Cu2O microparticles, on PTFE-modified GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KCl + x M H2SO4 (pH 1.9)	Nafion 115	со	?	-800 mA/cm ²	76	143
9	Defect-rich CuO NRs (800 nm) with HCOO- induced pores, on a GDL	Oxide-derived	Cu,	Nafion	(Gas-phase reactant,	2.0 M	Nafion 117	CO ₂	-0.8 V -iR	-144	75	150
10	Star shaped (322)-rich Cu2O large NPs, on glassy carbon	Oxide-derived	Cu,	Nafion D-521	(Solution-phase reactant,	0.1 M	Nafion	CO ₂	-1.2 V	-11	74	151
			0		supplied in front)	(pH 6.8)			VS. RHE	mA/cm²		
11	N-doped CuOx NPs derived from calcination of Cu(OH)3NO3 precursor at 350 °C, on GDL	Oxide-derived	Cu, O, N	Nation	(Gas-phase reactant, supplied from behind)	1 M KOH (pH 14)	Fumasep-FAA- 3-PK-130	CO ₂	-1.09 V - iR vs. RHE	- 962 ^{+_} oxidic, 2 mA/cm2	73	152
12	(220)-facet rich Cul nanodots (5.3 nm) prepared via in-situ reduction of (Cu(OH)2) NPs on carbon paper GDL in 0.1 M KHCO3 + 0.1 M KI	Oxide-derived	Cu, O, I	Nafion	(Gas-phase reactant, supplied from behind)	0.5 M KHCO3 + 0.5 M KI	FAA-3-PK -130	CO ₂	-2.1 V vs. RHE	-800 mA/cm ²	72	153
13	Grainboundary-rich Cu2CO3(OH)2-derived Cu nanoribbons with Carbon NP midlayer and graphite toplayer, on PTFE GDL	Oxide-derived	Cu, O, C	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumapem FAA-3-PK-130	CO ₂	-1.6 V vs. RHE	-700 mA/cm ²	71	154
14	Cu2O NCs on GDL, electrochemically pre-activated via in-situ reduction in the presence of CO ₂	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Sustainion® X37-50 grade RT	CO ₂	-0.6 V vs. RHE	-207 mA/cm ²	71	155
15	Defect-rich CuO NRs (800 nm) with HCOO- induced pores, on a GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	3.0 M KCI	Nafion 117	CO ₂	-1.07 V -iR vs. RHF	-312 mA/cm ²	71	150
16	Sputtered Cu with Carbon NP midlayer and graphite toplayer, on	Oxide-derived	Cu,	-	(Gas-phase reactant,	7.0 M	Fumasep FAB-	CO ₂	-0.57 V - iR	-100	70	156
17	Cu3(PO4)2 particles, on glassy carbon	Oxide-derived	Cu, O, P	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.45 V vs. RHE	-23 mA/cm ²	70	157
18	lodine-doped copper oxychloride NPs, on glassy carbon	Oxide-derived	Cu, O,	Nafion	(Solution-phase reactant, supplied in front)	(pH 6.8) 0.05 M KHCO3	-	CO ₂	-1.71 V vs. RHE	-29 mA/cm ²	70	158
19	Wet-chemical induced (NaOH / (NH4)2S2O8) high roughness	Oxide-derived	Cu, I	-	(Solution-phase reactant,	1.0 M	"Nafion"	со	-0.8 V	-130	70	159
20	Template-assisted electroplated nanoporous (20 nm pore	Oxide-derived	O Cu,	-	(Solution-phase reactant,	0.1 M	Nafion 117	CO ₂	-0.99 V	-63	70	147
21	diameter) CuOx overlayer on Cu plate 80-100 nm Cu2-xS NPs, on glassy carbon	Oxide-derived	O Cu,	-	supplied in front) (Solution-phase reactant,	KHCO3 0.1 M	Nafion 117	CO ₂	vs. RHE -1.2 V	mA/cm ² -51	69	160
			S		supplied in front)	KHCO3 (pH 6.8)			vs. RHE	mA/cm ²		
22	Cu nanoneedles electrodeposited on Cu-sputtered PTFE GDL	Oxide-derived	Cu, O	-	(Gas-phase reactant, supplied from behind)	3.0 M KCl + x mM HCl (pH 1)	Nafion 117	CO ₂	-2 V -iR vs. RHE	-1200 mA/cm ²	69	161
23	Branched/'spikey' CuO NPs derived from NH3-treated Cu2O NCs supported on Ketjen black, on on glassy carbon	Oxide-derived	Cu, O, C	Nafion (top-coat)	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.05 V -iR vs. RHE	-26 mA/cm ²	68	162
24	Calcined (in Al foil!) electroplated Cu dendrites, on GDL	Oxide-derived	Cu, O, Al (?)	Nafion	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-59 Grade 60	со	-3.1 V vs. ANODE	-100 mA/cm²	68	163
25	Electrochemical-assisted iodine-reconstructed Cu foil	Oxide-derived	Cu, O, I	-	(Solution-phase reactant, supplied in front)	1.0 M KOH (pH 14)	Nafion 117	СО	-0.56 V vs. RHE	-8 mA/cm ²	68	164
26	Cu3(PO4)2-derived Cu NPs on glassy carbon	Oxide-derived	Cu	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.48 V vs. RHE	-33 mA/cm ²	67	165
27	Grainboundary-rich Cu2CO3(OH)2-derived Cu nanoribbons, on carbon paper	Oxide-derived	Cu, O, C	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumapem FAA-3-PK-130	CO ₂	-1.27 V vs. RHE	-700 mA/cm ²	67	154
28	(111)-facet rich octahedral Cu2O NPs supported on hydroxl-rich acetylene black carbon, on glassy carbon	Oxide-derived	Cu, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	?	CO ₂	-1.1 V vs. RHE	-67 mA/cm ²	67	166
29	Electroplated (1 C/cm2) Cu2O from lactic-acid containing bath, on GDL	Oxide-derived	Cu, O	-	(Gas-phase reactant, supplied from behind)	1 M KOH (pH 14)	-	CO ₂	-0.8 V vs. RHF	-183 mA/cm ²	67	167
30	25 nm-thick Cu layer, evaporated on GDL	Oxide-derived	Cu	-	(Gas-phase reactant,	10.0 M	Fumasep FAB-	CO ₂	-0.54 V - iR	-275	66	156
31	Cu3N-derived Cu NWs, on copper foam	Oxide-derived	Cu, N	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 115	CO ₂	-1.0 V vs. RHE	-51 mA/cm ²	66	168
32	CuOx NPs electrodeposited in the presence of CTAB, on Cu plate	Oxide-derived	Cu,	-	(Solution-phase reactant,	(pH 6.8) 0.5 M KCl	Nafion 115	CO ₂	-1.0 V	-18	66	169
33	In-situ reduced porous CuOx NPs derived from hydrothermal	Oxide-derived	O Cu,	Nafion	supplied in front) (Gas-phase reactant,	3.0 M	FUMA-FAA-3-	CO ₂	vs. RHE -1.25 V -iR	mA/cm ² -536	66	170
34	synthesis with tetrapropylammonium, on a GDL Cu(OH)F-derived Cu/F, on GDL	Oxide-derived	O Cu.	-	supplied from behind) (Gas-phase reactant.	KOH 2.5 M	PK-130 NEOSEPTA	CO,	vs. RHE -0.89 V - iR	mA/cm ²	65	171
35	Non-swelling anion exchange innomer (AEI)-modified	Oxide-derived	0, F	AFI: Xenergy Pention	supplied from behind)	KOH	Fumasen FAA	0	vs. RHE	mA/cm ²	65	172
26	electroreduced CuO nanosheets, on GDL	Ovide-derived	0	D 18, PTFE	supplied from behind)	KOH (pH 14)	PK 130	602	vs. RHE	mA/cm ²	65	156
30	25 mill and Cullayer, evaporated off GDL	Okide-denved	Cu		supplied from behind)	KOH + 4	PK-130	002	vs. RHE	mA/cm ²	05	

			1			A 4 1/1		1	1	1	T	1
37	CuOx NP nanospheres, on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH	Fumasep FAA- PK-130	со	-0.72 V - iR vs. RHE	-1250 mA/cm ²	65	173
38	Anodization-dirived Cu2O NWs on Cu-sputtered FTO glass	Oxide-derived	Cu, O	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	-	CO2	-0.8 V vs. RHE	-2 mA/cm ²	65	174
39	Electrochemical-assisted chlorine-reconstructed Cu NCs on hollow tubular novelty GDE	Oxide-derived	Cu, O, Cl	-	(Gas-phase reactant, forced through surface)	5.0 M KOH	Fumasep FAB- PK-130	со	-0.8 V vs. RHE	-740 mA/cm ²	65	175
40	Cu2P2O7 particles, on glassy carbon	Oxide-derived	Cu, O, P	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.40 V vs. RHE	-18 mA/cm ²	64	157
41	Partially reduced, thermally annealed/oxidized electroplated Cu nanodendrites, on carbon paper	Oxide-derived	Cu, O	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 115	CO2	-1.4 V (no iR) vs. RHE	-27 mA/cm ²	63	176
42	Ultrasonic-assisted defective CuO-derived Cu nanosheets, on GDL	Oxide-derived	Cu, O	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAA- 3-PK-75	CO ₂	-0.52 V - iR vs. RHE	-300 mA/cm ²	63	177
43	In-situ formed Cu NPs supported on CuO nanosheets, on hydrophobic carbon cloth	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	2.0 M KCl + 0.01 M HCl	"from Fumasep"	CO ₂	-2.82 V vs. RHE	-700 mA/cm ²	63	178
44	In-situ reconstruction-driven (2D) defective CuO NWs, on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAA-3-PK-75	CO2	-0.56 V - iR vs. RHE	-324 mA/cm ²	62	179
45	In-situ reconstructed defective CuO NWs, on carbon paper	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-75	CO2	-0.56 V - iR vs. RHE	-524 mA/cm ²	62	179
46	Chloride-derived CuOx NPs prepared via chemical oxidation (H2O2), on Cu-sputtered GDL	Oxide-derived	Cu, O, Cl	-	(Gas-phase reactant, supplied from behind)	3.0 M KOH	?	CO ₂	-0.68 V -iR vs. RHE	-400 mA/cm ²	61	180
47	Metal–organic polyhedra-derived hollow CuOx NP based spheres	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO ₂	-0.9 V - iR vs. RHE	-143 mA/cm ²	61	181
48	Cu3N NPs, on glassy carbon	Oxide-derived	Cu, N	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-0.8 V vs. RHE	-60 mA/cm ²	61	182
49	Polystyrene template-assisted interconnected mesoporous Cu2O NPs, on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1 M KOH (pH 14)	Fumatech, FAA-3PK-130	CO ₂	?	-1000 mA/cm ²	61	183
50	Hollow Cu2O NPs on GDL, electrochemically pre-activated via insitu reduction in the presence of CO_2	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Sustainion® X37-50 grade RT	CO ₂	-0.6 V vs. RHE	-200 mA/cm ²	61	155
51	O2 plasma-treated (2 min, 20 W) Cu plate	Oxide-derived	Cu, O	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion	CO2	-0.9 V -iR vs. RHE	-10 mA/cm ²	60	184
52	Cu3N NCs_20nm supported on Ketjen Carbon, on carbon paper	Oxide-derived	Cu, N, C	Polyvinylidene fluoride (PVDF)	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 212	CO2	-1.6 V vs. RHE	-30 mA/cm ²	60	185
53	Hybrid material composed of graphene oxide nanodots on CuO nanosheets, on GDL	Oxide-derived	Cu, O, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAA– PK–130)	CO2	-0.82 V - iR vs. RHE	-500 mA/cm ²	60	186
54	Nitridized Cu NPs, on GDL	Oxide-derived	Cu, N	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Sustainion, X37-50 Grade T	со	?	-100 mA/cm ²	60	109
55	Electrochemical-assisted iodine-reconstructed Cu foil	Oxide-derived	Cu, O, I	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.09 V vs. RHE	-26 mA/cm ²	60	164
56	Cu2(OH)2CO3 NPs, on glassy carbon	Oxide-derived	Cu, O	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	?	CO ₂	-0.9 V vs. RHE	-50 mA/cm ²	60	187
57	Plasma-fluorinated Cu sputter-deposited on PTFE GDL	Oxide-derived	Cu, F	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	CO2	-0.57 V -iR vs. RHE	-250 mA/cm ²	60	188
58	Truncated octahedral Cu2O NPs having both (100) and (111) exposed facets supported on Carbon Black, on glassy carbon	Oxide-derived	Cu, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	?	CO ₂	-1.1 V vs. RHE	-23 mA/cm ²	59	189
59	(100)-rich sputtered Cu in presence of gaseous O2, on GDL	Oxide-derived	Cu,	-	(Gas-phase reactant,	2.0 M	Fumatech	CO ₂	-0.75 V	-122	59	190
60	Multi-shelled ("4.4") Cu2O spheres, on a GDL	Oxide-derived	Cu,	Nafion	(Gas-phase reactant,	1 M KOH	?	CO ₂	-0.85 V - iR	-900	59	191
61	Cu-metal/CuOx co-catalyst NPs with intimate interfacial contact, on	Oxide-derived	Cu,	Nafion	(Solution-phase reactant,	0.1 M	Nafion 117	CO ₂	-1.0 V	-15	59	192
62	Electroreduced KOH-derived Cu(OH)2 nanorods on Cu-sputtered	Oxide-derived	Cu,	-	(Gas-phase reactant,	1.0 M	?	CO ₂	-0.54 V - iR	-250	58	193
	carbon paper		0		supplied from behind)	КОН (рН 14)			VS. RHE	mA/cm ²		
63	Porous/partially hollow core/shell Cu2O microparticles, on GDL	Oxide-derived	Cu, O	Nation	(Gas-phase reactant, supplied from behind)	KOH	Fumasep FAA- PK-130	CO ₂	-1.1 V - IR vs. RHE	-260 mA/cm ²	58	134
64	O2-driven oxidized Cu NWs, on glassy carbon	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.03 V - iR vs. RHE	-34 mA/cm ²	58	195
65	(111)/(100) grain boundary-rich hexagonal-polyhedral Cu2O MPs (ca. 2 μm), on carbon paper	Oxide-derived	Cu, O	Nafion	(Solution-phase reactant, supplied in front)	0.2 M KI	Nafion 117	CO ₂	-1.3 V vs. RHE	-25 mA/cm ²	58	196
66	Crystalline CuO NPs embedded in amorphous CuO nanoflakes, on glassy carbon	Oxide-derived	Cu, O	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 115	CO ₂	-1.08 V vs. RHE	-16 mA/cm ²	58	197
67	Cu2(OH)2CO3 MPs with amorphous layer induced by 15 min microwave treatment, on carbon paper	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3- PK-130	CO2	-2.0 V vs. RHE	-317 mA/cm ²	58	198
68	Water-optimized CO ₂ feed reduction on Cu2O/Cu co-catalyst NPs derived from Cu2O/CuO precursor, on a GDL	Oxide-derived	Cu, O	Nafion, quaternary ammonia polysulphone	(Gas-phase reactant, supplied from behind)	-	QAPPT	CO2	-3.8 V vs. RHE	-1000 mA/cm ²	58	199
69	Fragmented Cu2O NPs of originally 20 nm supported on carbon black, on glassy carbon	Oxide-derived	Cu, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMV	CO2	-1.1 V -iR vs. RHE	-18 mA/cm ²	57	200
70	Cu(OH)Cl-derived Cu/Cl, on GDL	Oxide-derived	Cu, O, Cl	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH + 0.5 M KF	NEOSEPTA	CO2	-0.6 V - iR vs. RHE	-380 mA/cm ²	57	171
71	Grainboundary-rich defective Cu NCs derived from CO-assisted thermally reduced Cu2O NCs supported on carbon black (XC-72R), on GDL	Oxide-derived	Cu, O, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAB- PK-130	CO2	-1 V - iR vs. RHE	-500 mA/cm ²	57	201
72	In-situ electroplated CuOx in Br-containing electrolyte, on GDL	Oxide-derived	Cu, O	-	(Solution-phase reactant, supplied in front)	0.1 M KBr + 0.01 M CuSO4 (pH 2.5)	Nafion 117	CO ₂	-4.3 V vs. ANODE	-170 mA/cm ²	57 ⁺ - oxidic, s	202
73	Chloride-derived CuOx NPs prepared via chemical oxidation (H2O2), on Cu foil	Oxide-derived	Cu, O, Cl	-	(Solution-phase reactant, supplied in front)	0.05 M KHCO3	?	CO ₂	-2.6 V -iR vs. Ag/AgCl	-16 mA/cm²	56	180

				1				1				1
74	Oxygen-assisted plasma induced N-doped CuO NPs supported on Ketjen Black, on glassy carbon	Oxide-derived	Cu, O,	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMVN	CO2	-1.1 V - iR vs. RHE	-25 mA/cm ²	56	203
75	Electrodeposited Cu(OH)x dendrites (-200 mA/cm ² for 10 min from 0.05 M H2SO4/2.5 M KCl/7 mM CuSO4 bath with active CO ₂ flow),	Oxide-derived	Cu, O	-	(Gas-phase reactant, supplied from behind)	0.05 M H2SO4 +	Nafion 117	CO ₂	?	-200 mA/cm ²	56	204
76	Nitrogen vacancy-rich Cu3Nx NPs prepared via controlled lithiation/delithiation, on GDL	Oxide-derived	Cu, N,	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	X37-50 Grade T	CO ₂	-1.15 V vs. RHE	-375 mA/cm ²	56	205
77	CuO NSs, on glassy carbon, pre-reduced in halide-containing electrolyte (0.1 M KHCO3 + 0.01 M KBr)	Oxide-derived	Cu, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 + 10 mM	Nafion 117	CO2	-0.98 V - iR vs. RHE	-31 mA/cm²	56	206
78	Pre-reduced CuO NSs ("CISC-24"), on a GDL	Oxide-derived	Cu,	Nafion	(Gas-phase reactant, supplied from behind)	3.0 M	FAA-3-PK-130	CO ₂	-0.55 V -iR	-753 mA/cm ²	56	207
79	Chloride-derived CuOx NPs prepared via chemical oxidation (H2O2), on Cu-sputtered GDL	Oxide-derived	Cu, O,	-	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	?	CO2	-1.8 V -iR vs. RHE	-450 mA/cm ²	55	180
80	Branched/'spikey' Cu NPs obtained from KOH addition to catalyst ink, on GDL	Oxide-derived	Cu, O	Nafion, KOH	(Gas-phase reactant, supplied from behind)	-	X37–50	CO ₂	-3.25 V vs. ANODE	-281 mA/cm ²	55	208
81	Grainboundary-rich defective Cu NCs derived from CO-assisted thermally reduced Cu2O NCs supported on carbon black (XC-72R), on glassy carbon	Oxide-derived	Cu, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.0 V - iR vs. RHE	-3 mA/cm ²	55	201
82	Cu2O/Cu(OH)2 spherical and porous nanocages, on carbon paper	Oxide-derived	Cu, O	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.15 V vs. RHE	-31 mA/mg	55	209
83	Cu(OH)2-derived Cu NPs without additives (?), on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAB-PK-130	CO ₂	-0.9 V -iR vs. RHE	-440 mA/cm ²	55	210
84	Electrodeposited Cu(100), on GDL	Oxide-derived	Cu, O	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK-130	CO ₂	-1.26 V vs. RHE	-200 mA/cm ²	54	211
85	Cu3(PO4)2 particles, on Cu-sputtered PTFE GDL	Oxide-derived	Cu, O, P	Nafion	(Gas-phase reactant, supplied from behind)	2.0 M KOH	?	CO ₂	-2.4 V vs. RHE	-350 mA/cm ²	53	157
86	Commercial oxygen-passivated Cu NPs (<100 nm), on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3 (verify)	Nafion 117	со	?	-300 mA/cm ²	53	116
87	Mixed valency CuOx/Cu NPs, on glassy carbon	Oxide-derived	Cu, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.3 V vs. RHE	-18 mA/cm²	53	212
88	Cu(OH)F-derived Cu/F, on GDL	Oxide-derived	Cu, O, F	-	(Gas-phase reactant, supplied from behind)	(pH 6.8) 1.0 M KOH (pH	NEOSEPTA	со	-0.6 V - iR vs. RHE	-440 mA/cm ²	52	171
89	Electrochemical-assisted chlorine-reconstructed Cu nanocrystals on a 920 nm-thick Cu layer, sputtered on GDL	Oxide-derived	Cu, O,	-	(Gas-phase reactant, supplied from behind)	14) 1 M KOH + 0.2 M	Fumasep FKS- 50	CO ₂	-0.55 V - iR vs. RHE	-184 mA/cm ²	52	115
90	Lithiated CuOx MPs, on glassy carbon	Oxide-derived	Cu, O,	? polyvinylidene fluoride	(Solution-phase reactant, supplied in front)	0.1 M CsHCO3	Selemion AMV	CO ₂	-0.9 V -iR vs. RHE	-13 mA/cm ²	52	213
91	Pre-reduced CuO NSs, on carbon paper	Oxide-derived	Cu,	-	(Solution-phase reactant,	0.1 M	Nafion 117	CO ₂	-1.1 V	-12	52	207
92	Multi-shelled CuO microboxes, on carbon paper	Oxide-derived	Cu, O	Nafion D-521	(Solution-phase reactant, supplied in front)	0.1 M K2SO4	Nafion 117	CO ₂	-1.05 V vs. RHE	-28 mA/cm ²	51	214
93	Li-deficient Li2CuO2 microparticles	Oxide-derived	Cu, O,	Nafion	(Gas-phase reactant, supplied from behind)	(pH 5.8) 1.0 M KOH (pH	X37- 50 Grade T	CO ₂	-0.85 V vs. RHE	-195 mA/cm ²	51	215
94	Octahedral 500 nm Cu2O particles, on glassy carbon	Oxide-derived	Cu,	Nafion D-521	(Solution-phase reactant,	14) 0.1 M	Nafion 117	CO ₂	-1.2 V	-25	51	216
95	Partially thermally reduced electroplated Cu2Ox with NH4Cl- induced high step density, on plate	Oxide-derived	Cu, O	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-0.76 V - iR vs. RHE	-31 mA/cm ²	51	217
96	Electrochemical-assisted bromine-reconstructed Cu foil	Oxide-derived	Cu, O,	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.10 V - iR vs. RHE	-43 mA/cm ²	51	218
97	Vacancy-rich delithiated Li2-xCuO2 NPs, on GDL	Oxide-derived	Cu, Li,	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	X37- 50 Grade T	CO ₂	-0.85 V vs. RHE	-200 mA/cm ²	51	219
98	Spherical Cu(OH)2 nanorod (250 nm individual diameters)	Oxide-derived	Cu,	Nafion	(Solution-phase reactant,	0.5 M KCl	Nafion 115	CO ₂	-1.08 V	-28	51	220
99	Commercial Cu NPs, on GDL with custom-tailored MPL	Oxide-derived	Cu	Nafion, Pention-D72 (Xergy)	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-50	CO ₂	-1.44 V - iR vs. RHE	-1360 mA/cm ²	51	221
100	Electroplated CuOx catalyst forming highly porous structure during in-situ reduction, on glassy carbon	Oxide-derived	Cu, O	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	FAA-3-PK-75	CO ₂	-0.8 V vs. RHE	-4 mA/cm ²	51	222
101	Cu(OH)Br-derived Cu/Br, on GDL	Oxide-derived	Cu, O, Br	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH + 0.5 M KF	NEOSEPTA	CO ₂	-0.6 V - iR vs. RHE	-345 mA/cm²	50	171
102	Spherical 20 nm CuO NPs with loading of 1.7 mg/cm2, on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1 M KCI	Nafion 117	CO ₂	-1.02 V vs. RHE	-1600 mA/cm ²	50	223
103	Electrochemical-assisted iodine-reconstructed Cu foil	Oxide-derived	Cu, O, I	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.09 V - iR vs. RHE	-40 mA/cm ²	50	218
104	Electrochemical-assisted chlorine-reconstructed Cu foil	Oxide-derived	Cu, O,	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.11 V - iR vs. RHE	-40 mA/cm²	50	218
105	O2 plasma (400 mTorr / 20 W / 2 min) treated Cu foil	Oxide-derived	Cu, O	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 +	Nafion 211	CO ₂	-1.04 V - iR vs. RHE	-53 mA/cm²	50	224
106	Electrochemical-assisted chlorine-reconstructed Cu nanocrystals on a 920 nm-thick Cu layer, sputtered on GDL	Oxide-derived	Cu, O,	-	(Gas-phase reactant, supplied from behind)	1 M KOH + 0.2 M	Fumasep FKS- 50	со	-0.60 V - iR vs. RHE	-100 mA/cm²	50	115
107	"Cu10Cs1" (wt%/at.% not reported) co-catalyst electroplated on carbon paper	Oxide-derived	Cu,	-	(Solution-phase reactant,	0.1 M KCl	Nafion 117	CO ₂	-1.4 V	-45 mA/cm ²	50	225
108	Porous iodine-doped (0.02 % I, ICP) CuO MPs, on carbon paper	Oxide-derived	Cu, 0.1	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.2 V vs. RHE	-15 mA/cm ²	50	226
109	Electrochemical-assisted carbonate-reconstructed Cu foil	Oxide-derived	Cu, O	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMV	CO ₂	-0.96 V - iR vs. RHE	-3 mA/cm ²	49	227
110	O2 plasma (400 mTorr / 20 W) treated Cu foil	Oxide-derived	Cu, O	-	(Solution-phase reactant, supplied in front)	0.1 M CsHCO3	Selemion AMV	CO ₂	-0.96 V - iR vs. RHF	-41 mA/cm ²	49	228
111	Cu2O/CuO NPs, on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	?	CO ₂	?	-400 mA/cm ²	49	229
112	N-doped Cu (Cu3N) NCs, on GDL	Oxide-derived	Cu,	Nafion	(Gas-phase reactant,	1.0 M	FAB-PK-130	CO ₂	-1.13 V -iR	-1100	49	230

			0									
113	Porous CuO NSs (19.4 nm), on "PTFE GDL"	Oxide-derived	Cu,	Nafion	(Gas-phase reactant,	3.0 M	FAB-PK-130	CO ₂	-0.89 V -iR	-430	49	231
114	Cu2O NCs on GDL, electrochemically pre-activated via in-situ reduction in the presence of CO_2	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Sustainion® X37-50 grade	со	-0.6 V vs. RHE	-184 mA/cm ²	48	155
115	Microwave-assisted additional Cu-induced activity enhanced CuO nanosheets, on glassy carbon	Oxide-derived	Cu, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.2 V - iR vs. RHE	-29 mA/cm²	47	232
116	Defective CuO-derived Cu nanosheets, on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	(pH 6.8) 0.05M H2SO4 + 3 M KCl (pH	Nafion 117	CO ₂	-1.45 V - iR vs. RHE	-560 mA/cm ²	47	233
117	30 nm CuO NPs, on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-50 grade T	со	-2.44 V vs. ANODE	-1000 mA/cm ²	47	234
118	P-doped CuOx nm-sized spherical agglomerates, on GDL	Oxide-derived	Cu, O, P	Nafion	(Gas-phase reactant, supplied from behind)	1 M KOH (pH 14)	3PK-130	CO ₂	-1.4 V vs. RHE	-350 mA/cm ²	47	235
119	CuBaCO3 NPs, on Cu-sputtered PTFE GDL	Oxide-derived	Cu, Ba, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO ₂	-0.65 V vs. RHE	-400 mA/cm ²	47	236
120	F-doped CuO large NPs	Oxide-derived	Cu, O, F	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH	Fumasep FAA- 3-PK-130	CO ₂	-1.05 V - iR vs. RHE	-320 mA/cm ²	46	237
121	15 nm Cu2O NPs, on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH	Fumatech	CO ₂	-0.79 V - iR vs. RHE	-300 mA/cm ²	46	238
122	CuOx MPs electrodeposited on carbon paper	Oxide-derived	Cu,	-	(Gas-phase reactant,	1.0 M	FAA-3-PK-75	CO ₂	-0.75 V - iR	-601	46	239
123	Ultrathin porous Cu foil chemically converted into Cu(OH)2 nanoneedles, reduced by H2 under slow temperature ramp. Hydrophobic full-metal CDF	Oxide-derived	Cu, O	-	(Gas-phase reactant, supplied from behind)	1.0 M KCl + 1.0 M	Nafion 117	CO2	-1.82 V vs. RHE	-600 mA/cm ²	46	240
124	P-doped pulse-electroplated Cu (Cu0.92P0.08) on carbon paper	Oxide-derived	Cu,	-	(Gas-phase reactant,	1.0 M	Nafion 115	CO2	-0.72 V -iR	-210	46	241
125	Cu2O NPs , on GDL	Oxide-derived	Cu, O	Pention D18 (Xergy Co., Ltd.)	(Gas-phase reactant, supplied from behind)	-	In-house BPM with water splitting catalyst + perforated AEM	CO ₂	-4.5 V vs. ANODE	-300 mA/cm ²	46	242
126	O2 plasma-treated (20 s, 20 W) chloride-derived CuOx NCs, on Cu plate	Oxide-derived	Cu, O, Cl	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 115	CO ₂	-1.05 V -iR vs. RHE	-50 mA/cm²	45	243
127	Electrochemically reduced CuO micropore nanowire-modified Cu foam: oxygen-bearing copper micropore NWs	Oxide-derived	Cu, O	-	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.0 V - iR vs. RHF	-100 mA/cm ²	45	244
128	Electrochemically restructured Cu by cycling in 0.1 M KHCO3 + 16 mM KCl as per [insert Robert Sloan ref], on Cu plate	Oxide-derived	Cu, O, Cl	-	(Solution-phase reactant, supplied in front)	0.1 M CsHCO3 (pH 6.8)	Selemion AMV	CO ₂	-1 V - iR vs. RHE	-14 mA/cm ²	45	245
129	Pre-reduced (CO ₂ RR conditions) CuO NSs, on glassy carbon	Oxide-derived	Cu, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMV	CO2	-1.1 V - iR vs. RHE	-35 mA/cm ²	45	246
130	Porous Cu2O nanosphere superparticle, on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	2.0 M KOH	Fumasep FAB- PK-130	CO ₂	-0.75 V - iR vs. RHF	-700 mA/cm ²	45	247
131	(100)-rich Cu NPs derived from in-situ reduction of phosphate- doped copper oxychloride pre-cursor, on GDL	Oxide-derived	Cu, O, P, Cl	Nafion	(Gas-phase reactant, supplied from behind)	-	FAA-3-PK-130	со	-2.23 V vs. ANODE	-700 mA/cm ²	45	248
132	Highly porous CuOx NWs derived from polymer templating strategy (poly(acry(on)trile-blockmethy)methacry(ate)), on a GDI	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH ⁺ _oxidic,7	Fumasep PK 130	CO ₂	-0.98 V -iR vs. RHF	-238 mA/cm ²	45	249
133	CuO NRs, on a GDL	Oxide-derived	Cu,	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M	Selemion	со	-3.2 V -iR	-900 mA/cm ²	45	250
134	Cu2(PO4)(OH) microrods, on GDL	Oxide-derived	Cu, O, P	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH	?	CO ₂	-1.38 V vs. RHE	-265 mA/cm ²	44	251
135	CuO nanoneedles, on Toray Carbon Paper (TGP-H-60)	Oxide-derived	Cu,	Fluorinated ethylene	(Gas-phase reactant,	1 M KOH	?	CO2	-0.76 V - iR	-975	44	252
136	CuOX NPs electrodeposited from 0.1 M CuCOOH + 0.1 M KHCO3 + sodium tartrate dibasic dihydrate under constant CO ₂ bubbling, on	Oxide-derived	Cu, O	-	(Gas-phase reactant, supplied from behind)	- -	"Sustainion"	CO ₂	-2.7 V vs. ANODE	-300 mA/cm ²	44	253
137	Mixed Cu-metal/Cu2O MPs with prism-shaped Cu2O shell, on glassy carbon	Oxide-derived	Cu, O	Nafion	(Solution-phase reactant, supplied in front)	? 0.1 M KHCO3	Nafion 117	CO ₂	-1.08 V vs. RHE	-15 mA/cm²	44 ⁺ - oxidic, 8	254
138	Mixed CuOx MP catalyst containing Cu4O3 phase, on GDL	Oxide-derived	Cu,	Sustainion XA-9	(Gas-phase reactant,	Cs2SO4	Nafion 117	CO ₂	-0.64 V	-300 mA/cm ²	43	255
139	(100)-rich Cu NPs derived from in-situ reduction of phosphate- doped copper oxychloride pre-cursor, on GDL	Oxide-derived	Cu, O, P, Cl	Nafion	(Gas-phase reactant, supplied from behind)	-	FAA-3-PK-130	CO2	-3.26 V vs. ANODE	-400 mA/cm ²	43	248
140	Cu2O NPs , on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	0.9 M KHCO3 +	Nafion 115	CO ₂	?	-300 mA/cm ²	43	256
141	In-situ reduced CuOx MPs under CO atmosphere, yielding small Cu	Oxide-derived	Cu,	Nafion	(Gas-phase reactant,	1.0 M	FAA-PK-130	со	-0.66 V -iR	-390	43	257
142	P-doped electroplated ("-0.5 V") Cu layer on carbon paper	Oxide-derived	Cu,	-	(Solution-phase reactant,	0.1 M Csl	Nafion 117	CO ₂	-1.2 V	-50	43	258
143	Water-quenced 500 C-warm CuO particles, on GDL	Oxide-derived	Cu,	Nafion	(Gas-phase reactant,	1.0 M	FAB-PK-130	CO ₂	-0.84 V - iR	-40	42*-	259
			0		supplied from behind)	KOH (pH 14)			VS. RHE	mA/cm ²	1 (50)	
144	CuO nanosheet-functionalized Cu GDL prepared via thermal evaporation	Uxide-derived	Cu, O	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Selemion	co	-2.25 V - iR vs. NHE	-200 mA/cm ²	42 ⁺ - oxidic, 4	260
145	Partially oxidized Cu NPs, on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	0.5 M KH2PO4 + 0.5 M K2HPO4 + 0.5 M KCl (pH 6.5)	Nafion 117	co	?	-200 mA/cm ²	41	261
146	Pre-reduced (100)/(111)-interface rich CuOx NPs on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	?	CO ₂	-1 V - iR vs. RHE	-300 mA/cm ²	41	262
147	Mixed valency CuOx/Cu aerogel, on carbon paper	Oxide-derived	Cu, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KCI	"Nafion"	CO ₂	-1.1 V - iR vs. RHF	-79 mA/cm ²	40	263
148	Highly defective 150 nm Cu3N-derived CuOx NPs, on GDL	Oxide-derived	Cu,	Nafion	(Gas-phase reactant,	-	Sustainion	со	-4.6 V	-500	40	264

			0, N		supplied from behind)		37-50		vs. ANODE	mA/cm ²		
149	'Highly fragmented' CuO NPs, on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1 M KOH (pH 14)	Fumasep FAA- PK-130)	со	-0.66 V - iR vs. RHE	-175 mA/cm ²	40	133
150	In-situ reduced, highly porous Cu2P2O7, on custom GDL	Oxide-derived	Cu, P, O	Nafion	(Gas-phase reactant, supplied from behind)	-	QAPPT	CO ₂	-3.36 V vs. ANODE	-350 mA/cm ²	40	265
151	Commercial um-sized CuCl reduced in-situ, on carbon paper	Oxide-derived	Cu, Cl	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMV	CO ₂	-1.06 V -iR vs. RHE	-39 mA/cm²	39	266
152	'Fragment' CuOx-derived Cu NPs, on GDL	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1 M KOH (pH 14)	Fumasep FAB- PK-130	СО	-0.76 V vs. RHE	-59 mA/cm ²	38	267
153	CuOx NRs, on a "PTFE membrane"	Oxide-derived	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAA-3-PK-130	со	-0.7 V -iR vs. RHE	?	36	268
154	In-situ electroplated Cu NCs, prepared via oxidative/reductive cycling in Cl- containing solution, on carbon paper	Oxide-derived	Cu, O	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	"Selemion"	CO2	-0.97 V - iR vs. RHE	-20 mA/cm ²	35	269
155	Co-plated P-doped Cu NPs, on Cu substrate	Oxide-derived	Cu, O, P	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.15 V - iR vs. RHE	-16 mA/cm ²	34	270
156	Electrodeposited Cu, on GDL	Oxide-derived	Cu, O	-	(Gas-phase reactant, supplied from behind)	-	FAA-3-50	со	-0.98 V vs. RHE	-87 mA/cm ²	33	271
157	P-doped Cu NPs (P/Cu of 0.075), on carbon paper	Oxide-derived	Cu, P	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 115	CO ₂	-1.6 V vs. RHE	-58 mA/cm ²	31	272
	¹ -ordel: ¹ Many of the total FE values in the publication were shown to be ca. 110 % - thus we report here the highest C2H4 value with a total FE close to 100% (being 42 % as opposed to 50 %)											
	*_oxidic.2Derived from FE(C2H4) and j(C2H4) as opposed to the reported LSV											
	$^{+_\text{oxidic:}3}\text{SI}$ table states 0.1 M KHCO3 without KBr, but text states with KBr											
	^{+_oxidic,4} Disagreement between numbers in main text and SI, report here number provided in main text											
	^{+_oxidic,5} Highly unstable signal due to continuous in-situ electrodeposition of Cu											
	^{+_oxidic,7} Text denotes "CO ₂ -saturated 1.0 M KOH", but SI table says electrolyte is 1.0 M KOH											
	^{+_oxidic,8} Reported total FE is unreasonably high: 106.6%	1		1	1						1 1	1

2.2. Cu/M systems resembling oxide-derived copper: Al, B and Mg 2.2.1. Al/Cu

A summary of best-performing Cu/Al bi-elemental catalysts for C_2H_4 production is given in Table S3. The Cu/Al catalyst dataset is derived from 22 unique publications and comprises a total of 26 catalyst systems, with 1 using CO as a reactant and 17 having been identified as alkaline CO₂ systems. A total of 5 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55%, though 3 of those were measured under alkaline CO2RR conditions. The best catalyst yields 80% C_2H_4 and concerns an alkaline CO2RR system.²⁷³ The highest non-alkaline catalyst system yields 79% C_2H_4 and uses CO₂ as the reactant.²⁷⁴

Cu/Al systems are mostly found in three forms; i) as alloys with relatively low Al content (alloyed/dopedtype), ii) as a mix of different phases consisting of randomly distributed CuOx and AlOx particles (mixedphase/janus-type), or iii) in the form of Cu NPs supported on Al_2O_3 or $AlCuO_4$ sheets (mixed-phase/janustype and A-supports-B type). Low concentration Al-doped systems are common on account of the propensity of aluminum to selectively leach under alkaline conditions, allowing for the creation of highly porous materials with trace amounts of aluminum retained in the final product. Generally, we see that such alloyed systems yield C₂H₄ FEs between 30% and 55%, though a single outlier has reported such a system to make up to 80% C₂H₄.²⁷³ Many of the mixed phase systems consist of CuOx NPs combined with (typically) amorphous AlOx particles. Such catalysts generally exhibit relatively poor C_2H_4 performance. The final category comprises Cu NPs supported on an AIOx phase and is an important category for Cu/Al catalysts, with the AlOx supporting phase typically consisting of Al-containing 2D nanosheets such as e.g., Al_2CuO_4 or Al_2O_3 .²⁷⁴⁻²⁷⁶ However, Cu can also be the 'support' such as is the case for this reference²⁷⁶, wherein a thin layer of Al_2O_3 was selectively deposited on the Cu [111] sites. Importantly, there generally exists an intimate interface between the (oftentimes two-dimensional) Alcontaining phase and the copper particles present in the system. This combination of properties results in systems that exhibit high C₂H₄ performance, with FEs ranging between 60%-80%. In general, an optimum in C₂H₄ is observed with respect to Al content^{274,277-280} and disagreement exists regarding *in*situ Al stability with some authors reporting that the Al dissolves^{278,279} whilst other authors state that the catalyst is stable during operation.273,275

	Table S3. Al-based Cu		1						1			1
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C2H4, FE	Reference
1	CNP and graphite layer on top of chemically etched co-sputtered Cu/Al layer on PTFE GDL	Overlayer, Alloyed/Doped	Cu, Al, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	CO ₂	-1.67 V - iR vs. RHE	-400 mA/cm ²	80	273
2	CuO NPs supported on Al2CuO4 nanosheets, on glassy carbon	Mixed-phase/Janus, atomically mixed/crystalline, A- supports-B	Cu, Al, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Selemion AMV	CO2	-0.99 V - iR vs. RHE	-2 mA/cm²	79*- ^{Cu-} Al,1	274
3	CuOx nanocubes/rectangles supported on AI2O3 nanosheets having an AI2CuO2 interface layer, mixed with CNPs, on glassy carbon	Mixed-phase/Janus, atomically mixed/crystalline, A- supports-B	Cu, Al, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO2	-1.2 V - iR vs. RHE	-60 mA/cm ²	71	275
4	CuO NPs supported on Al2CuO4 nanosheets, on GDL	Mixed-phase/Janus, atomically mixed/crystalline, A- supports-B	Cu, Al, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAA-3- PK-130	CO ₂	-2.03 V - iR vs. RHE	-600 mA/cm ²	70	274
5	AI2O3 partial overlayer (0.8 nm) specifically covering the (111) facets of Cu NPs (10 nm) supported on CNPs, on Ta-sputtered PTFE GDL	Core/shell, A- supports-B	Cu, Al, C, O, Ta	Nafion	(Gas-phase reactant, supplied from behind)	5.0 M KOH	FAB-PK-130	CO2	-1.1 V - iR vs. RHE	-253 mA/cm ²	61	276
6	Al2O3 partial overlayer (0.8 nm) specifically covering the (111) facets of Cu NPs (10 nm) supported on CNPs, on GDL	Core/shell, A- supports-B	Cu, Al, C, O	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Selemion AMV	CO ₂	-1.1 V - iR vs. RHE	-23 mA/cm ²	54	276
7	Al-doped (0.09 wt% > 0.27 at.%), agglomerated CuOx nanosheets, on carbon paper	Alloyed/Doped	Cu, Al, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 + 0.3 M KCI	Nafion 117	CO2	-0.95 V - iR vs. RHE	-30 mA/cm²	54	279
8	Al-doped CuOx NCs ("CuAl-II"), on Toray GDL	Alloyed/Doped	Cu, Al, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	CO2	?	-900 mA/cm ²	51	277
9	QAPEEK (anionic ionomer) layer on top of electrochemically leached (-150 mA in KOH) Cu/Al co-sputtered midlayer on PTFE GDL	Overlayer, Alloyed/Doped	Cu, Al	QAPEEK	(Gas-phase reactant, supplied from behind)	-	QAPPT	CO ₂	-3.4 V vs. ANODE	-800 mA/cm ²	50	281
10	Electro-reduced KOH-treated Cu/Al LDHs, yielding AlOx decorated Cu NPs, supported on CNPs, on GDL (backside sealed with epoxy)	Mixed-phase/Janus, A-supports-B	Cu, Al, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	FAA-3-PK-130	CO2	-1.06 V - iR vs. RHE	-48 mA/cm²	50	282
11	Hollow Al-doped CuOx spheres obtained via pyrolisis of impregnated Cu-based MOF, on GDL	Alloyed/Doped	Cu, Al	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO ₂	-1.377 V vs. RHE	-626 mA/cm²	50	283
12	Al-doped (1.9 at%, ICP) CuOx nanoflakes derived from calcining Cu MOF, on a GDL	Alloyed/Doped	Cu, Al, O	Nafion	(Gas-phase reactant, supplied from behind)	0.5 M K2SO4 (pH 2)	Sustainion X37-50 Grade RT	CO ₂	?	-700 mA/cm ²	49	278
13	CuO NPs supported on Al2CuO4 nanosheets, on GDL	Mixed-phase/Janus, atomically mixed/crystalline, A- supports-B	Cu, Al, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAA-3- PK-130	СО	-0.56 V - iR vs. RHE	-500 mA/cm ²	48	274
14	Al-doped (0.09 wt% > 0.27 at.%), agglomerated CuOx nanosheets, on carbon paper	Alloyed/Doped	Cu, Al, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAA-3-PK-130	CO ₂	-0.88 V - iR vs. RHE	-700 mA/cm ²	46	279
15	Al-doped Cu2O microparticles, on carbon paper	Alloyed/Doped	Cu, Al, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO2	-1.23 V vs. RHE	-12 mA/cm ²	45	284
16	Semi-porous Cu3Al-derived wires, on carbon paper - prepared by electrospinning metal salts with PVP, followed by calcination and alkaline Zn leaching step	Alloyed/Doped	Cu, Al	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO2	-2.1 V vs. RHE	-600 mA/cm ²	44	285
17	Cu100AI7.88-OD nanosheets (number representing wt%), consisting of CuOx phases and amorphous Al2O3 phase mixed homogeneously, on GDL	Mixed-phase/Janus	Cu, Al, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FUMA-FAA-3- PK-130	CO2	-1.68 V vs. RHE	-693 mA/cm ²	44	280
18	Al-doped Cu-based layered double hydroxide (LDH), on carbon paper	Alloyed/Doped	Cu, Al	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Nafion 115	CO ₂	-1.4 V vs. RHE	-300 mA/cm ²	44	286
19	Al-doped ("5%") octahedral Cu2O NPs, on a GDL	Alloyed/doped	Cu, Al, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO2	-1.1 V vs. RHE	-338 mA/cm ²	42	287
20	Al/Cu alloy layer (5% Al) (400 nm) sputtered on a GDL	Alloyed/Doped	Cu, Al	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-50	CO ₂	-0.65 V - iR vs. RHE	-200 mA/cm ²	39	139
21	400 nm thick evaporated Cu/Al alloy (95:5), on GDL	Alloyed/Doped	Cu, Al	-	(Gas-phase reactant, supplied from behind)	-	AF1-HNN8-50- X	CO ₂	?	-100 mA/cm ²	37	288
22	Electrochemically reduced nanosheet-like mixed metal Cu5Al1Ox, on GDL	Mixed-phase/Janus	Cu, Al, O	Nafion	(Gas-phase reactant, supplied from behind)	0.2 M KHCO3	-	CO2	-1.2 V vs. RHE	-75 mA/cm ²	36	289
23	CNP and graphite toplayers, on CuO/CuAl2O4 catalyst prepared via co-precipitation and calcination (800 °C) midlayer , on Cu-sputtered PTFE GDL	Atomically mixed/Crystalline, A- supports-B	Cu, Al, O, C	Nafion	(Gas-phase reactant, supplied from behind)	2.0 M KOH	FAA-3-PK-130	CO2	-1.1 V vs. RHE	-175 mA/cm ²	35	290
24	Porous Cu MPs prepared via dealloying Al2Cu pre-cursor, on GDL	Alloyed/Doped	Cu, Al	-	(Gas-phase reactant, supplied from behind)	-	AF1-HNN82 50-X	CO ₂	-3.7 V vs. ANODE	-75 mA/cm ²	34	291
25	Calcined (800 °C) Cu/Al LDH pre-cursor, yielding CuAl2O4/CuO NPs, on GDL	Mixed-phase/Janus	Cu, Al, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	РК-3-К-130	CO ₂	-0.92 V vs. RHE	-200 mA/cm ²	30	292
26	Thermally annealed Cu-Al LDH, on GDL	Alloyed/Doped	Cu, Al	Nafion	(Gas-phase reactant, supplied from behind)	? 1.0 M KOH	FAA-3-PK-130	CO ₂	-0.9 V - iR vs. RHE	-951 mA/cm ²	28	293
	^{+_Cu-AJ,2} Main text states 79.4, SI states 82.4. Report here main text value											

2.2.2. B/Cu

A summary of best-performing Cu/B bi-elemental catalysts for C₂H₄ production is given in Table S4. The Cu/B catalyst dataset is derived from 17 unique publications and comprises a total of 20 catalyst systems, with 0 (none) using CO as a reactant and 9 having been identified as alkaline CO_2 systems. A total of 3 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55%, though 1 of those was measured under alkaline CO2RR conditions. The top-most catalyst yields 68% C₂H₄ and concerns an alkaline CO2RR system.²⁹⁴ The highest non-alkaline system yields 59% C₂H₄ and uses CO₂ as the reactant.²⁹⁵ The relatively large number of publications investigating the CO2RR performance of Cu/B systems can likely be (partially) attributed to an 'early' (in terms of new-era CO2RR research) publication by Yansong et al. (2018) who investigated the catalytic activity of porous dendritic Cu particles having a boron gradient, and found it to yield a maximum C₂H₄ FE of ca. 53%.²⁹⁶ Virtually all Cu/B systems can be categorized as alloyed/doped-type systems, although the (bulk) boron contents are spread out between as little as 0.15 at.%²⁹⁷ up to >12 at.%²⁹⁸. Furthermore, an uneven boron distribution is typically reported with boron having the propensity to be preferentially located at the surface. Some authors claim that B-doped Cu NPs will fragment upon application of reductive potentials²⁹⁹, though this is not reported in other works. We find that the large heterogeneity of the overall Cu/B dataset makes generalization virtually impossible beyond stating that boron doping seems to have 'an effect'. Whether or not this effect is due to fragmentation (possibly) in concert with increased C_2H_4 performance for alkaline CO_2 reduction, or due to an increase in the number of oxygen vacancies, or due to boron gradients influencing the charge of the copper atoms at the interface is uncertain. Even purely morphological effects cannot be ruled out with the reported systems ranging from boron overlayers^{270,288} to NPs with core/shell morphology^{296,300} to doped 2D nanosheets²⁹⁷ and nanowires^{301,302} to ultra-small metallic copper nanoparticles derived the reductive fragmentation of B-doped CuOx.²⁹⁹ Overall, the C_2H_4 activity of Cu/B catalyst systems is lackluster, ranging typically between 40%-50%, though outliers up to a maximum of 68% exist.²⁹⁴

	Table S4. B-based Cu		1									1
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C ₂ H4 FE	Reference
1	Thin quasi-graphitic carbon-shell functionalized, B-doped Cu NPs supported on carbon fibers, on GDL	Alloyed/Doped, Core/Shell	Cu, C, B	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Sustanion X37-50	CO ₂	-0.55 V -iR vs. RHE	-300 mA/cm ²	68	294
2	Highly tensile strained Cu(100) NCs with boron nitride shell grown on top, mixed with CNPs and PTFE, on Cu-sputtered PTFE GDL	Core/shell	Cu, B, N	Nafion, PTFE	(Gas-phase reactant, supplied from behind)	3.0 M KCl ("pH = 1", according to paper)	Nafion 117	CO2	-2.75 V vs. RHE	-1200 mA/cm ²	59	295
3	Oxygen-vacancy rich B-doped CuO 'nanobundles' (nanowires + nanosheets), on carbon paper	Alloyed/Doped	Cu, O, B	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.1 V vs. RHE	-20 mA/cm ²	58	302
4	Fragmented Cu NPs derived from B-doped (2.1 at. %) CuOx NPs (30 nm, with 2.7 nm B-enriched shell), on carbon paper	Alloyed/Doped (gradient)	Cu, O, B	Nafion	(Gas-phase reactant, supplied from behind)	7.0 M KOH	FAA-3-PK-130	CO ₂	-0.69 V - iR vs. RHE	-300 mA/cm ²	53	299
5	Porous dendritic Cu with a boron gradient (higher surface B content), on glassy carbon	Alloyed/Doped (gradient)	Cu, B	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KCI	Nafion 117	CO2	-1.1 V -iR vs. RHE	-55 mA/cm ²	52	296
6	B-doped CuO MPs consisting of aggregated NSs, on carbon paper	Alloyed/doped	Cu, O, B	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.2 V vs. RHE	-15 mA/cm ²	51	303
7	B-doped Cu (1.4 at. % B; NaBH4 as reductant and Boron source) NPs mixed with PTFE, on GDL	Alloyed/Doped	Cu, B	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK-75	CO ₂	-0.45 V -iR vs. RHE	-200 mA/cm ²	49	304
8	B-doped ("5 %" > 11.9 at. % from ICP) CuOx particles (B gradient at surface), on carbon paper	Alloyed/Doped (gradient)	Cu, O, B	Nafion	(Solution-phase reactant, supplied in front)	1.0 M KOH	Nafion 117 (?)	CO ₂	-1.0 V vs. RHE	?	49	298
9	Calcined B-doped Cu(OH)2 nanorods yielding B-doped (8.2 at. %)	Alloyed/Doped	Cu, O, B	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	"Sustainion"	CO ₂	-0.62 V	-167 mA/cm ²	48	305
10	Fragmented Cu NPs derived from B-doped (2.1 at. %) CuOx NPs (30 nm, with 2.7 nm B-enriched shell), on glassy carbon	Alloyed/Doped (gradient)	Си, О, В	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-0.72 V - iR vs. RHE	?	46	299
11	Calcined B-doped Cu(OH)2 nanorods yielding B-doped (8.2 at. %) CuOx NPs. on carbon paper	Alloyed/Doped	Cu, O, B	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	Selemion AMV	CO ₂	-1.01 V vs. RHE	-115 mA/cm ²	40	305
12	B/Cu alloy layer (5% B) (400 nm) sputtered on a GDL	Alloyed/doped	Cu, B	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-50	CO ₂	-0.66 V - iR vs. RHF	-200 mA/cm ²	40	139
13	B-doped dendritic Cu (B gradient at surface) mixed with PTFE, on GDL	Alloyed/Doped (gradient)	Cu, O, B	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	CO ₂	-1.33 V vs. SHE	-200 mA/cm ²	39	300
14	B-doped (0.15 at. %) CuO NSs,on carbon paper	Alloyed/doped	Cu, O, B	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	?	CO ₂	-1.2 V vs. RHE	-31 mA/cm ²	39	297
15	Cu-SAC (<1 wt%) on hetero-atom (B) doped C3N4 lamellae, on carbon paper	Single atom, Atomically mixed/Crystalline	Cu, C, N, B	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	"ion exchange membrane"	CO ₂	-0.9 V vs. RHE	-14 mA/cm ²	34	306
16	Co-plated B-doped Cu NPs, on Cu substrate	Alloyed/Doped	Cu, O, B	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.08 V - iR vs. RHE	-10 mA/cm ²	32	270
17	B-doped CuOX NPs ("B0.02M"), on a GDL	Alloyed/Doped, Mixed-phase/Janus	Cu, B, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO ₂	-0.97 V vs. RHE	-163 mA/cm ²	32	307
18	400 nm thick evaporated Cu/B alloy (95:5), on GDL	Alloyed/Doped	Cu, B	-	(Gas-phase reactant, supplied from behind)	-	AF1-HNN8-50- X	CO ₂	?	-100 mA/cm ²	30	288
19	B-doped ("5 %" > 11.9 at. % from ICP) CuOx particles (B gradient at surface), on carbon paper	Alloyed/Doped	Cu, O. B	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117 (?)	CO2	-1.0 V	-35 mA/cm ²	30	298
20	B-doped Cu2O NWs, on Toray GDL	Alloyed/Doped	Cu, O, B	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.2 V vs. RHE	-32 mA/cm ²	26	301

2.2.3. Mg/Cu

A summary of best-performing Cu/Mg bi-elemental catalysts for C_2H_4 production is given in Table S5. The number of sources is small, comprising 6 unique publications describing 8 catalyst systems. However, considering one of the results looks incredibly promising we have opted for a brief individual discussion section. Specifically, Mingcan et al. report a maximum C₂H₄ FE of ca. 70% under alkaline CO2RR conditions for a pseudo-core/shell type of catalyst where a thin MgOx layer is deposited around Cu NPs.¹⁰⁵ Importantly, they also report on CO reduction and show similarly high catalytic activity – although optimum performance (CORR; 80% C₂H₄) was observed for partial pressures below 1 atm. Improved C₂H₄ performance for lower reactant partial pressures has been reported for other catalyst systems^{173,308}, though the reported maximum C_2H_4 FE for this Cu/Mg system is extraordinarily high even when accounting for modulated partial reactant pressure. However, this exceptional performance is not corroborated by the other sources. Ji *et al.* come closest, reporting a maximum C_2H_4 FE of ca. 59% under alkaline CO2RR conditions.³⁰⁹ The other sources find significantly lower selectivities at <50%.^{293,307,310,311} Although these selectivities are all well below what Mingcan et al. report, it is important to recognize that the reaction conditions (CORR at low partial pressure) are also significantly different. Hence, without a reproduction study, there is insufficient data available to draw any conclusions other than that Mg is a potentially interesting candidate.

	Table S5. Mg-based											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C ₂ H ₄ FE	Reference
1	Mg surface-doped CuOx NPs (Mg0.72Cu), on GDL	Alloyed/Doped	Cu, Mg, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	NEOSEPTA, AHA	со	?	?	80	105
2	Mg surface-doped CuOx NPs (Mg0.72Cu), on GDL	Alloyed/Doped	Cu, Mg, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	NEOSEPTA, AHA	CO2	-0.69 V - iR vs. RHE	-650 mA/cm ²	70	105
3	Mg surface-doped CuOx NPs (Mg0.72Cu), on GDL	Alloyed/Doped	Cu, Mg, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	NEOSEPTA, AHA	со	?	?	61	105
4	Mg-doped CuOx NPs, on carbon paper	Alloyed/Doped	Cu, Mg, O	Nafion	(Solution-phase reactant, supplied in front)	1.0 M KOH	Nafion 117	CO ₂	-1.07 V vs. RHE	-700 mA/cm ²	59	309
5	Mg-doped CuO NSs, on a GDL	Alloyed/Doped	Cu, Mg, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M Csl	?	CO2	-1.3 V vs. RHE	-3 mA/cm ²	46	310
6	Mg-doped Cu(OH)2 NWs with a PTFE shell, on a GDL	Alloyed/Doped, Core/shell (in-)organic	Cu, Mg, O	PTFE	(Gas-phase reactant, supplied from behind)	-	X37-50 grade RT	CO ₂	-3.72 V vs. ANODE	-400 mA/cm ²	39	311
7	Mg-doped CuOX NPs containing amorphous Mg(OH)2, on a GDL	Alloyed/Doped, Mixed-phase/Janus	Cu, Mg, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO ₂	-1.37 V vs. RHE	-279 mA/cm ²	35	307
8	Thermally annealed Cu-Mg LDH, on GDL	Alloyed/Doped	Cu, Mg	Nafion	(Gas-phase reactant, supplied from behind)	? 1.0 M KOH	FAA-3-PK-130	CO2	-1.0 V - iR vs. RHE	-505 mA/cm ²	28	293

2.3. Cu/M systems containing transition and post-transition metal co-elements: Zn, Sn, Pd, Pb, Ni, Co, Ga, Fe, Au, Ag 2.3.1. Zn/Cu

A summary of best-performing Cu/Zn bi-elemental catalysts for C₂H₄ production is given in Table S6. The Cu/Zn catalyst dataset is derived from 28 unique publications and comprises a total of 31 catalyst systems, with 3 using CO as a reactant and 14 having been identified as alkaline CO₂ systems. A total of 6 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55%, though 2 of those were measured under alkaline CO2RR conditions. The top-two catalysts yield 74%³¹² and 91%³¹³ C₂H₄, both concerning nonalkaline systems. A wide range of Cu/Zn systems can be identified, starting with 'tandem-type' systems, where the Zn component is hypothesized to solely serve as a local CO forming agent. Such systems typically yield maximum C_2H_4 FEs in the 40%-50% range and yield little knowledge in the way of how to improve catalyst performance on account of the C_2H_4 forming component not being modified. Another commonly observed category of Cu/Zn catalysts are alloyed/doped-type systems, where Zn contents in the 5%-15% range generally yield optimal C_2H_4 activity. We find that C_2H_4 activities for this category vary widely, yielding anywhere between <30% all the way up to 73% C₂H₄.³¹⁴ A brass catalyst (containing 37% Zn) modified with a Nafion/PVDF coating is even reported to yield a maximum C_2H_4 FE of 74%³¹², although this might be more-so related to the inorganic overlayer rather than the combination of Cu and Zn in the catalyst itself. Such inorganic overlayer effects are covered in more detail in section S2.8. Another category of Cu/Zn catalysts that is quite common are systems belonging to the mixedphase/janus-type consisting of intermixed ZnOx and CuOx domains. The interfaces between the domains can be derived from simple mechanical mixing or generated via more intricate methods (e.g., Janus structures). Maximum C₂H₄ FEs for these systems typically range between 40%-50%, although an outlier reports (a rather high) C_2H_4 FE of 91%.³¹³ Finally, we are aware of two Cu/Zn sources wherein the active catalyst can be categorized as being of the a core/shell-type. However, the performance of these systems is poor, sporting a low maximum of 34% C₂H₄.³¹⁵

	Table S6 Zn-based Cu		1									1
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C ₂ H ₄ FE	Reference
1	CuOx supported on ZnO , on carbon paper (TGP-H-60)	Mixed-phase/Janus, A-supports-B	Cu, Zn, O	Nafion	(Gas-phase reactant, supplied from behind)	-	Nafion 117	CO ₂	-2.5 V vs. Ag/AgCl	-7.5 mA/cm ²	91	313
2	Brass foil (62% Cu, 37% Zn, trace amounts of Fe, Pb, Sn) with Nafion/PVDF (70:30 wt%) overlayer	Alloyed/Doped, Overlayer	Cu, Zn	Nafion, PVDF	(Solution-phase reactant, supplied in front)	0.1 M NaHCO3 (pH 6.8)	-	CO2	-0.89 V vs. RHE	?	74	312
3	Highly porous Zn/Cu layer (10 at. % Zn) generated through partially leaching of co-sputtered Zn/Cu layer on PTFE substrate	Alloyed/Doped	Cu, Zn	-	(Gas-phase reactant, supplied from behind)	0.75 M KOH	Fumasep FAB- PK-130	CO ₂	-1.1 V vs. RHE	-150 mA/cm ²	73	314
4	Highly porous Zn/Cu layer (10 at. % Zn) generated through partially leaching of co-sputtered Zn/Cu layer on PTFE substrate	Alloyed/Doped	Cu, Zn	-	(Gas-phase reactant, supplied from behind)	3.0 M KCI	Nafion 117	CO ₂	-1.6 V vs. RHE	-300 mA/cm ²	64	314
5	Lattice-strained, Zn-doped CuO NPs, on carbon paper	Alloyed/Doped	Cu, Zn	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Nafion 117	CO ₂	-0.95 V vs. RHE	-500 mA/cm ²	61	316
6	Nanosheet arrays containing homogeneously mixed Zn & Cu domains (Cu:Zn ratio of 24:76 via XPS), on Cu foam	Bi-phasic/Janus	Cu, Zn	-	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 211	CO ₂	-1.14 V vs. RHE	-150 mA/cm ²	59	317
7	Zn-doped ("5%") octahedral Cu2O NPs, on a GDL	Alloyed/doped	Cu, Zn, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO2	-1.1 V vs. RHE	-338 mA/cm²	52	287
8	Phase-separated CuO and ZnO NPs (Cu:Zn ratio of 80:20) supported on Vulcan XC72, on GDL	Mixed-phase/Janus	Cu, Zn, O	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAA-3-PK-75	CO ₂	-0.75 V -iR vs. RHE	-367 mA/cm ²	51	318
9	Cu NP layer (1 mg/cm2) with ZnO overlayer (0.2 mg/cm2), on GDL	Overlayer, Tandem catalyst	Cu, Zn, O	Nafion	(Gas-phase reactant, supplied from behind)	1 M KOH	"Membrane"	CO ₂	-0.73 V vs. RHE	-596 mA/cm ²	49	319
10	Zn/Cu alloy NRs (5 at.% Zn) prepared from oxide precursor, on a GDL	Alloyed/Doped	Cu, Zn, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Selemion AMVN	со	?	-500 mA/cm ²	49	250
11	ZnO NPs supported on highly porous aggregrates of CuO NSs, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Zn, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	-	CO ₂	-1.10 V vs. RHE	-21 mA/cm ²	46	320
12	Cu NP layer (0.4 mg/cm2) with ZnO overlayer (only present near CO_2 inlet, 5% of total area), on GDL	Overlayer, Tandem catalyst	Cu, Zn, O	Sustainion XA-9	(Gas-phase reactant, supplied from behind)	-	"Sustainion"	CO ₂	-3.15 V vs. ANODE	-652 mA/cm ²	46	321
13	Chemically dezincified (through NaOH+(NH4)25208 treatment) 2n- doped CuOx NWs, prepared from co-plated Zn/Cu alloy on carbon paper	Alloyed/Doped	Cu, Zn	-	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3 ("1.0 M KOH saturated with CO ₂ ")	FAA-PK-130	CO2	-0.8 V vs. RHE	-170 mA/cm ²	46	322
14	Zn-doped ("5%") CuOx NPs prepared via pyrolysis of Zn- impreganted Cu-based MOF (HKUST-1), on carbon paper	Alloyed/Doped	Cu, Zn	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	"anionic membrane"	CO ₂	-1.0 V vs. RHE	-200 mA/cm ²	45	323
15	Zn/Cu alloy NRs (3 at.% Zn) prepared from oxide precursor, on a GDL	Alloyed/Doped	Cu, Zn, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Selemion AMVN	со	-3.3 V -iR vs. RHE	-900 mA/cm ²	45	250
16	Cu90Zn10 alloy layer, on GDL - prepared via magnetron co- sputtering	Alloyed/Doped	Cu, Zn	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO2	-1.27 V vs. RHE	-180 mA/cm ²	44	142
17	Cu2O NCs decorated with Zn ("4%"), on a GDL	Mixed-phase/Janus	Cu, Zn, O	-	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	Selemion AMV	CO ₂	?	-500 mA/cm ²	43	324
18	Electrochemically cycled (e.g., oxide-derived) Cu75Zn25 alloy disk	Alloyed/Doped	Cu, Zn	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	AHO, AGC Inc.	CO2	-1.10 V vs. RHE	?	41	325
19	Cu NPs (3 nm) supported on Zn-based MOF (zeolitic imidazolate framework-8), on GDL	Mixed-phase/Janus, A-supports-B	Cu, Zn	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO2	-1.62 V vs. RHE	-400 mA/cm ²	41	326
20	Cu NWS decorated with a Zn-based MOF (ZIF-8), on carbon paper	Core/shell, mixed- phase/janus	Cu, Zn	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-0.7 V vs. RHE	-6 mA/cm ²	41	327
21	Cu/Zn mixed catalyst (Cu100Zn4.9), on carbon paper - prepared via co-plating	Mixed-phase/Janus	Cu, Zn	-	(Solution-phase reactant, supplied in front)	0.1 M Csl	Nafion 117	CO ₂	-1.38 V vs. RHE	-40 mA/cm ²	40	328
22	Cu/Zn mixed catalyst co-electroplated from single plating bath, directly onto a GDL	Mixed-phase/Janus	Cu, Zn	-	(Solution-phase reactant, supplied in front)	2.0 M KCI + 0.01 M KHCO3	Nafion 117	CO ₂	-1.36 V vs. RHE	-79 mA/cm ²	40	329
23	Zn-doped ("5%") CuOx NPs prepared via pyrolysis of Zn- impreganted Cu-based MOF (HKUST-1), mixed with carbon, on carbon paper	Alloyed/Doped, A- supports-B	Cu, Zn, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M K2SO4	"proton exchange membrane"	CO ₂	-0.7 V vs. RHE	-7 mA/cm ²	40	323
24	Cu83Zn17 catalyst, on Au substrate - prepared via co-plating	Alloyed/Doped	Cu, Zn	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMV	CO ₂	-1.8 V vs. Ag/AgCl	?	35	330
25	Dual-single atom Cu/Zn (3:1 ratio) deposited on N-functionalized amorphous/graphitic carbon, on Toray carbon paper	Single atom	Cu, Zn, C	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.1 V vs. RHE	-22 mA/cm ²	35	331
26	Core/shell NPs with Cu2O shell (ca. 60 nm) and ZnO core (ca. 30 nm), on GDL	Core/shell	Cu, Zn, O	Nafion	(Solution-phase reactant, supplied in front)	1 M KHCO3 ("1 M KOH saturated with CO ₂ ")	3	CO ₂	-1.0 V vs. RHE	-33 mA/cm ²	34	315
27	Laser-prepared Cu/Zn alloy NPs (/-15 nm, 4:1 ratio), on glassy carbon	Alloyed/Doped	Zn	Nation	(Solution-phase reactant, supplied in front)	U.1 M KHCO3 (pH 6.8)	r	02	-1.10 V vs. RHE	-b mA/cm²	33	352
28	Cu NWs decorated with Zn-TMC, on GDL	Core/shell, A- supports-B	Cu, Zn	Nation	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO ₂	-1.0 V vs. RHE	?	30	333
29	Semi-porous Cu3Zn-derived NPs, on carbon paper - prepared by electrospinning metal salts with PVP, followed by calcination and alkaline Zn leaching step	Alloyed/Doped	Cu, Zn	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO ₂	-2.15 V vs. RHE	-600 mA/cm ²	24	285
30	shock, on carbon nanotubes	Alloyed/Doped, A- supports-B	Cu, Zn	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3	0	-0.69 V -iR vs. RHE	-50 mA/cm ²	22	334
31	CNP and graphite layers on top of reduced CuZnO alloy catalyst prepared via co-precipitation and calcination (800 °C) midlayer, on Cu-sputtered PTFE GDL	Alloyed/Doped	Cu, Zn, C	Nation	(Gas-phase reactant, supplied from behind)	2.0 M KOH	FAA-3-PK-130	CO ₂	-1.15 V vs. RHE	-210 mA/cm ²	17	290

2.3.2. Sn/Cu

A summary of best-performing Cu/Sn bi-elemental catalysts for C_2H_4 production is given in Table S7. The Cu/Sn catalyst dataset is derived from 7 unique publications and comprises a total of 8 catalyst systems, with 2 using CO as a reactant and 3 having been identified as alkaline CO_2 systems. A total of 1 of these catalyst systems exhibit maximum C_2H_4 FEs of $\geq 55\%$ (i.e., $57\%^{335}$), being measured under alkaline CO2RR conditions. The majority of the Cu/Sn catalyst systems identified in this work are comprised of alloys (alloyed/doped-type) with low Sn content. Overall, the C_2H_4 performance of Cu/Sn based catalysts is poor, with relatively little information contained within the few sources available. The presence of vacancies and changes in oxophilicity are the dominant theories for any Sn-related changes in C_2H_4 performance. The heterogeneity of the dataset does not allow for additional insights at this stage, but the relatively low maximum C_2H_4 performance in concert with the low number of publications indicate that Sn is not an attractive research target for the electro formation of C_2H_4 in our opinion.

	Table S7. Sn-based Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C2H4 FE	Reference
1	Co-plated Cu and Sn from a 1 mM 3,5-diamino-1,2,4-triazole containing plating bath, on a 10nm Cu-sputtered GDL	Alloyed/Doped	Cu, Sn	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	-	CO ₂	-0.8 V vs. RHE	-226 mA/cm ²	57	335
2	Sn-doped CuO nanosheets (0.65%, 130 C), on carbon paper	Alloyed/Doped	Cu, Sn, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.1 V vs. RHE	-9 mA/cm²	49	336
3	Sn-doped oxygen vacancy-rich CuO nanoribbons, on carbon paper	Alloyed/Doped	Cu, Sn, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	?	-6 mA/cm²	40	337
4	SnO2-decorated (3 %) CuO nanosheets, on GDL	Mixed-phase/Janus, A-supports-B	Cu, Sn, O	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.0 V vs. RHE	-8 mA/cm ²	24	338
5	Cu/Sn alloy NPs (3 % Sn) mixed with Vulcan Carbon and polyvinylidene fluoride, on a GDL	Alloyed/Doped	Cu, Sn	Polyvinylidene fluoride	(Gas-phase reactant, supplied from behind)	-	X37–50 Grade RT	CO ₂	-4.0 V vs. ANODE	?	24	339
6	Cu NPs in an ionic liquid polymer impregnated with SnCl2 (1 mol% vs. Cu), on GDL	Mixed-phase/Janus	Cu, Sn, O	Polymeric ionic liquid crosslinked with divinylbenzene	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	co	?	-250 mA/cm ²	23	340
7	Thermodynamically unstable Cu9Sn1 NPs prepared via thermal shock, on carbon nanotubes	Alloyed/Doped, A- supports-B	Cu, Sn	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3	со	-0.74 V -iR vs. RHE	-100 mA/cm ²	19	334
8	400 nm thick evaporated Cu/Sn alloy (95:5), on GDL	Alloyed/Doped	Cu, Sn	-	(Gas-phase reactant, supplied from behind)	-	AF1-HNN8-50- X	CO ₂	?	-100 mA/cm ²	16	288

2.3.3. Pd/Cu

A summary of best-performing Cu/Pd bi-elemental catalysts for C₂H₄ production is given in Table S8. The Cu/Pd catalyst dataset is derived from 23 unique publications and comprises a total of 26 catalyst systems, with 5 using CO as a reactant and 8 having been identified as alkaline CO₂ systems. A total of 5 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55%, though 1 of those was measured under alkaline CO2RR conditions, The top two catalysts yield 64%³⁴¹ and 76%²²² C₂H₄, both concerning nonalkaline systems. High performance Cu/Pd-based C_2H_4 catalysts can be divided into three categories: alloyed/doped-type, core/shell-type and mixed-phase/janus-type systems. Alloyed/doped-type systems and mixed-phase/janus-type systems make up the top-segment of Cu/Pd systems in terms of C_2H_4 performance and can reliably yield 45%-55% C₂H₄. Oftentimes, such systems contain relatively low quantities of Pd (<1.4 at.%)^{110,222,341-343}, though mixed-phase/janus-type systems seem to be more forgiving in this aspect. An outlier does exist in the form of an alloyed/doped-type catalyst that yield a reasonably high maximum C₂H₄ FE of 45% at an elevated Pd concentration of ca. 13 at%.³⁴⁴ Even though low Pd contents are generally best, lower isn't necessarily better considering that many of these systems exhibit volcano behavior in C₂H₄ performance w.r.t. Pd content.^{345,346} As such, it is not unexpected that we then find that a CuN_3 pre-catalyst doped with ultralow amounts of Pd (ca. 0.002 at. %) yields a relatively low maximum C₂H₄ FE of ca. 25%.³⁴⁷

Core/shell-type catalyst systems make up the remainder of the identified Cu/Pd catalyst systems, but relatively poor maximum C_2H_4 activity ($\leq 44\%$) is observed for such alloyed systems. In general, combining Pd and Cu to form a bi-elemental electrocatalyst is actually detrimental for C_2H_4 performance, with Cu/Pd systems generally i) enhancing EtOH performance^{343,348,349}, and ii) decreasing H₂ and CO FEs, whilst also typically resulting in iii) suppressed current densities. Interestingly, a relatively high number of Cu/Pd publications have managed to achieve industrially relevant current densities (\geq |-200| mA/cm²) with C_2H_4 FEs of \geq 34%. In addition, the presence of Pd might have a stabilizing effect on catalyst morphology under CO2RR conditions³⁴¹, which would also be of considerable industrial importance.

	Table S8. Pd-based Cu		1						1			<u> </u>
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C2H4 FE	Reference
1	Dilute Cu/Pd alloy (1.4 at. % Pd) prepared via co-electrodeposition, on glassy carbon	Alloyed/Doped	Cu, Pd	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	FAA-3-PK-75	CO ₂	-0.7 V vs. RHE	-3 mA/cm ²	76	222
2	Pd NP-decorated (50 nm) cubic Cu2O microparticles (1 $\mu m)$ supported on carbon black, on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, Pd, C, O	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.1 V vs. RHE	-22 mA/cm ²	64	341
3	Ultralow (single atom, 0.36 wt%) surface Pd-doped Cu NCs, on a GDL	Alloyed/Doped, SAC	Cu, Pd	-	(Gas-phase reactant, supplied from behind)	0.5 M KHCO3	"Sustanion"	CO ₂	-1.1 V vs. RHE	-184 mA/cm ²	61	350
4	Surface Pd-doped ("6.2%") Cu-sputtered PTFE GDL	Alloyed/Doped	Cu, Pd	-	(Gas-phase reactant, supplied from behind)	0.5 M K2SO4 + x M H2SO4 (pH 2)	Nafion 117	CO2	?	-500 mA/cm ²	60	351
5	Ultrasmal PdOx NPs supported on Cu2O MPs, on a GDL	Mixed-phase/Janus, A-supports-B	Cu, Pd, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	CO2	-0.90 V - iR vs. RHE	-400 mA/cm ²	56	352
6	Pd doped Cu2O NCs (0.88 at. % Pd), on Toray YLS-30T GDL	Alloyed/Doped	Cu, Pd, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK-130	CO ₂	-0.87 V vs. RHE	-800 mA/cm ²	54	342
7	Cu2O microcubes (1 µm) decorated with small Pd NPs (20 nm), prepared via galvanic displacement, mixed with carbon black, on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, Pd, C	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.2 V vs. RHE	-29 mA/cm ²	53	353
8	Phase-separated Cu/Pd NPs (51.3:48.7 at. ratio), on GDL	Mixed-phase/Janus, A-supports-B	Cu, Pd	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	"Fumatech"	CO ₂	-0.74 V - iR vs. RHE	-361 mA/cm ²	47	354
9	Co-electroplated Cu/Pd foam (6.83:1 at. ratio), on carbon paper	Alloyed/Doped	Cu, Pd	-	(Solution-phase reactant, supplied in front)	0.1 M KCI	Nafion 117	CO ₂	-1.2 V vs. RHE	-17 mA/cm ²	45	344
10	Pd-doped Cu/Cu2O NPs (6 at. % Pd (?)), on a GDL	Alloyed/Doped	Cu, Pd, O	Nafion	(Gas-phase reactant, supplied from behind)	0.5 M K2SO4 + x M H2SO4 (pH 2)	Nafion 117	CO2	-2.18 V vs. RHE	-615 mA/cm²	45 ⁺ - ^{Cu-} Pd,1	345
11	Cu1Pd0.004 NPs prepared via ultrasonic-assisted galvanic replacement of commercial Cu NPs (100 nm), on GDI	Core/shell	Cu, Pd	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-PK-130	со	-0.65 V - iR vs. RHF	-581 mA/cm ²	44	110
12	CuOx NPs coated with an ultrathin Pd shell, on glassy carbon	Core/shell	Cu, Pd, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 115	CO2	-1.05 V vs. RHE	-6 mA/cm ²	40	355
13	CuPd NPs (1:0.576 at. ratio) prepared via galvanic replacement of Cu NPs (100 nm). on SGL 29BC GDL	Core/shell	Cu, Pd	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	со	?	-700 mA/cm ²	35	343
14	Pd surface doped (0.002 at. %) CuN3 NCs, on carbon paper	Alloyed/Doped	Cu, Pd, N	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	X37-50 grade 60	CO ₂	-1.1 V vs. RHE	-88 mA/cm ²	35	347
15	Pd NCs (ca. 20 nm) with a 'thick' (15 nm) Cu shell,	Core/shell	Cu, Pd	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	-	CO ₂	-1.0 V vs. RHE	-5 mA/cm ²	35	349
16	Ultrasmal PdOx NPs supported on Cu2O MPs, on a GDL	Mixed-phase/Janus, A-supports-B	Cu, Pd, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	со	-0.77 V - iR vs. RHE	-44 mA/cm ²	35	352
17	CuPd NPs (1:0.576 at. ratio) prepared via galvanic replacement of Cu NPs (100 nm), on SGL 29BC GDL	Core/shell	Cu, Pd	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	Nafion 117	CO ₂	?	-500 mA/cm ²	34	343
18	Janus catalyst composed of Cu decahedra NPs grown on Pd seed (46.2:1 at. ratio Cu/Pd), supported on Vulcan XC72, on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, Pd, C	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.0 V vs. RHE	-30 mA/cm ²	34	356
19	Phase-separated Cu/Pd NPs (98:2 wt. ratio) deposited via electroplating on GDL	Mixed-phase/Janus, A-supports-B	Cu, Pd	-	(Gas-phase reactant, supplied from behind)	1.0 M KCI	Nafion 117	CO ₂	-1.15 V - iR vs. RHE	-200 mA/cm ²	34	346
20	CuPd NPs (1:0.383 at. ratio) prepared via galvanic replacement of Cu NPs (100 nm), on SGL 29BC GDL	Core/shell	Cu, Pd	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	CO ₂	-1.74 V vs. RHE	-500 mA/cm ²	31	343
21	Disordered Cu/Pd NPs (1.1:1 atomic ratio), on GDL	Alloyed/Doped	Cu, Pd	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK-130,	со	-0.54 V - iR vs. RHF	?	31	134
22	Pd/Cu alloy layer (5% Pd) (400 nm) sputtered on a GDL	Alloyed/doped	Cu, Pd	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-50	CO ₂	-0.65 V - iR vs. RHE	-200 mA/cm ²	31	139
23	"CuPd(100) interface catalyst" prepared starting from Pd NPs, supported on Kochin black, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Pd, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	-	CO2	-0.8 V vs. RHE	-14 mA/cm ²	29	357
24	Thermodynamically unstable Cu9Pd1 NPs prepared via thermal shock, on carbon nanotubes	Alloyed/Doped, A- supports-B	Cu, Pd	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3	со	-0.66 V -iR vs. RHE	-25 mA/cm ²	27	334
25	Cu NPs mixed with (in-situ formed) PdO2 NPs 'dissolved'/dispersed in an IL polymer layer, on GDL	Mixed-phase/Janus	Cu, Pd, O	Polymeric ionic liquid crosslinked with divinylbenzene	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	CO ₂	-0.99 V - iR vs. RHE	-350 mA/cm ²	27	348
26	Pd-doped Cu prepared via co-sputtering on GDL (30 T)	Alloyed/Doped	Cu, Pd	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO ₂	?	-300 mA/cm ²	25	358
	*_CurPd_Report the value given in main text, as opposed to SI table (45 vs. 44%)											

2.3.4. Pb/Cu

A summary of best-performing Cu/Pb bi-elemental catalysts for C₂H₄ production is given in Table S9. The Cu/Pb catalyst dataset is derived from 4 unique publications and comprises a total of 4 catalyst systems, with 1 using CO as a reactant and 1 having been identified as an alkaline CO_2 system. A total of 1 of these catalyst systems exhibit maximum C₂H₄ FEs of \geq 55% (i.e., 57%³⁵⁹), being measured under nonalkaline CO2RR conditions. Overall, we can say that only few Pb catalysts are reported to make appreciable amounts of C_2H_4 , with very little overlap between these systems. Maximum C_2H_4 FEs range between 33% and 57%, and Pb doping is typically observed to improve CO formation at lower current densities in those cases where C₂H₄ formation still occurs. The best catalyst that contains Pb that we are aware of³⁵⁹ is also the most difficult to interpret: a highly complex and heterogeneous catalytic surface composed of single atom Cu sites on top of polyaniline-modified carbon with PbOx NPs distributed across the surface. Although copper SACs typically exhibit poor C₂H₄ performance and favor instead CH₄, that the addition of an inorganic layer could serve to enhance C_2H_4 performance (as we have also hypothesized previously for a Cu/Zn system³¹²). Hence, we believe that the presence of a polyaniline layer plays an important role in the high C₂H₄ activity for this specific Cu/Pb system.³⁵⁹ This effect is described in more detail in section S2.8 during the discussion of inorganic overlayer-type catalyst systems.

Of potential interest are the results of an older publication, wherein improved performance for a Cu/Pb catalyst was observed under CORR conditions compared to alkaline CO2RR conditions.³⁶⁰ Overall though, insufficient data exists to make reasonable inferences regarding Cu/Pb systems, though current-best performances can be considered poor.

	Table S9. Pb-based Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C2H4 FE	Reference
1	Phase-seggregated Cu/Pb bimetallic catalyst individually electroplated on polyaniline-modified carbon paper	Mixed-phase/Janus, Single atom	Cu, Pb, C	Polyaniline	(Solution-phase reactant, supplied in front)	0.1 M Csl	Nafion 117	CO ₂	-1.2 V vs. RHE	-16 mA/cm ²	57	359
2	Cu NCs with 0.7 nm Pb shell, mixed with CNPs, on glassy carbon	Core/shell, A- supports-B	Cu, Pb, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.3 V vs. RHE	-18 mA/cm ²	40	361
3	Alloyed Pb/Cu NPs (Cu:Pb ratio of 0.2%, possibly phase-separated) mixed with CNPs, on GDL	Alloyed/Doped	Cu, Pb	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Nafion 117	со	-2.4 V vs. SCE	-200 mA/cm ²	34	360
4	Pb-doped (3.4 wt%) Cu2O nanosheets, on GDL	Alloyed/Doped	Cu, Pb, O	Nafion	(Gas-phase reactant, supplied from behind)	3.0 M KOH	FAA-3-PK-130	CO ₂	-1.1 V vs. RHE	-204 mA/cm ²	33	362

2.3.5. Ni/Cu

A summary of best-performing Cu/Ni bi-elemental catalysts for C_2H_4 production is given in Table S10. The Cu/Ni catalyst dataset is derived from 23 unique publications and comprises a total of 24 catalyst systems, with 1 using CO as a reactant and 13 having been identified as alkaline CO₂ systems. A total of 12 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55%, though 7 of those were measured under alkaline CO2RR conditions. The top-two catalysts yield 72%³⁶³ and 81% C₂H₄³⁶⁴, both being nonalkaline CO2RR systems. Cu/Ni catalysts are abundant and relatively straightforward, with a large proportion of Ni/Cu catalysts consisting of CuOx NPs mixed with a CO-forming Ni catalyst (tandem-type). Considering that these CO-forming Ni catalysts typically consist of single atom Ni sites on carbon, such tandem-type Cu/Ni catalysts bear striking resemblance to carbon-supported Cu catalysts (discussed in detail in the paragraph on Cu/C systems). Specifically in the case of Cu/Ni catalyst systems, tandem-type catalysts are observed to yield a broad range of C_2H_4 activities, being able to reach respectable maximum FEs of ca. 65%.^{100,365,366} We are even aware of an outlier yielding an impressive 72% $C_2H_4^{363}$. although we hypothesize that mesoporosity/confinement effects are the driving force for the exceptional performance in that particular case. Overall, these Cu/Ni tandem-type systems seem to allow for relatively high C_2H_4 selectivities compared to other tandem-type systems, which seems to be related to the good match between the potential optimum for CO₂-to-CO conversion on the Ni-SAC sites and the CO-to- C_2H_4 conversion on copper sites.¹⁰⁰ In addition, most other CO-forming catalysts (e.g., Ag, Au or Zn based) would not require a carbon support to be present such as is the case for Ni SACs. Hence in the case of specifically Cu/Ni tandem-type catalysts, the CO-formation effect and catalyst-support effects are convoluted, possibly being responsible for the slightly improved performance of these Cu/Ni tandem-type systems.

The bulk of non-tandem type Cu/Ni catalysts comprise mixed-phase/janus-type and alloyed/doped-type systems. Out of these, the mixed-phase/janus-type catalysts yield overall higher C_2H_4 performance in the 50%-60% range³⁶⁷⁻³⁶⁹ whilst alloyed/doped-type systems generally yield C_2H_4 FEs between 25%-40%.^{334,370} Additionally, increasing the Ni content seems to be detrimental to C_2H_4 performance in general. However, a particular catalyst system is in direct opposition to this observation. Namely, 2D Cu/Ni alloy nanosheets with a 50 at.% Ni content, have been reported to yield maximum C_2H_4 FEs of 80.5%. We posit this deviation from the status quo for alloyed/doped-type systems is likely related to the 2D nanosheet morphology, an effect that we discuss in further detail in the main text. Overall, we observe that Ni is a very versatile co-element for modifying Cu-based catalysts yielding a large range of possible C_2H_4 activities, though current research lines focus mostly on its potential as a CO-forming additive.

	Table S10. Ni-based Cu											1
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C2H4 FE	Reference
1	Ultrathin (ca. 4.8 nm) alloyed hexagonal CuNi nanosheets (ca. 1:1 atom ratio), on Ti mesh	Alloyed/Doped	Cu, Ni	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	?	CO ₂	-1.5 V vs. RHE	-470 mA/cm ²	81	364
2	Cu NPs encapsulated in mesoporous Ni-SAC functionalized carbon, on GDL	Mixed-phase/Janus, A-supports-B	Cu, Ni, C, N	-	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	"Fuel Cell Store"	CO ₂	-1.1 V -iR vs. RHE	-406 mA/cm ²	72	363
3	(100)-facet rich Cu NWs mixed with Ni-SAC and CNPs, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Ni, C, N	PVDF, NMP	(Gas-phase reactant, supplied from behind)	10 M KOH	-	CO ₂	-0.5 V vs. RHE	-101 mA/cm ²	66	365
4	Ni-SAC layer on top of sputtered Cu layer, on GDL	Overlayer, Tandem catalyst	Cu, Ni, C, N	Nafion (?)	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO2	-0.72 V -iR vs. RHE	-160 mA/cm ²	63	366
5	Ni-N/C layer on top of Cu NP layer, on a GDL	Overlayer, Tandem catalyst	Cu, Ni, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-75	CO2	-0.70 V -iR vs. RHE	-593 mA/cm²	62	371
6	Cu NPs supported on Ni-SAC mixed with PTFE, on GDL	Mixed-phase/Janus, A-supports-B	Cu, Ni, C, N	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	Selemion DSVN	CO ₂	-1.33 V -iR vs. RHE	-600 mA/cm ²	62	100
7	Cu NPs mixed with Ni-SAC, on homemade GDL	Mixed-phase/Janus	Cu, Ni, C, N	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK- 130	CO2	-0.58 V -iR vs. RHE	-308 mA/cm ²	61	372
8	Ni electroplated on Cu NW array-modified GDL	Mixed-phase/Janus, overlayer	Cu, Ni	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	3PK-130	CO ₂	-1.1 V -iR vs. RHE	-432 mA/cm ²	59	373
9	Ni-doped (1.2 at.%) self-supporting Cu2O NWs arrays on Cu mesh substrate	Mixed-phase/Janus, A-supports-B	Cu, Ni, O	-	(Solution-phase reactant, supplied in front)	0.5 M KCI	Nafion 117	CO ₂	-1.1 V -iR vs. RHE	-65 mA/cm ²	58	369
10	CU NPs supported on Ni-SAC layer, on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, Ni, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 + 0.1 M KCI	Nafion 117	CO2	-1.1 V vs. RHE	-3 mA/cm ²	57 [†] - _{Cu} . Ni,1	374
11	CuOx NCs supported on Ni/C,N catalyst, on GDL	Mixed-phase/Janus, A-supports-B	Cu, Ni, C, N	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-50	CO2	-0.60 V -iR vs. RHE	-127 mA/cm ²	55	375
12	Ni-doped Cu2(OH)3Cl pre-cursor reduced in-situ to form β nickel- oxide hydroxide (NiOOH)/Cu active phase, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Ni, C, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK-130	CO ₂	-1.25 V -iR vs. RHE	-400 mA/cm ²	55	368
13	CuO NPs supported on Ni-SAC, on GDL	Mixed-phase/Janus, A-supports-B	Cu, Ni, C, N	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Sustainion X37 50	CO2	-0.89 V -iR vs. RHE	-1500 mA/cm ²	54	376
14	Cu-doped Ni MOF mixed with MWCNTs and PTFE, on GDL	Mixed-phase/Janus	Cu, Ni, C, O	PiperION-A5	(Gas-phase reactant, supplied from behind)	1.0 M KOH	PiperION-A40	CO2	-1.3 V vs. RHE	-527 mA/cm ²	53	367
15	(100)-facet rich Cu NWs mixed with Ni-SAC and CNPs, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Ni, C, N	PVDF, NMP	(Gas-phase reactant, supplied from behind)	0.5 M KHCO3	Nafion 212	CO2	-1.6 V vs. RHE	-78 mA/cm ²	51	365
16	Cu/Ni alloy NPs (7% Ni), co-sputtered on GDL	Alloyed/Doped	Cu, Ni	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Sustainion 37- 50	CO ₂	-0.9 V -iR vs. RHE	-200 mA/cm ²	41	370
17	Cu NWs decorated with Ni-TMC, on GDL	Core/shell, A- supports-B	Cu, Ni	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO ₂	-1.0 V vs. RHE	?	37	333
18	Ni-based SAC mixed with Cu2O octahedra (ca. 200 nm), on a GDL	Mixed-phase/Janus, A-supports-B	Cu, Ni, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	"Selemion"	CO2	-1.03 V -iR vs. RHE	-500 mA/cm²	35	377
19	Coral-like catalyst obtained via thermal and electrochemical treatment of Ni-based metalloporphyrin intermixed in Cu-based MOF, on carbon paper	Mixed-phase/Janus	Cu, Ni, C	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 115	CO ₂	-1.27 V vs. RHE	-49 mA/cm ²	32	378
20	Ni clusters deposited through galvanic displacement on CuS-derived roughened Cu foam	Mixed-phase/Janus	Cu, Ni	-	(Solution-phase reactant, supplied in front)	1.0 M KOH	Sustainion 37–50	CO2	-0.88 V -iR vs. RHE	-268 mA/cm ²	32	379
21	Cu NPs supported on Ni-N/C , on glassy carbon	Tandem catalyst, A- supports-B	Cu, Ni, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.09 V -iR vs. RHE	-6 mA/cm²	31	380
22	Thermodynamically unstable Cu9Ni1 NPs prepared via thermal shock, on carbon nanotubes	Alloyed/Doped, A- supports-B	Cu, Ni	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3	со	-0.64 V -iR vs. RHE	-25 mA/cm ²	26	334
23	Air-oxidized Cu/Ni alloy NPs (19% Ni), on carbon paper	Alloyed/Doped	Cu, Ni	-	(Solution-phase reactant, supplied in front)	0.05 M KHCO3	-	CO ₂	-1.2 V vs. RHE	-2 mA/cm ²	25	381
24	Ni-doped Cu(OH)2 NWs with a PTFE shell, on a GDL	Alloyed/Doped, Core/shell (in-)organic	Cu, Ni, O	PTFE	(Gas-phase reactant, supplied from behind)	-	X37-50 grade RT	CO ₂	-3.4 V vs. ANODE	-200 mA/cm ²	10	311
	⁺ _Cu-N,1Main text states 57.3, SI states 57.8. Rounded down to 57		1									

2.3.6. Co/Cu

A summary of best-performing Cu/Co bi-elemental catalysts for C_2H_4 production is given in Table S11. The Cu/Co catalyst dataset is derived from 16 unique publications and comprises a total of 19 catalyst systems, with 2 using CO as a reactant and 4 having been identified as alkaline CO₂ systems. A total of 7 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55%, though 3 of those were measured under alkaline CO2RR conditions. The top-two catalysts yield 76%¹⁴³ and 81%³⁸² C₂H₄, both being non-alkaline CO2RR systems. Cu/Co catalyst systems bear much resemblance to Cu/Ni systems, with a CO-forming Co-based MOF or TMC commonly being added to yield tandem-type catalyst systems.^{143,383-386} These systems are observed to yield typical C₂H₄ FEs between 40%-50%, with a maximum of 54% reported by Ma *et al.*³⁸⁶ for a catalyst system comprising a (CO-forming) Co MOF-based overlayer deposited onto Cu2O nanocubes. However, we consider such systems to be less interesting on account of intrinsic catalytic activity for making C₂H₄ not being strongly influenced besides (potentially) modulating the (local) CO pressure (P_{CO}) and CO surface coverage (θ_{CO}).

Rather, it is the non-tandem Cu/Co catalyst systems that have the potential for improving intrinsic catalytic activity and thus can provide clues on how to increase C_2H_4 performance. In this regard, we find that adding minor quantities of Co (between 0.2 at.%³⁸⁷ – 1.5 at.%³⁸⁸) to alloyed/doped-type and mixed-phase/janus-type Cu/Co systems can improve catalyst performance w.r.t benchmark Cu catalysts, although adding too much Co worsens performance. Nonetheless, the overall performance of these types of systems tends to be relatively poor with maximum C_2H_4 FEs between 20%-45% C_2H_4 .^{333,387,388} Also, it is important to note that the number of alloyed/doped systems is limited at 3.

An outlier is observed in the form of a CoOx/CuOx mixed-phase/janus-type catalyst with a high Co content, having been prepared via co-reduction followed by post-treatment in cold H₂ plasma. XRD and EDS showed individual, but well mixed, CoOx and CuOx domains. This catalyst system has been reported to yield an impressive C_2H_4 FE of 70% when the Cu to Co ratio was 2:1 (i.e., 33. at. % Co).³⁸⁹ However, it should be noted that the authors therein attributed this improved performance to spillover of CO from the Co (cobalt) sites to the Cu sites, which would make this system act as a tandem-type system. However, CoOx isn't known to be a good CO2-to-CO catalyst. As such, we do not categorize this catalyst as being of the tandem type herein. Another catalyst that looks to be an outlier is a system comprised of porous Cu_2O microparticles with a CO-forming Co-based TMC confined within its pores.¹⁴³ Normally this would fall under the tandem-type category as well, but selectivity was largely unchanged when CO instead of CO_2 was used as the reactant (making tandem-type catalysis impossible). As such, the cobalt component does not play a role here (but it was present and is thus listed in the table). Importantly, the excellent performance of this catalyst seems to be related to a nanoconfinement effect instead, which we have previously also hypothesized to be responsible for the exceptional performance of a similar Cu/Ni system which yielded 72% C_2H_4 .

The best Cu/Co catalyst system identified in this study are 2D alloyed Co/Cu nanosheets (1:1 ratio, i.e., 50 at. % Co), yielding an impressive 81% FE for C_2H_4 .³⁸⁹ We would like to reiterate here the resemblance between Cu/Co and Cu/Ni systems, considering that a similar 2D alloyed Cu/Ni nanosheet catalyst with extraordinary CO₂-to-C2H₄ performance also exists.³⁶⁴ However, we also must point out that both publications are by the same authors and their results have not been verified by an independent party, to the best of our knowledge. Overall, we observe that cobalt seems to be a very versatile co-element for Cu-based electrocatalyst allowing for enhanced C_2H_4 activity at both low and high Co contents, with

alloyed/doped-type and mixed-phase/janus-type systems being most promising and allowing for exceptionally high faradaic efficiencies.

	Table S11. Co-based Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C2H4 FE	Reference
1	Ultrathin (ca. 46.3 nm) alloyed hexagonal CuCo nanosheets (ca. 1:1 atom ratio), on glassy carbon	Alloyed/Doped	Cu, Co	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.5 V vs. RHE	-400 mA/cm ²	81	382
2	Co-TMC (tetraphenylporphyrin) confined within the nanopores of porous Cu2O microparticles, on PTFE-modified GDL	A-supports-B, Mixed- phase/Janus	Cu, O, Co	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KCl + x M H2SO4 (pH 1.9)	Nafion 115	со	?	-800 mA/cm ²	76	143
3	Cu2O NCs supported on cobalt phthalocyanine-modified-acetylene black, on GDL	A-supports-B, Mixed- phase/Janus	Cu, Co, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-20	CO ₂	-0.76 V - iR vs. RHE	-317 mA/cm ²	71	384
4	Cold H2 plasma-treated porous mixed CoOx/CuOx, on glassy carbon	Mixed-phase/Janus	Cu, Co	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	?	CO ₂	-1.0 V vs. RHE	-21 mA/cm ²	70	389
5	Vulcan XC-72 toplayer on Co-TMC midlayer, on Cu-sputtered PTFE GDL	Overlayer	Cu, Co, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Nafion 115	CO ₂	-0.79 V - iR vs. RHE	-420 mA/cm ²	67	383
6	Cu2O NCs supported on cobalt phthalocyanine-modified-acetylene black, on glassy carbon	A-supports-B, Mixed- phase/Janus	Cu, Co, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.1 V - iR vs. RHE	-51 mA/cm²	58	384
7	Cu NWs decorated with Co-TMC (phthalocyanine, mass ratio of 100:1 Cu/Co-TMC), on GDL	Core/shell, A- supports-B	Cu, Co	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO ₂	-1.4 V vs. RHE	-350 mA/cm ²	58	333
8	Co-TMC shell around Cu2O NCs, on carbon paper	Core/shell	Cu, Co	-	(Gas-phase reactant, supplied from behind)	1.0 M KCI	Nafion 117	CO ₂	-2.85 V vs. RHE	-500 mA/cm ²	54	386
9	Co-TMC (tetraphenylporphyrin) confined within the nanopores of porous Cu2O microparticles, on PTFE-modified GDL	A-supports-B, Mixed- phase/Janus	Cu, O, Co	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KCl + x M H2SO4 (pH 1.9)	Nafion 115	CO2	-0.93 V - iR vs. RHE	-800 mA/cm ²	52	143
10	Co-TMC surface-modified Cu NCs supported on carbon black, on GDL substrate	Core/shell, A- supports-B	Cu, Co, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	FAB-PK-130	CO ₂	?	-200 mA/cm ²	49	385
11	Co-containing (CO forming) TMC (porphyrin) coated on CuOx NW- modified Cu mesh substrate	Core/Shell, Mixed- phase/Janus	Cu, Co, O	-	(Solution-phase reactant, supplied in front)	0.5 M KCl (CO ₂ - saturated)	Nafion 117	CO2	-0.8 V - iR vs. RHE	-22 mA/cm ²	48	390
12	Co (0.2 %)/CuO alloy NPs (ca. 16 nm) with single-atom Co prepared from Cu-MOF precursor, on carbon paper	Alloyed/Doped	Cu, Co	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	"Selemion"	CO ₂	-1.01 V vs. RHE	-650 mA/cm ²	43	387
13	Co-doped (1.1 at.%) self-supporting Cu2O NWs arrays on Cu mesh substrate	Mixed-phase/Janus, A-supports-B	Cu, Co, O	-	(Solution-phase reactant, supplied in front)	0.5 M KCI	Nafion 117	CO ₂	-1.1 V -iR vs. RHE	-58 mA/cm ²	42	369
14	Cu NWs decorated with Co-TMC (phthalocyanine, mass ratio of 100:1 Cu/Co-TMC), on GDL	Core/shell, A- supports-B	Cu, Co	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO	-1.2 V vs. RHE	?	38	333
15	Co TMC (porphyrin) coated on Cu-sputtered PTFE GDL	Overlayer	Cu, Co	-	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	FAA-3-PK-130	CO ₂	?	?	37	391
16	Coral-like catalyst obtained via thermal and electrochemical treatment of Co-based metalloporphyrin intermixed in Cu-based MOF, on carbon paper	Mixed-phase/Janus	Cu, Co, C	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 115	CO ₂	-1.17 V vs. RHE	-39 mA/cm ²	32	378
17	Co-doped ("0.4%") Cu NWs, grown on Cu foil	Mixed-phase/Janus, Core/Shell	Cu, Co, O	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	"Nafion"	CO ₂	-1.0 V -iR vs. RHE	-22 mA/cm ²	27	392
18	Co-doped Cu(OH)2 NWs with a PTFE shell, on a GDL	Alloyed/Doped, Core/shell (in-)organic	Cu, Co, O	PTFE	(Gas-phase reactant, supplied from behind)	-	X37-50 grade RT	CO ₂	-3.35 V vs. ANODE	-200 mA/cm ²	25	311
19	Cu/Co (4% Co) alloy NPs prepared via co-electroplating on Cu substrate	Alloyed/Doped	Cu, Co	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 212	CO ₂	-1.19 V - iR vs. RHE	?	22	388

2.3.7. Ga/Cu

A summary of best-performing Cu/Ga bi-elemental catalysts for C_2H_4 production is given in Table S12. The Cu/Ga catalyst dataset is derived from 8 unique publications and comprises a total of 9 catalyst systems, with 1 using CO as a reactant and 6 having been identified as alkaline CO₂ systems. None of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55%. The top-most catalyst yields 45% C_2H_4 and concerns an alkaline CO2RR system. The highest non-alkaline system yields 43% C_2H_4 and uses CO as the reactant.³⁹³

Gallium-copper systems are typically reported in the form of alloys (alloyed/doped-type), with only a singular source reporting on an overlayer-type system (having low C_2H_4 activity). Ga contents vary considerably across sources (between 1.5 at.%²⁷⁷ – 69 at.%³⁹³ Ga), with maximum C_2H_4 FEs similarly varying considerably (between 20% – 45%). Although none of the sources exhibit particularly high C_2H_4 performance, one of the best catalyst systems (yielding 43% C_2H_4)³⁹³ actually employed CO as a reactant rather than CO_2 – a measurement that is not often conducted, empirically. No consensus is reached between publications as to why activity is changed upon gallium addition. Explanations range from p-d orbital hybridization changing adsorption strength of key intermediates (CO_2 , CO)²⁷⁷ to suppression of copper oxidation by imparting electron density to Cu sites and gallium oxophilicity^{293,394} to decreasing the C-C coupling barrier²⁸⁸ to allowing for elevated CO coverage by reducing repulsion between *CO adsorbates³⁹³. Rather than enhancing C_2H_4 performance, it is commonly observed that EtOH formation is favored, whilst HER activity is suppressed.^{277,293,395} The limited quantity of sources together with the significant heterogeneity of the Cu/Ga dataset makes meaningful discussion impossible in our opinion.

	Table S12. Ga-based Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C2H4 FE	Reference
1	Ga-doped CuOx NCs (1.67 at.% Ga), on Toray GDL	Alloyed/Doped	Cu, Ga, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	CO2	-1.07 V - iR vs. RHE	-900 mA/cm ²	45	277
2	Cu4Ga9 intermetallic alloy NPs, on a GDL	Alloyed/Doped	Cu, Ga	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK-130	со	-1.15 V vs. RHE	?	43	393
3	400 nm thick evaporated Cu/Ga alloy (95:5), on GDL	Alloyed/Doped	Cu, Ga	-	(Gas-phase reactant, supplied from behind)	-	AF1-HNN8-50- X	CO ₂	?	-100 mA/cm ²	37	288
4	Ga/Cu alloy layer (5% Ga) (400 nm) sputtered on a GDL	Alloyed/doped	Cu, Ga	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-50	CO ₂	-0.65 V - iR vs. RHE	-200 mA/cm ²	34	139
5	Thermally annealed Cu-Ga LDH, on GDL	Alloyed/Doped	Cu, Ga	Nafion	(Gas-phase reactant, supplied from behind)	? 1.0 M KOH	FAA-3-PK-130	CO ₂	-1.0 V - iR vs. RHE	-522 mA/cm ²	31	293
6	Cu4Ga9 intermetallic alloy NPs, on a GDL	Alloyed/Doped	Cu, Ga	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK-130	CO2	-1.49 V vs. RHE	-1800 mA/cm ²	31	393
7	Ga(OH)x overlayer on Cu-sputtered PTFE GDL	Overlayer, Mixed- phase/Janus	Cu, Ga, O	-	(Gas-phase reactant, supplied from behind)	1 M KOH	FAA-3-PK-130	CO ₂	?	?	27	395
8	Cu/Ga alloy NPs (4 at. % Ga), on glassy carbon	Alloyed/Doped	Cu, Ga	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Selemion AMV	CO ₂	-1.1 V - iR vs. RHE	-3 mA/cm ²	23	394
9	Alloy/mixed metal Ga/Cu (1:3 ratio) microparticles, on GDL - obtained via reduction of mixed nitrate salt with NaBH4 over 12h period	Alloyed/Doped	Cu, Ga	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	NEOSEPTA, AHA	CO2	-0.6 V vs. RHE	-106 mA/cm ²	19	105

2.3.8. Fe/Cu

A summary of best-performing Cu/Fe bi-elemental catalysts for C_2H_4 production is given in Table S13. The Cu/Fe catalyst dataset is derived from 9 unique publications and comprises a total of 9 catalyst systems, with 0 (none) using CO as a reactant and 3 having been identified as alkaline CO₂ systems. A total of 1 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55% (specifically, 64%³²¹), being measured under alkaline CO2RR conditions. The highest non-alkaline system yields 51% C_2H_4 and uses CO₂ as the reactant.³⁸⁶ Cu/Fe catalyst systems predominantly take the form of tandem-type catalysts (with Fe-based component responsible for converting CO₂ to CO)^{321,378,391,396}, with only a single non-tandem publication reporting on a copper substrate containing single atom Fe sites being able to generate C_2H_4 at low overpotentials and low current densities (max C_2H_4 FE of ca. 30%).³⁹⁷ However, the product spectrum quickly switches to CH₄ formation once the current is increased. Considering that tandem-type catalyst systems do not intrinsically change the catalytic activity of the C_2H_4 -forming sites, existing literature regarding Cu/Fe systems does not allow for much insights in the way of how to improve C_2H_4 performance.

	Table S13. Fe-based Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C2H4 FE	Reference
1	Cu NP layer (0.8 mg/cm2) with Fe-N/C overlayer (only present near CO2 inlet, 5% of total area), on GDL	Overlayer, Tandem catalyst	Cu, Fe, C, N	Sustainion XA-9	(Gas-phase reactant, supplied from behind)	-	"Sustainion"	CO2	-3.38 V vs. ANODE	-1200 mA/cm ²	64	321
2	Fe-TMC shell around Cu2O NCs, on carbon paper	Core/shell	Cu, Fe	-	(Gas-phase reactant, supplied from behind)	1.0 M KCI	Nafion 117	CO ₂	-3.0 V vs. RHE	-500 mA/cm ²	51	386
3	Fe TMC (porphyrin) coated on Cu-sputtered PTFE GDL	Overlayer	Cu, Fe	-	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	FAA-3-PK-130	CO ₂	?	?	41	391
4	Fe TMC (porphyrin) coated on Cu NCs, on glassy carbon	A-supports-B, Mixed- Phase/Janus	Cu, Fe	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	"Selemion"	CO ₂	-1.05 V vs. RHE	-4 mA/cm ²	36	396
5	Coral-like catalyst obtained via thermal and electrochemical treatment of Fe-based metalloporphyrin intermixed in Cu-based MOF, on carbon paper	Mixed-phase/Janus	Cu, Fe, C	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 115	CO ₂	-1.17 V vs. RHE	-38 mA/cm ²	33	378
6	Cu NWs decorated with Fe-TMC, on GDL	Core/shell, A- supports-B	Cu, Fe	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO ₂	-1.0 V vs. RHE	?	31	333
7	Single atom Fe sites on a Cu-sputtered PTFE GDL	Single atom	Cu, Fe	-	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	?	CO ₂	?	-100 mA/cm ²	31	397
8	Fe-doped (1.3 at.%) self-supporting Cu2O NWs arrays on Cu mesh substrate	Mixed-phase/Janus, A-supports-B	Cu, Fe, O	-	(Solution-phase reactant, supplied in front)	0.5 M KCI	Nafion 117	CO ₂	-1.1 V -iR vs. RHE	-25 mA/cm ²	22	369
9	Fe-doped Cu(OH)2 NWs with a PTFE shell, on a GDL	Alloyed/Doped, Core/shell (in-)organic	Cu, Fe, O	PTFE	(Gas-phase reactant, supplied from behind)	-	X37-50 grade RT	CO ₂	-3.9 V vs. ANODE	-300 mA/cm ²	17	311

2.3.9. Au/Cu

A summary of best-performing Cu/Au bi-elemental catalysts for C_2H_4 production is given in Table S14. The Cu/Au catalyst dataset is derived from 19 unique publications and comprises a total of 21 catalyst systems, with 2 using CO as a reactant and 7 having been identified as alkaline CO₂ systems. A total of 1 of these catalyst systems exhibit maximum C_2H_4 FEs of $\geq 55\%$ ($56\%^{371}$), which was measured under alkaline CO2RR conditions. The highest non-alkaline system yields $45\% C_2H_4$ and uses CO₂ as the reactant.³⁹⁸ By and large, reported Cu/Au systems fall into the category of tandem-type catalysts where the Au component serves to convert CO₂ into CO.^{371,399-404} Thus, we are limited in how much we can learn from them with respect to improving C_2H_4 performance. However, a small number of publications report on catalyst systems. We find that such systems typically exhibit poorer C_2H_4 activity than pure copper systems, with the product spectrum shifted away from C_2H_4 to e.g., EtOH⁴⁰⁵ or CH₄¹²⁴. This is corroborated by Huang *et al.*, who show that Au/Cu nanoparticles with a pseudo-core/shell morphology (i.e., a Cu-rich shell with an Au-rich core) exhibit some activity for C_2H_4 formation at low overpotentials (ca. 20 %), but this activity is lost when looking at homogeneous Cu/Au alloy NPS.⁴⁰⁶

A second group of non-tandem type Cu/Au systems can be categorized as being of the mixedphase/janus-type. It is shown that for Janus-type catalysts, the shape of the Au "seed" has an effect on the activity of the C_2H_4 performance⁴⁰⁷ – which we interpret as Au playing a more active role than as solely serving as a CO donor (hence it not being designated as tandem-type herein). This is corroborated by physically mixing near-identical individual Au and Cu particles, which yielded worse C_2H_4 performance than the Au-derived Au/Cu Janus particles.⁴⁰⁸ Other mixed-phase catalysts (e.g., Au NPs deposited/grown on Cu) are typically reported to function via a tandem mechanism though.^{402,409} In general, we find that Cu/Au systems do not result in high C_2H_4 performance, and that the samples with the lowest Au contents typically perform best (albeit not necessarily better than the pure Cu benchmark).^{124,408,410} Overall, we observe that Au does not seem to be a good candidate for improving C_2H_2 performance of Cu electrocatalysts.

#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C ₂ H₄ FE	Reference
1	Au NP layer on top of Cu NP layer, on a GDL	Tandem catalyst	Cu, Au	Nafion	(Gas-phase reactant, forced through surface)	1.0 M KOH	FAA-3-PK-75	CO ₂	-0.70 V -iR vs. RHE	-596 mA/cm ²	56	371
2	Cu shell grown on top of Au nanoribbons with 4H phase supported on carbon black, on carbon paper	Core/Shell	Cu, Au, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.11 V -iR vs. RHE	-14 mA/cm ²	45	398
3	Au/Cu janus nanocrystals derived from penta-twinned Au nanobipyramids, on glassy carbon	Mixed-phase/Janus	Cu, Au	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-0.98 V -iR vs. RHE	-5 mA/cm ²	42	407
4	Au NPs ("large", order of a few nm) supported on Cu2O octahedra (ca. 200 nm) through galvanic displacement, on a GDL	Mixed-phase/Janus, A-supports-B	Cu, Au	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	"Selemion"	CO ₂	-0.97 V -iR vs. RHE	-300 mA/cm ²	42	377
5	Au/Cu alloy hollow NWs (Cu:Au of 5:1) prepared via galvanic displacement, on GDL	Alloyed/Doped	Cu, Au	-	(Solution-phase reactant, supplied in front)	1.0 M KOH	?	СО	-0.6 V vs. RHE	-67 mA/cm ²	40	124
6	Au/Cu bimetallic (100)-facet rich penta-twinned nanorods (1 at. % Au, single atom sites), on carbon paper	Alloyed/Doped	Cu, Au	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	"Selemion"	CO ₂	-0.62 V -iR vs. RHE	-200 mA/cm ²	40	410
7	Au NPs (0.7 at.%) supported on Cu NWs, on glassy carbon	A-supports-B	Cu, Au	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 + 0.1 M KCI	Nafion 117	CO ₂	-1.4 V vs. RHE	-25 mA/cm ²	39	411
8	Au NPs supported on Cu2O NWs grown on Cu-sputtered, etched FTO substrate	A-supports-B	Cu, Au	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Fumasep FKS- 50	CO ₂	-1.05 V vs. RHE	-43 mA/cm ²	39	400
9	Air-annealed (400 °C/4h) Au/CuC2O4/C yielding nanoporous hollow Au/CuO–CuO tandem catalsyt, on carbon paper	Mixed-phase/Janus	Cu, Au, O	Nafion	?	1.0 M KOH	"Fumasep"	CO ₂	-1.3 V vs. RHE	?	37	402
10	Air-annealed (400 °C/4h) Au/CuC2O4/C yielding nanoporous hollow Au/CuO–CuO tandem catalsyt, on carbon paper	Mixed-phase/Janus	Cu, Au, O	Nafion	?	1.0 M KOH	"Fumasep"	СО	-1.3 V vs. RHE	?	37	402
11	Au/Cu janus-type NPs consisting of concave Au NCs linked with hollow quasi-spherical Cu particles (ca. 118 nm) (Au:Cu ratio of 1:24), on a GDL	Mixed-phase/Janus	Cu, Au	Nafion	(Gas-phase reactant, supplied from behind)	3.0 M KOH	-	CO ₂	-0.75 V -iR vs. RHE	-480 mA/cm ²	36	408
12	Au/Cu bimetallic (100)-facet rich nanocubes (2 at. % Au, single atom sites), on carbon paper	Alloyed/Doped	Cu, Au	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	"Selemion"	CO ₂	?	-150 mA/cm ²	28	410
13	Au-doped Cu prepared via co-sputtering on GDL (30 T)	Alloyed/Doped	Cu, Au	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO2	?	-300 mA/cm ²	28	358
14	Au NPs supported on Cu2O NCs, on carbon paper	A-supports-B	Cu, Au	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	"Nafion"	CO ₂	-1.3 V vs. RHE	-6 mA/cm ²	24	401
15	Au NPs (8 nm) linked via bipyridine to Cu NWs (50 nm) supported on CNPs, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Au, C	PVDF, NMP	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.5 V vs. RHE	?	23	403
16	Au/Cu alloy layer (5% Au) (400 nm) sputtered on a GDL	Alloyed/doped	Cu, Au	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-50	CO ₂	-0.77 V - iR vs. RHE	-400 mA/cm ²	22	139
17	Galvanic displacement driven surface-Au doped Cu microcones on Cu foil	Core/shell	Cu, Au	-	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 115	CO ₂	-1.1 V vs. RHE	-28 mA/cm ²	21	405
18	Hollow Cu NPs with Au NPs inside of them, on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, Au	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.05 V -iR	-28 mA/cm ²	21	404
19	Cu shell/Au core NPs (50 nm) with elemental gradient, on GDL	Core/shell (gradient)	Cu, Au	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO2	-0.4 V vs. RHE	-0.1 mA/cm ²	20	406
20	Cu particles electroplated on 'wrinkled' Au substrate	Mixed-phase/Janus, A-supports-B	Cu, Au	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	?	CO ₂	-1.05 V vs. RHE	-15 mA/cm ²	20	412
21	Au NPs (10 nm) on top of electropolished monocrystalline Cu substrate, restructuring in-situ to form core/shell structures	Core/shell	Cu, Au	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	FAA-3-PK130	CO2	-1.03 V -iR vs. RHE	-10 mA/cm ²	8	409

2.3.10. Ag/Cu

A summary of best-performing Cu/Ag bi-elemental catalysts for C_2H_4 production is given in Table S15. The Cu/Ag catalyst dataset is derived from 71 unique publications and comprises a total of 77 catalyst systems, with 7 using CO as a reactant and 28 having been identified as alkaline CO₂ systems. A total of 12 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55%, though 8 of those were measured under alkaline CO2RR conditions. The top-two catalysts (consisting of non-alkaline CO2RR systems) both yield 78% C₂H₄, although originating from two publications by the same author.^{413,414} The third-most selective catalyst yields 69% C₂H₄ and concerns an alkaline CO2RR system.⁴¹⁵ Cu/Ag catalyst systems are the most ubiquitous amongst the bi-elemental catalysts that make appreciable amounts of C_2H_4 (i.e., \geq 25%). Although the dataset is diverse, we find that galvanic displacement of copper with silver is a popular method for creating Cu/Ag catalysts with various morphologies. The resulting systems consist of copper particles with a given morphology and size distribution being sparsely decorated with small Ag clusters, with the Ag sites presumed to be acting as the CO-formation sites and the morphology of the initial Cu particles mostly retained. These tandem-type catalyst systems generally result in rather ordinary C₂H₄ activity with maximum C₂H₄ FEs around 45%. Furthermore, when multiple concentrations of Ag are reported, the lowest Ag content typically yields the highest C_2H_4 selectivity – though this performance might well be lower than the (undoped) Cu NPs on their own. Rather than improving C₂H₄ performance, we observe that the presence of Ag promotes the formation of oxygenates such as e.g., EtOH and PrOH.416

A small number of publications exist that report C_2H_4 FEs between 45-55%, but these above-average (for Cu/Ag bi-elemental catalysts) performing systems exhibit high heterogeneity both in terms of catalyst characteristics and in terms of measurement methodology, making it impossible to pinpoint specific characteristics that make them better than others. Especially considering many of their characteristics are shared also with the poorer-performing systems. As such, we cautiously posit there must exist a delicate balance of several attributes for Cu/Ag systems to yield appreciable amounts of C_2H_4 , with most catalyst systems ending up on the 'wrong' end of the balance.

Lastly, we have a look at the small number of Cu/Ag-based outliers, which sport C_2H_4 FEs of $\geq 60\%$. Specifically, $60\%^{417}$, $67\%^{418}$, $69\%^{415}$ and $76\%^{413,414}$ – although the lowest of these four corresponds to a publication wherein they report a doubling of the C_2H_4 FE (from 33% to 60%) after turning off the system overnight and starting it back up the following day. Considering they have provided no evidence regarding reproducing this behavior we consider this source unreliable and forego detailed discussion. The 3rd highest C_2H_4 FE (67%) was obtained on galvanically modified octahedral Cu NPs (mixed-phase/janus-type), tested in an H-cell environment.⁴¹⁸ From testing NPs with other morphologies, they found that the octahedral shape was paramount for increasing the catalytic performance, which they attributed to a high fraction of (111) facets. To continue, 69.2% C_2H_4 could be achieved on a porous alloyed Ag/Cu surface prepared via alternated magnetron sputtering of Cu and Ag targets on a GDL substrate (alloyed/doped-type).⁴¹⁵ The system was operated as an MEA-electrolyzer, with the C_2H_4 FE and high current density might give the impression of industrial relevance, the cell voltage is excessively high. In addition, the combination of CO₂ as a reactant with an anion exchange membrane (AEM) make this system an alkaline CO2RR configuration, further decreasing its industrial potential.

The maximum C_2H_4 FE of 76% (as far as we are aware) has been reported for a simple tandem-type catalyst where an optimized (commercial) Cu NP/Nafion layer was deposited on top of an Ag foil.^{413,414} This effect is similar to another publication regarding a Cu/Zn catalyst modified with a Nafion/PVDF coating (yielding

74% C_2H_4)³¹², and a publication concerning a Cu/Pb catalyst supported on a polyaniline-modified carbon substrate.³⁵⁹ During our discussion of those systems, we already proposed that the enhancement in C_2H_4 might well be related to the presence of an inorganic layer rather than the fact that a bi-elemental catalyst is used. This effect is described in more detail in the main text. Overall, we conclude that Ag is not a very suitable candidate for improving the performance of Cu-based CO2RR catalysts for C_2H_4 formation.

#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C2H4 FE	Reference
1	Ag foil coated with Cu NP Nafion ink	Overlayer	Cu, Ag	Nafion	(Solution-phase reactant, supplied in front)	0.1 M NaHCO3 (pH 6.8)	-	CO ₂	-1.9 V vs. RHE	-21 mA/cm ²	76	413
2	Prepared by electrodepositing Cu on Ag surfaces	Overlayer	Cu, Ag	Nafion	(Solution-phase reactant, supplied in front)	0.1 M NaHCO3 (pH 6.8)	-	CO ₂	-1.9 V vs. RHE	-21 mA/cm ²	76	414
3	Cu/Ag obtained using magnetron sputtering, on a GDL	Mixed-phase/Janus	Cu, Ag, Al	Nafion	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-50 Grade 60	CO ₂	-	-451 mA/cm ²	69	415
4	Ag flakes (10 mass% vs. Cu) supported on Cu2O NPs (12 nm), on a GDL (YLS-30 T)	Mixed-phase/Janus, A-supports-B	Cu, Ag, O	Nafion	(Gas-phase reactant, supplied from behind)	3.0 M KOH	Nafion 117	CO ₂	?	-650 mA/cm ²	68	419
5	Cu NCs doped with AgNO3, on solid substrate	Cubes, Mixed- phase/Janus	Cu, Ag	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3 (pH 6.8)	Nafion 115	CO ₂	-1.2 V vs. RHE	-27 mA/cm ²	67	418
6	Ag flakes (10 mass% vs. Cu) supported on Cu2O NPs (12 nm), on a GDL (YLS-30 T)	Mixed-phase/Janus, A-supports-B	Cu, Ag, O	Nafion	(Gas-phase reactant, supplied from behind)	3.0 M KCI	Nafion 117	CO ₂	?	-650 mA/cm ²	66	419
7	Cu NWs from ACS Materials doped with AgNO3, on a GDL	Nanowire, Mixed- phase/Janus	Cu, Ag	-	(Gas-phase reactant, supplied from behind)	-	Piperlon 40 µm	CO ₂	-3.2 V cell potential	-80 mA/cm ²	60	417
8	In-situ reduced Cu2CO3(OH)2/AgCl/C composite pre-catalyts (1.28 at.% Ag), on carbon paper	Mixed-phase/Janus	Cu, Ag, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	"Selemion"	CO ₂	-0.85 V -iR vs. RHE	-85 ^{+_Cu-Ag,1} mA/cm ²	58	420
9	Ag-doped Cu MOF (Cu:Ag of 10:1) NPs, on carbon paper	Mixed-phase/Janus	Cu, Ag, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO ₂	-1.3 V vs. RHE	-220 mA/cm ²	57	421
10	Homogenously dispersed Cu/Ag NPs in carbon matrix obtained via pyrolizing MOF-precursor, on GDL	Mixed-phase/Janus, A-supports-B	Cu, Ag, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO ₂	-1.2 V vs. RHE	-200 mA/cm ²	56	422
11	CuAg by electrodeposited CuSO4 and Ag2SO4, on a GDL	Nanowire, Mixed- phase/Janus	Cu, Ag	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumatech	CO ₂	-0.68 V vs. RHE	-313 mA/cm ²	55	423
12	Electroplating Ag with drop casted Cu, on a GDL	Mixed-phase/Janus	Cu, Ag	Thiadiazole (N2SN)	(Gas-phase reactant, supplied from behind)	-	Fumapem FAA-3-50	CO ₂	-4.55 Vvs. ANODE	-320 mA/cm ²	55	424
13	Synthesis of Ag NCs doped with CuCl2, on glass carbon electrode	Mixed-phase/Janus, A-supports-B, cubes	Cu, Ag	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 212	CO2	-1.2 V vs. RHE	-4 mA/cm ²	54	425
14	Ag-doped (4.3 at. % vs. Cu) CuO nanospheres consisting of aggregated platelets, on carbon paper	Mixed-phase/Janus	Cu, Ag, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 115	CO ₂	-1.2 V vs. RHE	-25 mA/cm ²	51	426
15	Cu2O microcubes (1 µm) decorated with small Ag NPs (50 nm), prepared via galvanic displacement, mixed with carbon black, on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, Ag, C. O	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.2 V vs. RHE	-29 mA/cm ²	51	353
16	Synthesis of CuO NCs doped with AgCl2, on a GDL	Nanowire, Mixed- phase/Janus	Cu, Ag, O	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO ₂	-0.6 V vs. RHE	-150 mA/cm ²	50	427
17	Cu needles with Ag NP, on a GDL	Janus, A-supports-B	Cu, Ag	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAS- 50	CO ₂	-0.93 V vs. RHE	-350 mA/cm ²	50	428
18	In-situ reduced Cu2CO3(OH)2/AgCI/C composite pre-catalyts (1.28 at.% Ag), on carbon paper	Mixed-phase/Janus	Cu, Ag, C	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KCI	Nafion 117	CO ₂	-1.11 V -iR vs. RHE	-61 mA/cm ²	50	420
19	Synthesised CuO particles followed by AgNO3 doping, on a glassy carbon electrode	Mixed-phase/Janus	Cu, Ag, I, O	Nafion	(Solution-phase reactant, supplied in front)	0.25 M KHCO3	Nafion 117	CO2	-1 V vs. RHE	-24 mA/cm ²	49	429
20	Homogenously dispersed Cu/Ag NPs in carbon matrix obtained via pyrolizing MOF-precursor, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Ag, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-0.7 V vs. RHE	-8 mA/cm²	49	422
21	Ag NP layer on top of Cu NP layer, on a GDL	Overlayer, Tandem catalyst	Cu, Ag	Nafion	(Gas-phase reactant, forced through surface)	1.0 M KOH	FAA-3-PK-75	CO ₂	-0.75 V -iR vs. RHE	-490 mA/cm ²	48	371
22	Galvanic replacement commercial Cu NPs and Ag+	Foam	Cu, Ag	Nafion	(Gas-phase reactant, forced through surface)	1.0 M KOH (pH 14)	Fumasep FAB- PK-130	CO ₂	-0.65 V vs. RHE	-708 mA/cm ²	48	430
23	Defective Ag NPs obtained from in-situ reduction of AgIO3 NSs mixed with CuO NSs (Cu:Ag ratio of 6), deposited on a GDL	Mixed-phase/Janus, A-supports-B	Cu, Ag, O	Nafion	(Gas-phase reactant, supplied from behind)	0.5 M K2SO4 + x mM H2SO4 (pH 1.0)	-	CO2	-2.0 V -iR vs. RHE	-1200 mA/cm ²	48	431
24	Cu NP layer (0.4 mg/cm2) with Ag overlayer (only present near CO ₂ inlet, 5% of total area), on GDL	Overlayer, Tandem catalyst	Cu, Ag	Sustainion XA-9	(Gas-phase reactant, supplied from behind)	-	"Sustainion"	CO ₂	-3.05 V vs. ANODE	-688 mA/cm ²	46	321
25	Cu NPs mixed with Ag NPs and PTFE, on GDL	Mixed-phase/Janus	Cu, Ag	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHC03	Selemion DSVN	CO ₂	-1.42 V -iR vs. RHF	-600 mA/cm ²	45	100
26	Ag NRs fully coated by Cu(NO3)2 solution	Core-shell, A- supports-B	Cu, Au	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.11 V vs. RHE	-100 mA/cm ²	45	398
27	Commercial Sigma-Aldrich Cu NP on GDL, immersed AgNO3 solution for various times.	Mixed-phase/Janus	Cu, Ag	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAB- PK-130	со	-0.56 V vs. RHE	?	44	432
28	Core/shell NPs with Ag core and Cu shell, on a GDL	Core-shell, A- supports-B	Cu, Ag, C	Nafion	(Gas-phase reactant, supplied from behind)	1 M KHCO3 (pH 6.8)	Nafion 115	CO ₂	-1.6 V vs. RHE	-299 mA/cm ²	44	433
29	Co-plated Cu and Ag from a 1 mM 3,5-diamino-1,2,4-triazole containing plating bath, on a 10nm Cu-sputtered GDL	Alloyed/Doped	Cu, Ag	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	-	CO ₂	-0.8 V vs. RHE	-148 mA/cm ²	43	335

30	Core-shell NPs prepared by precipitation of Cu(OH)2 on Ag core, on a GDL	Core-shell, A- supports-B	Cu, Ag,	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Not Found	CO ₂	-0.64 V vs. RHE	-400 mA/cm²	43	434
31	Ag-doped (2%) Cu2O NPs, on a GDL	Alloyed/Doped	Cu, Ag, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO ₂	-0.74 V vs. RHE	-1350 mA/cm ²	43	435
32	The CuO supports prepared by precipitation method followed by Ag impregnation, On a GDL	Mixed-phase/Janus	Cu, Ag, O	Nafion 115	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.3 V vs. RHE	-10 mA/cm ²	42	436
33	Sythesyzed Cu nanocubes doped with AgNO3, On a GDL	Mixed-phase/Janus, A-supports-B, cubes	Cu O, Ag	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMV, AGC Inc.	CO ₂	-0.95 V vs. RHE	-10 mA/cm ²	42	437
34	CuO Nanowires modified with AgNO3	Mixed-phase/Janus, A-supports-B	Cu, Ag	-	(Solution-phase reactant, supplied in front)	0.2 M KHCO3 (pH 6.8)	-	CO2	-1.05 V vs. RHE	-36 mA/cm²	42	438
35	Ag-doped porous Cu NWs supported on CNPs (Ketjen 600C), on GDL	Mixed-phase/Janus, A-supports-B	Cu, Ag, C	Polyvinylidene difluoride	(Gas-phase reactant, supplied from behind)	0.1 M KHCO3 (pH 6.8)	Nafion 212	CO2	-1.3 V vs. RHE	-33 mA/cm ²	42	439
36	Commercial Sigma-Aldrich Cu NP dispersed in methanol with Nafion deposited on GDL, immersed in aqueous AgNO3 solution for various times.	Core shell, Janus, A- supports-B, cubes	Cu, Ag	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAB- PK-130	CO ₂	-1.31 V vs. RHE	?	41	432
37	The AgCu alloy catalyst was obtained via electroreduction, on a GDL	Alloyed/doped, Mixed-phase/Janus	Cu, Ag	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion	CO ₂	-1.1 V vs. RHE	-6 mA/cm ²	41	440
38	Electroplated Cu NPs with Ag layer created by spincoating with AgNO3 solution, on a Cu foil	Mixed-phase/Janus, A-supports-B	Cu, Ag	-	(Gas-phase reactant, forced through surface)	0.5 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.2 V vs. RHE	-20 mA/cm ²	41	441
39	Ag NPs with a porous (40 nm thick) Cu2O shell, on glassy carbon	Core/shell	Cu, Ag, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.6 V vs. RHE	-21 mA/cm ²	41	442
40	AgNO3 doping of CuO particles	Mixed-phase/Janus, A-supports-B	Cu, Ag, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO ₂	?	-1200 mA/cm ²	40	443
41	Ag/Cu catalysts were deposited by cosputtering with Cu and Ag targets	Mixed-phase/Janus	Cu, Ag	-	(Gas-phase reactant, supplied from behind)	1 M KHCO3 (pH 6.8)	Fumasep FAA- 3-PK-130	CO2	?	-200 mA/cm ²	40	444
42	Ag surface-mofied CuO MPs, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Ag	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3 (pH 6.8)	"Nafion"	CO2	-1.1 V vs. RHE	-13 mA/cm ²	40	445
43	Ag-doped porous Cu NWs supported on CNPs (Ketjen 600C), on GDL	Mixed-phase/Janus, A-supports-B	Cu, Ag, C	Polyvinylidene difluoride	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	? Nafion 212	CO2	-1.48 V vs. RHE	-500 mA/cm ²	40	439
44	Ag-doped porous Cu NWs supported on CNPs (Ketjen 600C), on GDL	Mixed-phase/Janus, A-supports-B	Cu, Ag, C	Polyvinylidene difluoride	(Gas-phase reactant, supplied from behind)	0.1 M KHCO3 (pH 6.8)	Nafion 212	со	-1.2 V vs. RHE	?	40	439
45	Synthesis of Cu2O NCs doped by AgNO3, on a GDL	Core shell, Janus, A- supports-B, cubes	Cu, Ag, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAB- PK-130	CO ₂	-2.1 V vs. RHE	800 mA/cm ²	39	446
46	Consecutive galvanic replacement-prepared Ag-doped (4 wt%, XPS) CuOx NPs, on Cu-sputtered PTFE GDL	Alloyed/Doped	Cu, Ag, O	Nafion	(Gas-phase reactant, supplied from behind)	-	"Sustainion"	со	?	-600 mA/cm ²	37	447
47	Ag–Cu NDs were synthesized using a seed-mediated method, on a GDL	Mixed-phase/Janus	Cu, Ag	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion	CO2	-1.1 V vs. RHE	-1 mA/cm ²	37	448
48	Cu NPs supported on Graphdiyne doped with Ag, on a GDL	Mixed-phase/Janus, A-supports-B	Cu, Ag, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion N-115	CO ₂	-1.8 V vs. RHE	-50 mA/cm ²	36	449
49	Synthesised Ag NPs were doped with copper acetate and PVP, on a GDL	Core shell, Mixed- phase/Janus, A- supports-B	Cu, Ag	Nafion	(Gas-phase reactant, forced through surface)	3.0 M KOH	Nafion 115	CO ₂	-1.1 V vs. RHE	-375 mA/cm ²	36	450
50	Cu-Ag bimetallic catalysts by simultaneous galvanic replacement, on a glass carbon electrode	Alloyed/doped, Mixed-phase/Janus	Cu, Ag, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.1 V vs. RHE	?	35	451
51	Mixed Ag/Cu-melamine complex, on carbon paper	Atomically mixed/Crystalline	Cu, Ag	Nafion, melamine	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO2	-1.0 V vs. RHE	-50 mA/cm ²	35	452
52	Metal powder mixed and heated up to 2650 °C, on a GDL	Alloyed/doped	Cu, Ag, C	Tetlon	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Nation 117	со	-2.3 V vs. SCE	-200 mA/cm ²	34	360
53	Synthesis of CuO NPs followed by addition of AgOCOCF3 making core shell, on a GDL	Core shell, Janus, A- supports-B, cubes	Cu, Ag, C, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumatech PK- 75	CO2	-0.75 V vs. RHE	-110 mA/cm ²	34	453
54	Exchange of Ag+ ions from Cu nanosheets, on a glass carbon electrode	Mixed-phase/Janus	Cu, Ag	Nation	(Solution-phase reactant, supplied in front)	0.05 M KHCO3	?	CO ₂	-1.2 V vs. RHE	-10 mA/cm ²	34	454
55	Ag nanocrystals with copper overlayer, on a GDL	Core shell, Janus, A- supports-B,	Cu, Ag		(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAB- PK-130	CO2	-1.2 V vs. RHE	-102 mA/cm ²	33	455
56	Electrodeposited CuAgx on carbon support	Mixed-phae/Janus, A- supports-B, dendritic	Cu, Ag	?	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nation 117	CO2	-1.23 V vs. RHE	-11 mA/cm ²	33	456
57	Synthesized Ag nanowires were mixed with Cu(OAc)2 generating Ag@CuOx-X	Core-shell, A- supports-B	Cu, Ag, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Fumasep FAA- 3-PK-130	CO ₂	-1.05 V vs. RHE	-16 mA/cm²	32	457
58	Self prepared Cu np were doped with aqueous AgNO3 solution creating Ag shell	Core-shell, A- supports-B	Cu, Ag	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Nafion 115	CO2	-1.1 V vs. RHE	-23 mA/cm ²	32	458
59	Ag NPs (25 wt%) anchored on Cu NWs with a 4, 4'-bipyridine linker, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Ag	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.15 V -iR vs. RHE	?	32	459
60	Cu-BTC doped with aqueous AgNO3 solution, on a GDL	Mixed-phase/Janus, A-supports-B	Cu, Ag	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.2 V vs. RHE	-6 mA/cm ²	31	460
61	Ag2Cu2O3 synthesised from Cu(NO3)2 and AgNO3, on a GDL	Alloyed	Cu, Ag, O	Sustainion XA-9	(Gas-phase reactant, supplied from behind)	1 M CsHCO3	Fumasep FAB– PK–130	со	?	-200 mA/cm ²	31	461
62	5 nm Ag layer sputter-deposited on Cu sputtered (100 nm) GDL	Overlayer	Cu, Ag	-	(Gas-phase reactant, supplied from behind)	-	?	CO ₂	-2.82 V vs. ANODE	-200 mA/cm ²	31	462
63	Cu/Ag alloy NPs synthesized by polyol method, dropped on glassy carbon	Core shell, alloyed/doped	Cu, Ag	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.06 V vs. RHE	-2 mA/cm ²	30	463
64	Prepared by high-energy ball milling CuO particles with Ag powders, on a GDL	Mixed-phase/Janus	Cu, Ag, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Selemion AMVAGC Inc.	со	-0.57 V vs. RHE	-133 mA/cm ²	30	464
65	Alloyed by melting and cryogrinding, on glassy carbon	Alloyed/doped	Cu,	Nafion	(Solution-phase reactant,	0.5 M	?	CO ₂	-0.3 V vs.	-13	30	465

		1	1.0		supplied in front)	L KUCO2		1	DUE		1	1
			Ag		supplied in front)	(pH 6.8)			KIL	ma/cm-		
66	Cu cubes were synthesized and then doped with AgNO3 solution,	Mixed-phase/Janus,	Cu,	Nafion	(Gas-phase reactant,	1.0 M	-	CO ₂	-1.1 V vs.	-233	30	466
	on a GDL	A-supports-B	Ag		supplied from behind)	KOH (pH			RHE	mA/cm ²		
						14)						
67	Silicon wafers covered by Cu and Ag by reactive sputtering	Janus, two-phase	Cu,	?	(Solution-phase reactant,	0.1 M	Selemion AMV	CO ₂	-1.0 V vs.	-10	30	399
			Ag,		supplied in front)	КНСОЗ			RHE	mA/cm ²		
			(Si)			(pH 6.8)						
68	AgNO3 doping of CuO NP	Mixed-phase/Janus,	Cu,	Nafion	(Solution-phase reactant,	0.5 M	Fumasep FAB-	CO2	-0.99 V vs.	-52	29	467
		A-supports-B	Ag.		supplied in front)	кнсоз	PK-130		RHE	mA/cm ²		
			o			(pH 6.8)						
69	400 nm thick evaporated Cu/Ag alloy (95:5), on GDL	Alloyed/doped	Cu,	-	(Gas-phase reactant,	-	AF1-HNN8-50-	CO ₂	?	-100	28	288
		.,,	Ag		supplied from behind)		x			mA/cm ²		
70	Cu NCs with a non-equilibrium Cu/Ag alloy shell, on a GDL	Alloved/Doped.	Cu.	Nafion	(Solution-phase reactant.	0.1 M	"Nafion"	CO ₂	-1.1 V -iR	2	28	468
		core/shell	Ag		supplied in front)	кнсоз			vs. RHF			
71	Ag-doped Cu prepared via co-sputtering on GDL (30 T)	Alloved/Doped	Cu.	-	(Gas-phase reactant.	1.0 M	2	CO2	2	-300	28	358
		.,,	Ag		supplied from behind)	кон				mA/cm ²		
72	Sytheses of NP with in AgNO3 and Cu(acac)2, on a GDI	Mixed-phase/Janus	Cu.	Nafion	(Gas-phase reactant.	2.0 M	2	CO2	-0.77 V vs.	-6	27	469
			Ag		supplied from behind)	кон			RHE	mA/cm ²		
73	Cu-Ag NCs synthesized by galvanic exchange of Cu(0) with Ag-	Mixed-phase/Janus	Cu.	-	(Gas-phase reactant.	1 M	Selemion	CO ₂	-1.13 V vs.	-288	26	470
	trifluoroacetate (Ag-TFA), on a GDL		Ag.		supplied from behind)	кнсоз	DSVN		RHE	mA/cm ²		
			c			(pH 6.8)						
74	Cu9Ag1 NPs prepared via thermal shock, on carbon nanotubes	Alloved/Doped, A-	Cu.	-	(Gas-phase reactant.	1.0 M	FAA-3	со	-0.65 V -iR	-25	25	334
		supports-B	Ag		supplied from behind)	кон			vs. RHE	mA/cm ²		
75	Cu coated Ag core shell, on a GDL	Core-shell, A-	Cu,	PTFE powder	(Gas-phase reactant,	1 M	FAA-3-PK-75	CO2	-0.8 V vs.	-137	23	471
		supports-B	Ag		supplied from behind)	кнсоз			RHE	mA/cm ²		
						(pH 6.8)						
76	Galvanic replacement from Cu to Ag to achieve in situ formation of	Mixed-phase/Janus,	Cu,	Nafion	(Solution-phase reactant,	0.1 M	?	CO ₂	-1.12 V vs.	-2	22	472
	CuAg ensembles	A-supports-B	Ag		supplied in front)	КНСОЗ			RHE	mA/cm ²		
			-			(pH 6.8)						
77	Cu/Ag alloy NPs synthesized by polyol method, dropped on glassy	Alloyed/Doped	Cu,	Nafion	(Solution-phase reactant,	0.5 M	Fumasep FAA-	CO ₂	-1.1 V vs.	-15	13	473
	carbon		Ag		supplied in front)	кнсоз	3-PK-130		RHE	mA/cm ²		
			ľ			(pH 6.8)						
	+_CurAg.1 Used current density and FE described in text to calculate	1			İ				1		1	1
	total current, as opposed to figure (ca. 85 mA/cm ² vs. ca. 110				1							
1	mA/cm ²)									1		1

2.4. Elements forming non-reducible oxides: Zr, Hf, Ti, Si, and the lanthanide series 2.4.1. Zr & Hf/Cu (combined due to their chemical similarities)

A summary of best-performing Cu/Zr (Cu/Hf) bi-elemental catalysts for C_2H_4 production is given in Table S16 (S17). The Cu/Zr (Cu/Hf) catalyst dataset is derived from 10 (3) unique publications and comprises a total of 13 (5) catalyst systems, with 2 (1) using CO as a reactant and 6 (3) having been identified as alkaline CO₂ systems. A total of 3 (1) of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55 %, though 1 (1) of those was measured under alkaline CO2RR conditions. The top-most Cu/Zr catalyst yields 63% C_2H_4 and concerns a non-alkaline CO2RR system⁴⁷⁴, with the top Cu/Hf catalyst (also) yielding 63% C_2H_4 , but being an alkaline system instead.⁴⁷⁵

Cu/Zr catalyst systems are generally observed to form separate (phase-segregated) particles and are thus classified herein as being mixed-phase/janus-type catalysts, with the same being true for Cu/Hf systems. The degree of mixing is an important parameter, with well-mixed particles (such as achieved via co-precipitation methods) yielding better performance than e.g., mechanically mixed systems.⁴⁷⁵ C_2H_4 FEs in the 50%-60% range are reliably observed when looking at the combination of the two catalyst systems. An important observation is that both Cu/Zr and Cu/Hf systems have been reported to also work for CO reduction (yielding maximum C_2H_4 FEs of 44%⁴⁷⁶ and 51%⁴⁷⁵, respectively). In addition, ZrOx domains and HfOx domains retain in their oxidized state in-operando, which some authors claim to be responsible for the observation that C_2H_4 activity goes through a maximum before decreasing with increasing oxide content, which they attribute to reduced conductivity.⁴⁷⁶ The publications provide little insights as to why exactly C₂H₄ performance is improved upon ZrOx (HfOx) addition, though increased CO_2 (CO) adsorption capacity is commonly hypothesized as a potential contributor, besides the literature-pervasive "stabilization of Cu δ +" argument. Besides mixed-phase/janus-type systems, overlayer-type systems where a layer of component 'B' is deposited on top of layer 'A' are also reported specifically for Cu/Zr.^{477,478} However, these systems exhibit lower C₂H₄ selectivity (ca. 45% C₂H₄), which might be correlated to a low quantity of intimate interfaces when considering that intricately mixedparticles exhibit superior performance in mixed-phase/janus-type systems.⁴⁷⁵ (Supposed) alloyed/doped-type catalysts are also reported, but their activity is poor ($\leq 15\%$ C₂H₄).¹⁰⁵

As a final consideration we would like to emphasize two publications with similar characteristics. To start, we highlight a publication regarding Cu-SAC sites dispersed within the nanopores of a Zr-based MOF which is found to be stable under operating conditions.⁴⁷⁹ This system is reported to yield an impressive maximum C_2H_4 FE of 62% for the reduction of CO. Rather than being related to the presence of both Cu and Zr in the catalyst, it seems to be the confinement of CO within the pores that is responsible for the excellent performance. Secondly, we would like to highlight a publication by Li *et al.* regarding a mixed-phase/janus-type catalyst consisting of mixed ZrO₂ and CuO particles wherein they report on the importance of the presence of nanocavities for the enhancement of C_2H_4 performance.⁴⁷⁶ Both these studies comprise a similar nanoconfinement effect as we have also previously hypothesized to exist for a particular Cu/Ni³⁶³ and a Cu/Co¹⁴³ system, respectively.

	Table S16. Zr-based Cu											T
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C2H4 FE	Reference
1	ZrO2 supported on Cu-Cu2O NPs prepared via co-precipitation, on carbon paper	Bi-phasic/Janus, A- supports-B	Cu, Zr, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KCI	Nafion 117	CO ₂	-0.70 V vs. RHE	-24 mA/cm ²	63	474
2	Single atom Cu sites enclosed in a Zr-based MOF framework with rod-like morphology, on GDL	Single atom, Atomically mixed/Crystalline, MOF	Cu, Zr	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M phosphat e buffer saline	Nafion 212	СО	?: -1.0 V vs. RHE	-125 mA/cm ²	62	479
3	NPs composed of a mix of ZrO2 and CuO, prepared via co- precipitation, on carbon paper	Bi-phasic/Janus	Cu, Zr, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Nafion 117	CO ₂	?	-250 mA/cm ²	55	476
4	(SAA, ca. 2 at.%) Zr-doped Cu NPs mixed with CNPs, on a GDL	Mixed-phase/Janus	Cu, Zr	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK-130	CO ₂	-1.0 V vs. RHE	-730 mA/cm ²	50	480
5	NPs composed of a mix of ZrO2 and CuO, prepared via co- precipitation, on carbon paper	Bi-phasic/Janus	Cu, Zr, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.10 V vs. RHE	-11 mA/cm ²	48	476
6	NPs composed of a mix of ZrO2 and CuO, prepared via co- precipitation, on carbon paper	Bi-phasic/Janus	Cu, Zr, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KOH (pH 13)	Nafion 117	со	-0.6 V vs. RHE	?	44	476
7	Porous ZrO2 layer on top of Cu plate - dropcast with Nafion binder, dried on hotplate at 110 C in air	Cu with overlayer	Cu, Zr, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	"Nafion"	CO ₂	-1.05 V - iR vs. RHE	-24 mA/cm ²	44	477
8	Porous ZrO2 layer prepared via decomposition of UIO-66 (Zr-based MOF, 0.25 mg/cm2), on top of Cu plate - dropcast with Nafion binder, dried on hotplate at 110 C in air	Cu with overlayer	Cu, Zr, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	"Nafion"	CO ₂	-1.05 V - iR vs. RHE	-26 mA/cm ²	43	478
9	CuO NPs mixed with amorphous ZrO2, on a GDL	Mixed-phase/Janus	Cu, Zr	Nafion	(Gas-phase reactant, supplied from behind)	-	X37-50 Grade RT	CO ₂	-4.0 V vs. ANODE	-182 mA/cm ²	36	481
10	Cu impregnated into a Zr-based MOF (UiO-66), on carbon paper	Alloyed/Doped	Cu, Zr	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.0 V vs. RHE	-10 mA/cm ²	34	482
11	Zr(OH)x overlayer on Cu-sputtered PTFE GDL	Overlayer, Mixed- phase/Janus	Cu, Zr, O	-	(Gas-phase reactant, supplied from behind)	1 M KOH	FAA-3-PK-130	CO ₂	?	?	17	395
12	Alloy/mixed metal Zr/Cu (1:1 ratio) microparticles, on GDL - obtained via reduction of mixed nitrate salt with NaBH4 over 12h period	Alloyed/Doped	Cu, Zr	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	NEOSEPTA, AHA	CO ₂	-0.6 V vs. RHE	-102 mA/cm ²	15	105
13	Alloy/mixed metal Zr/Cu (1:1 ratio) microparticles, on GDL - obtained via reduction of mixed nitrate salt with NaBH4 over 12h period	Alloyed/Doped	Cu, Zr	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	NEOSEPTA, AHA	CO ₂	-0.8 V vs. RHE	-170 mA/cm ²	15	105

	Table S17. Hf-based Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C ₂ H4 FE	Reference
1	Co-precipitated HfOx and CuOx (2:3 ratio) mixed NPs, on carbon paper	Mixed-phase/Janus	Cu, Hf, O	Nafion	(Gas-phase reactant, supplied from behind)	0.1 M KOH	?	CO2	?	-300 mA/cm ²	63	475
2	Co-precipitated HfOx and CuOx (2:3 ratio) mixed NPs, on glassy carbon (?)	Mixed-phase/Janus	Cu, Hf, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KOH	Nafion 117	со	-0.4 V vs. RHE	?	51	475
3	Co-precipitated HfOx and CuOx (2:3 ratio) mixed NPs, on glassy carbon (?)	Mixed-phase/Janus	Cu, Hf, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.1 V vs. RHE	-1 mA/cm ²	49	475
4	Hf-doped Cu(OH)2 NWs with a PTFE shell, on a GDL	Alloyed/Doped, Core/shell (in-)organic	Cu, Hf, O	PTFE	(Gas-phase reactant, supplied from behind)	-	X37-50 grade RT	CO ₂	-4.1 V vs. ANODE	-400 mA/cm ²	42	311
5	Alloy/mixed metal Hf/Cu (1:3 ratio) microparticles, on GDL - obtained via reduction of mixed nitrate salt with NaBH4 over 12h period	Alloyed/Doped	Cu, Hf	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	NEOSEPTA, AHA	CO ₂	-0.8 V vs. RHE	-136 mA/cm ²	13	105
2.4.2. Ti/Cu

A summary of best-performing Cu/Ti bi-elemental catalysts for C_2H_4 production is given in Table S18. The Cu/Ti catalyst dataset is derived from 7 unique publications and comprises a total of 8 catalyst systems, with 3 using CO as a reactant and 3 having been identified as alkaline CO_2 systems. A total of 2 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55 %, both having been measured under non-alkaline CO2RR conditions. The top-most catalyst yields 71% C_2H_4 and concerns a CORR system.⁴⁸³

Although few Cu/Ti systems are reported to make C_2H_4 (typical C_2H_4 performance in the 45-55% range), a singular source reports on a highly active catalyst material. This material, comprising 2D Ti-based MXene nanosheets decorated with single atom copper sites (Cu-SAC/Ti3C2Tx; Tx=terminating group), could be considered as a multi-elemental catalyst on account of the presence of Cu, Ti, and C. However, considering we believe the activity mostly originates from the 2D structure (discussed in the main text) rather than the presence of additional elements we have opted to assign it to the Cu/Ti group. This particular catalyst exhibits exceptional performance, yielding 71% C₂H₄ during the reduction of CO.⁴⁸³ This is noteworthy not only because of the high faradaic efficiency, but also because of i) the fact that CO is the reactant and ii) that the active sites consists of atomically dispersed copper. Especially the latter is interesting considering that SACs typically are not active for C-C coupling during CO(2) reduction.⁴⁸⁴⁻⁴⁸⁶ Interestingly, copper NPs on top of the Ti-based MXene nanosheets were found to exhibit much poorer C_2H_4 activity, which we interpret as performance being strongly influenced by support-catalyst interactions. Importantly (in our opinion), the non-Cu doped Ti-based MXene support by itself is also active for C_2H_4 formation, albeit only a little. Such C_2H_4 activity of the Ti-based support is also identified in an unrelated publication, who find that the pristine (non-Cu) Ti nanotubefunctionalized Ti foil substrate they use is itself active to a certain degree for forming C₂H₄.⁴⁸⁷

Such C_2H_4 activity of non-Cu containing catalysts is an anomaly in literature, observed only sporadically.⁴⁸⁸ Possibly the fact that the support material itself is capable of making ethylene is what allows a Cu SAC to still yield high C_2H_4 activity rather than a more generic catalyst-support interaction. We expand on this hypothesis in the main text. Although we conclude that this Ti/MXene-based catalyst system goes against many conventional wisdoms, its uniqueness also makes it difficult to meaningfully compare to other Cu/Ti systems described in this work besides observing that it (again) consists of 2D nanosheets. This observation is also further addressed in the main text. In addition, although this singular Ti-based MXene source with high performance is promising, we would like to advocate cautious optimism. Namely, Zhao *et al.* report on a (seemingly) highly similar Cu SAC/Ti3C2Tx system, wherein they find MeOH as the dominant product and no C_2H_4 at all.⁴⁸⁶ Although the reactants differ between the two studies (CO₂ vs. CO), we cannot identify any significant differences between the catalyst systems. Hence, we are unsure as to which is the truth and choose to be optimistic rather than pessimistic by assuming in our discussion that CORR on Cu-SAC/Ti3C2Tx indeed yields high C_2H_4 activity.

	Table S18. Ti-based Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C ₂ H4 FE	Reference
1	Single atom Cu supported on ultrathin Ti3C2Tx nanosheets, on carbon paper	Single atom	Cu, C, Ti	Nafion	(Solution-phase reactant, supplied in front)	1.0 M KOH (pH 14)	Nafion 117	со	-0.70 V vs. RHE	-23 mA/cm ²	71	483
2	Electroplated Cu on metallic Ti nanotube-functionalized Ti foil	A-supports-B	Cu, Ti	-	(Solution-phase reactant, supplied in front)	0.5 M KCI	"Nafion"	CO ₂	-1.6 V vs. Ag/AgCl	-12 mA/cm ²	55	487
3	TiO2/sustainion toplayer on a Cu-sputtered PTFE GDL	Overlayer, Mixed- phase/Janus	Cu, Ti, O	Sustainion	(Gas-phase reactant, supplied from behind)	1 M KOH	-	CO ₂	-3.00 V vs. ANODE	-261 mA/cm ²	48	489
4	Cu nanoclusters encapsulated in Ti-based MOF, on a GDL	Mixed-phase/Janus	Cu, Ti, O	?	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	-	CO2	-1.0 V vs. RHE	-400 mA/cm ²	48	490
5	TiO2 NP overlayer on top of Cu-sputtered PTFE GDL	Overlayer, Mixed- phase/Janus	Cu, Ti, O	Nafion	(Gas-phase reactant, supplied from behind)	? 0.5 M KHCO3 + 0.5 M KCI	Nafion 117	CO2	-0.91 V -iR vs. RHE	?	46	491
6	Cu NPs (40 wt%) supported on Magnéli phase Ti4O7 nanoflakes, on a GDL	Mixed-phase/Janus, A-supports-B	Cu, Ti, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAA-3-PK-130	со	-0.7 V -iR vs. RHE	-178 mA/cm ²	31	492
7	Cu NPs (20 wt%) supported on TiO2 NPs, on a GDL	Mixed-phase/Janus, A-supports-B	Cu, Ti, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAA-3-PK-130	со	-0.70 V -iR vs. RHE	-116 mA/cm ²	29	492
8	TiO2 overlayer on Cu-sputtered PTFE GDL	Overlayer, Mixed- phase/Janus	Cu, Ti, O	-	(Gas-phase reactant, supplied from behind)	1 M KOH	FAA-3-PK-130	CO ₂	?	?	15	395

2.4.3. Si/Cu

A summary of best-performing Cu/Si bi-elemental catalysts for C_2H_4 production is given in Table S19. The Cu/Si catalyst dataset is derived from 15 unique publications and comprises a total of 19 catalyst systems, with 2 using CO as a reactant and 5 having been identified as alkaline CO₂ systems. A total of 3 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55 %, all of which were measured under alkaline CO2RR conditions. The top-most catalyst yields 82% C_2H_4 and concerns an alkaline CO2RR system.⁴⁹³ The highest non-alkaline system yields 54% C_2H_4 and uses CO₂ as the reactant.⁴⁹⁴

Two primary types of catalyst systems can be identified for Si/Cu systems: i) mixed-phase/janus-type systems and ii) core/shell-type systems. High silicon contents in general are unfavorable for C_2H_4 performance⁴⁹⁵, and overall we observe that morphological effects and the local environment seem equally – if not more – important than the presence of Si.^{493,496,497} For both mixed-phase/janus-type and core/shell-type systems, the Cu/Si boundary region is often put forward as one of the main reasons for improved catalytic performance. Especially the continued existence of Cu δ + sites during CO₂ reduction governed by the presence of these boundary regions is a popular hypothesis for explaining observed results.^{498,499} Maximum FEs for C₂H₄ formation typically fall in the 40-50% range for these mixed-phase/janus-type and core/shell-type Si/Cu systems. However, the SiO₂ component is also generally reported as being unstable *in-operando* and dissolving into the electrolyte, with the high (local) alkalinity typically being put forward as the reason for this.^{499,500} This effect is quite concerning for industrial application of Cu/Si systems for electrochemical C₂H₄ formation, at least in our opinion.

Interestingly, a single work reports improved performance for CORR vs. CO2RR for a core/shell-type system⁵⁰¹, although therein the C₂H₄ performance is was poor with a maximum C₂H₄ FE of 35%. Finally, a recent publication describing a catalyst consisting of porous, zeolite-like ordered CuO coated with a CuSiO₃ layer reports significantly improved performance relative to the other Si/Cu sources described thus far.⁴⁹³ Specifically, a maximum C₂H₄ FE of 82% is reported therein for CO2RR in an alkaline environment (vs. 53% in an H-cell with 0.1 M KHCO3 catholyte). Likely, both the presence of Si and the enhanced mass transport due to the intricate morphology together play a role in the substantially enhanced catalytic activity – i.e., a partial nanoconfinement argument. We have seen similar behavior in, and made a similar confinement argument for, select Cu/Ni³⁶³, a Cu/Co¹⁴³ and Cu/Zr^{476,479} systems.

	Table (40, C) have d (5)	1	1	1	1	1	1	1	1	1	1	T
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C ₂ H ₄ FE	Reference
1	CuSiO3 coated on ordered porous CuO prepared from mesoporous SiO2 molecular sieve starting material, supported on carbon, on "GDE"	Core/shell, atomically mixed/crystalline	Cu, Si, O, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-PK-130	CO ₂	-1.18 V vs. RHE	-400 mA/cm ²	82	493
2	Homogeneously dispersed Si(II)Ox clusters with Cu NPs, on Cu- sputtered PTFE GDL	Mixed-phase/Janus	Cu, Si, O	Aquivion	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-50 Grade RT	CO ₂	-4.1 V vs. ANODE	-331 mA/cm²	65	502
3	Cu2O octahedral NPs (800 nm) with a mesoporous SiO2 shell (25 nm), on carbon paper	Core/shell	Cu, Si, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO ₂	-1.5 V vs. RHE	-380 mA/cm ²	56	503
4	Core/shell system comprising Cu2O NPs (ca. 200 nm) with an SiO2 shell (15 nm), on a GDL	Core/shell	Cu, Si	Nafion	(Gas-phase reactant, supplied from behind)	3.0 M KCl + 0.05 M H2SO4	Nafion 117	CO ₂	-1.45 V - iR vs. RHE	-828 mA/cm ²	54	494
5	Cu NPs supported in/on fibrous SiO2 nanospheres (500 nm), on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Si, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	-	CO ₂	-1.2 V vs. RHE	-19 mA/cm²	53	497
6	CuSiO3 coated on ordered porous CuO prepared from mesoporous SiO2 molecular sieve starting material, supported on carbon, on carbon paper	Core/shell, atomically mixed/crystalline	Cu, Si, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.2 V vs. RHE	-40 mA/cm²	53	493
7	Small CuO NPs (<5 nm) dispersed on (amorphous) CuSiO3 lamella, mixed with Vulcan XC-72R, on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, Si, C, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 115	CO ₂	-1.1 V vs. RHE	-20 mA/cm ²	52	498
8	SiO2 NPs supported on Cu2O NCs through physical mixing (10:2 mL basis), on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, Si, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.4 V - iR vs. RHE	-25 mA/cm ²	47	499
9	Branched/'spikey', amorphous sub-micron SiOx particles decorated with amorphous CuO NPs (18.52 wt%), on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, Si, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO2	-1.4 V vs. RHE	-23 mA/cm ²	46	504
10	Commercial Cu NFs with a hydrophobic polymer coating consisting of 3-methacryloxypropyltrimethoxysilane (MAPTMS), 2,2,2- trifluoroethyl methacrylate (TFEMA) and 2,2-azobis (2- methylpropionitrile) (AIBN), on GDL	Core/shell	Cu, Si	Nafion, 3- methacryloxypropyltr imethoxysilane (MAPTMS), 2,2,2- trifluoroethyl methacrylate (TFEMA) and 2,2- azobis (2- methylpropionitrile) (AIBN)	(Gas-phase reactant, supplied from behind)	-	X37-Grade 50 RT	CO2	-3.81 V vs. ANODE	-450 mA/cm²	42	505
11	CuSiO3 nanotube-assembled hollow spheres, on carbon fiber paper	Mixed-phase/Janus	Cu, Si, O	Nafion	(Solution-phase reactant, supplied in front)	?	Nafion 117	CO ₂	-1.8 V vs. Ag/AgCl	?	41	496
12	Carbon/graphite toplayer on Cu2O dodecahedron NPs with a NH2- functionalized SiO2 shell supported on carbon midlayer, on Cu- sputtered PTFE GDL	Core/shell	Cu, Si, O, N, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KCI	Nafion 211	CO ₂	-1.7 V vs. RHE	-292 mA/cm ²	40	500
13	SiO2 NPs with thin Cu/Si shell prepared via H2 atmosphere annealing of CuSiO3@SiO2, on Toray carbon paper	Core/shell	Cu, Si, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M CsBr	Nafion 117	CO ₂	-1.1 V vs. RHE	-13 mA/cm ²	38	501
14	Cu2O octahedral NPs (800 nm) with a mesoporous SiO2 shell (25 nm), on carbon paper	Core/shell	Cu, Si, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	со	-1.5 V vs. RHE	?	38	503
15	H2-annealed Cu-doped SiOx NPs (thermal treatment results in Cu aggregation), on glassy carbon	Mixed-phase/Janus	Cu, Si, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO2	-1.4 V vs. RHE	?	37	506
16	SiO2 NPs with thin Cu/Si shell prepared via H2 atmosphere annealing of CuSiO3@SiO2, on Toray carbon paper	Core/shell	Cu, Si, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KOH	Nafion 117	со	-0.6 V vs. RHE	?	35	501
17	Ultrathin hydrophobic SiO2 shell (3.4 nm) around Cu NP core (<90 nm) (1% Si), on GDL	Core/Shell	Cu, Si	Nafion	(Gas-phase reactant, supplied from behind)	3.0 M KCl + 0.05 M H2SO4	"Nafion"	CO ₂	-2.2 V vs. RHE	-900 mA/cm ²	35	495
18	CuSiO3 long nanotubes, on carbon fiber paper	Mixed-phase/Janus	Cu, Si, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KCI	Nafion 117	CO ₂	-1.8 V vs. Ag/AgCl	-19 mA/cm²	30	496
19	CuOx impregnated in mesoporous SiO2 template (KIT-6) mixed with PTFF. on a GDI	Mixed-phase/Janus	Cu, Si	Nafion, PTFE	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Fuma FAA-PK- 13	CO ₂	-1.5 V vs. RHF	-100 mA/cm ²	28	507

2.4.4. Lanthanides: Ce, La, Pr, Nd, Eu, Sm, Gd, Er, Tb/Cu

Much like Zr & Hf, we will discuss the lanthanides together on account of their similar chemical properties. Much of the information will be derived from Cu/Ce systems (Table S20) on account of their abundance in literature relative to the other lanthanides (La, Pr, Nd, Eu, Sm, Gd, Er, Tb, Table S21). The Cu/Ce catalyst dataset is derived from 31 unique publications and comprises a total of 33 catalyst systems, with 1 using CO as a reactant and 12 having been identified as alkaline CO_2 systems. A total of 5 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55 %, though 3 of those were measured under alkaline CO2RR conditions. The top-most catalyst yields 78% C_2H_4 and concerns an alkaline CO2RR system.⁵⁰⁸ The highest non-alkaline system yields 70% C₂H₄ and uses CO₂ as the reactant.⁵⁰⁸ The other lanthanides that we are aware of to make appreciable amounts of C_2H_4 (La, Pr, Nd, Eu, Sm, Gd, Er, Tb) were grouped together (denoted as Cu/Ln) on account of the low number of publications. The Cu/Ln catalyst dataset is derived from 12 unique publications and comprises a total of 18 catalyst systems, with 0 (none) using CO as a reactant and 7 having been identified as alkaline CO_2 systems. A total of 2 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55 % (yielding 59%⁵⁰⁹ and 60%⁵¹⁰ C_2H_4), both comprising Cu/La systems and both having been measured under non-alkaline CO2RR conditions. Cu/Ce systems have the propensity to phase-separate, resulting in mostly mixed-phase/janus-type systems, core/shell-type systems and overlayer-type systems being reported. However, few publications also exist on alloyed/doped-type systems containing (relatively) low quantities of either Ce⁵¹¹ or Cu^{512,513}.

Contrary to other bi-elemental catalysts, the C_2H_4 performance spectrum for Cu/Ce systems is relatively consistent across different research groups. We ascribe this to the strong similarities between especially mixed-phase/janus-type catalyst systems (comprising ca. 50% of the total publications), all yielding maximum C₂H₄ FEs between 40%-55%. The other types of catalyst systems (overlayer-type, core/shelltype and alloyed/doped-type) exhibit more variability in their performance but generally exhibit relatively poorer C₂H₄ performance with FEs <45%. A notable outlier in terms of activity is a mixedphase/janus-type catalyst reported by Tan *et al.*, who reported 70-78% FE for C₂H₄ for a Cu/Ce catalyst system with a unique hollow-fiber morphology under electrolyte-optimized conditions.⁵⁰⁸ The morphology here seems to be the biggest differentiating factor. From our perspective, the hollow nature of these nanotubes with their high length-to-width ratio makes for a strongly confining environment, even though this morphology is different from other systems where we made this argument (typically consisting of nanoporous materials). Still, we feel, and hypothesize (as discussed in the main text), that nanoconfinement might play a driving role in the exceptional performance of this catalyst system as opposed to the combination of Cu and Ce as an active catalyst material. This would place it in the same sub-category as the previously described Cu/Ni³⁶³, Cu/Co¹⁴³, Cu/Zr^{476,479} and Cu/Si⁴⁹³ systems.

Regarding why Cu/Ce (Cu/Ln) catalyst systems show the performances they do, most authors hypothesize that the presence of lanthanides help to stabilize the Cu¹⁺ state at the Cu/Ce⁵¹⁴⁻⁵¹⁷ (Cu/Ln^{518-⁵²⁰) interface, therewith yielding improved catalytic activity and, sometimes, stability.^{519,521} Typically, this improved C₂H₄ performance is accompanied by suppressed HER activity, allowing for higher carbon product selectivity even if the product spectrum itself is otherwise unchanged. In addition, an optimum is typically observed for C₂H₄ performance when the Ce (Ln) content is varied, mostly when the Ce^{512,514,522} (Ln^{519,521}) content is relatively low (< 5%) though outliers exist^{516,520,523}. Most authors interpret this as needing to find a balance between Cu/Ce interfacial sites, conductivity, and NP size (i.e., active area). Overall, the combination of lanthanides and Cu is not that promising for substantially improving} C_2H_4 performance (notwithstanding a single outlier⁵⁰⁸ that we hypothesize is related to morphology rather than the combination of Cu and Ce). Rather, stability might be improved through the presence of such non-reducible oxides and could be of industrial importance for these types of bi-elemental systems.

As a final consideration, we would like to highlight a paper by Yang *et al.*, who found that for CeO₂ nanorods with a thin Cu shell, EtOH formation could be entirely suppressed during CO reduction, although this was accompanied by an increase in acetate formation and relatively poor C_2H_4 performance (ca. 30 % FE max).⁵²⁴ Generally, for non-alkaline systems, we observe that C_2H_4 and EtOH are formed concomitantly in roughly equimolar proportion. Being able to shut down the ethanol pathway without severely inhibiting ethylene formation could be of substantial importance for novel catalyst design with improved C_2H_4 performance.

	Table S20. Ce-based Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C ₂ H₄ FE	Reference
1	Hollow Cu/CeO2 nanotubes composed of aggregated nanoparticles, on carbon paper - prepared by decorating electrospun polyacrylonitrile (PAN) fibres with metal and burning away the PAN	Mixed-phase/Janus	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	1 M KOH	FAA-3-PK-130	CO ₂	-0.7 V vs. RHE	-110 mA/cm²	78	508
2	Hollow Cu/CeO2 nanotubes composed of aggregated nanoparticles, on carbon paper - prepared by decorating electrospun polycacylopitrile (RAN) fibras with metal and hurning away the RAN	Mixed-phase/Janus	Cu, Ce,	Nafion	(Solution-phase reactant, supplied in front)	0.1 M K2SO4	Nafion 117	CO2	-1.1 V vs. RHE	-25 mA/cm²	70	508
3	CeO2 NPs supported on CuO NSs (Cu:Ce ratio of 7:1), on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Ce, O, C	?	(Gas-phase reactant, supplied from behind)	1 M KOH (pH 14)	?	CO ₂	?	-600 mA/cm ²	64	525
4	CeO2 NPs supported on CuO NSs, on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KCI	-	CO ₂	-1.25 V vs. RHE	-8 mA/cm²	58	526
5	CuO NPs supported on Cu-doped CeO2 NRs, on GDL	Alloyed/Doped, Mixed-phase/Janus, A-supports-B	Cu, Ce, O	Nafion	(Gas-phase reactant, supplied from behind)	1 M KOH	"Sustainion membrane"	CO ₂	-0.85 V -iR vs. RHE	-200 mA/cm ²	55	513
6	Mixed-phase CuOx/CeO2 NPs, on carbon paper	Mixed-phase/Janus	Cu, Ce, O	Nafion	(Gas-phase reactant, supplied from behind)	1 M KOH	FAA-3-PK-130	CO ₂	-0.68 V vs. RHE	-150 mA/cm ²	53	527
7	Cu NPs supported on CeO2 nanorods, on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, Ce, O	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.6 V vs. RHE	-17 mA/cm ²	52	517
8	CuOx overlayer on CeO2 nanorods, on carbon paper	Core/shell	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M Csl	Nafion 117	CO2	-1.16 V vs. RHE	-18 mA/cm ²	51	528
9	CuOx/CeOx mixed-phase supported on carbon black, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Ce, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.1 V vs. RHE	-8 mA/cm²	50	516
10	CeO2 quantum dots (3 nm) supported on irregularly shaped CuO NPs (200 nm), on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Ce, O	Nafion	(Gas-phase reactant, supplied from behind)	1 M KOH	-	CO2	?	-400 mA/cm ²	50	529
11	Mixed CuO/CeO2 NPs, on glassy carbon	Mixed-phase/Janus	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M CsHCO3	Selemion AMV	CO ₂	-1.08 V -iR vs. RHE	-4 mA/cm²	50	530
12	Cu-doped CeOx nanorods, on glassy carbon - prepared via deposition-precipitation method and subsequent annealing step	Alloyed/Doped	Ce, O, Cu	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 115	CO ₂	-1.1 V vs. RHE	-5 mA/cm²	48	512
13	CeO2 NPs (5 nm) supported on CuO NPs, on PTFE GDL	Mixed-phase/Janus, A-supports-B	Cu, Ce, O	Nafion	(Gas-phase reactant, supplied from behind)	1 M KOH	FAA-3-PK-130	CO2	-1.12 V -iR vs. RHE	-1214 mA/cm ²	48	515
14	Cu NSs supported on CeO2 nanorods, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.27 V vs. RHE	-27 mA/cm ²	45	531
15	Cu2O nanocubes with a tensile-strained CeO2/Cu shell, on GDL	Core/shell, mixed- phase/Janus	Cu, Ce, O	Nafion	(Gas-phase reactant, supplied from behind)	4 M KOH	?	CO ₂	-0.43 V -iR vs. RHE	?	45	532
16	Ultrafine (<10 nm) CuOx/CeOx composite NPs, on a GDL	Mixed-phase/Janus	Cu, Ce, O	PVDF	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	"Nafion"	CO ₂	-1.7 V -iR vs. RHE	-450 mA/cm ²	44	533
17	Mixed-phase CeO2/CuOx NPs, on carbon paper	Mixed-phase/Janus	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M Csl	Nafion 117	CO ₂	-1.0 V vs. RHE	-17 mA/cm ²	43	534
18	Small Cu NPs supported on Cu-doped CeOx NRs, mixed with CNPs, on a GDL	Mixed-phase/Janus, A-supports-B, Alloyed/doped	Cu, Ce, O, C	Nafion	(Gas-phase reactant, supplied from behind)	1 M KOH (pH 14)	?	CO ₂	-1.2 V vs. RHE	-610 mA/cm ²	40	535
19	Ce(OH)x overlayer on Cu-sputtered PTFE GDL	Overlayer, Mixed- phase/Janus	Cu, Ce, O	-	(Gas-phase reactant, supplied from behind)	1 M KOH	FAA-3-PK-130	CO2	-0.64 V -iR vs. RHE	-200 mA/cm ²	39	395
20	Cu NPs (5 nm) supported on rod-shaped CeO2 particles, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.05 V vs. RHE	-7 mA/cm ²	39	536
21	CeO2 NPs overlayer interfaced with CuOx layer, on Cu foil - prepared via drop-casting and drying at 110 C	Overlayer	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.05 V vs. RHE	-14 mA/cm ²	38	522
22	Cu NPs supported on CeO2 nanorods on glassy carbon - prepared via galvanic displacement of lithiated CeO2 rods	Mixed-phase/Janus, A-supports-B	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	QAPPT	CO ₂	-1.3 V vs. RHE	-13 mA/cm²	38	537
23	CuO NPs supported on "3D spherical CeO2" with many oxygen	Mixed-phase/Janus,	Cu,	Nafion	(Solution-phase reactant,	0.1 M	?	CO ₂	-1.2 V	-20	37	538

	vacancies (Cu:Ce of 7:3), on carbon paper	A-supports-B	Ce, 0. C		supplied in front)	KHCO3 (pH 6.8)			vs. RHE	mA/cm ²		
24	r-GO overlayer on top of CNP overlayer on top of ultrafine highly dispersed Cu2S-CeOx nanocomposites supported on reduced graphene oxide, on Cu-sputtered PTFE	Overlayer, Mixed- phase/Janus, A- supports-B	Cu, Ce, S, O, C	Nafion	(Gas-phase reactant, supplied from behind)	2 M KOH	FAA-3-PK-130	CO ₂	-0.9 V vs. RHE	-230 ^{+_Cu-} _{Ce,2} mA/cm ²	32	539
25	Cu/CeOx bi-phasic heterodimers (24 nm), on glassy carbon	Mixed-phase/Janus	Cu, Ce, O	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMV	CO ₂	-1.1 V vs. RHE	-1 mA/cm ²	31	514
26	Few-atom thick Cu shell on CeO2 NRs, on GDL	Core/shell	Cu, Ce, O	?	(Gas-phase reactant, supplied from behind)	1 M KOH (pH 14)	?	со	?	-100 mA/cm²	31	524
27	CuO NPs (30 nm) supported on CeO2 NCs (230 nm), on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	-	CO ₂	-1.4 V vs. RHE	-5 mA/cm ²	31	540
28	r-GO overlayer on top of CNP overlayer on top of ultrafine highly dispersed Cu-CeOx nanocomposites supported on reduced graphene oxide, on Cu-sputtered PTFE	Overlayer, Mixed- phase/Janus, A- supports-B	Cu, Ce, O, C	Nafion	(Gas-phase reactant, supplied from behind)	2 M KOH	FAA-3-PK-130	CO ₂	-0.9 V vs. RHE	-161 ^{+_Cu-} _{Ce,2} mA/cm ²	30	539
29	(Single atomic) Cu-doped ("4%") CeO2 nanorods, on carbon paper	Single atom, A- supports-B	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	?	CO ₂	-1.4 V vs. RHE	-29 mA/cm ²	30	484
30	Cu/CeOx NPs with oxygen vacancies prepared via N2H4 as a reducing agent, on carbon paper	Mixed-phase/Janus	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.5 V -iR vs. RHE	? -16 mA/cm ²	29	541
31	Ce4+- (ion, not oxide) doped CuO NPs (100 nm), on carbon paper	Alloyed/Doped	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.3 V vs. RHE	-32 mA/cm ²	25 ⁺ - ^{Cu-} Ce,1	511
32	Cu NPs supported on hollow CeO2 NCs (CeO2:Cu = 1:4), on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Ce, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO2	-1.06 V vs. RHE	?	25	542
33	CuOx NPs supported on CeO2 NRs, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, Ce, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.3 V vs. RHE	-15 mA/cm ²	25	543
	*_Cu-Ce.1Conflicting information (main text vs. figure) in document, report here number given in main text											
	*_Cu-Ce.2Text and figure information does not match, report here the numbers provided in the text											

#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C ₂ H ₄ FE	Reference
1	La2CuO4 perovskite nanobamboo fibers with abundant grain boundaries, on glassy carbon	Atomically mixed	Cu, La, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.0 V vs. Ag/AgCl	-3 mA/cm ²	60	510
2	In-situ decomposed La2CuO4 NPs, mixed with CNPs, on glassy carbon	Core/shell, mixed- phase/janus	Cu, La, C, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.3 V vs. RHE	-8 mA/cm ²	59	509
3	Mixed-phase Cu2NdOx NPs , on carbon paper	Mixed-phase/Janus	Cu, Nd	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KCI	Nafion 115	CO ₂	-1.2 V vs. RHE	-28 mA/cm ²	54	520
4	"Cu10La1" (wt%/at.% not reported) co-catalyst electroplated on carbon paper	Alloyed/Doped	Cu, La	-	(Solution-phase reactant, supplied in front)	0.1 M KCI	Nafion 117	CO ₂	-1.4 V vs. RHE	-46 mA/cm ²	51	225
5	CuO/Sm2O3 mixed phase NPs (8.2:1 at. Ratio Cu:Sm), on GDL	Mixed-phase/Janus	Cu, Sm, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	"ion exchange membrane"	CO ₂	-1.1 V - iR vs. RHE	-700 mA/cm ²	48	521
6	CuO/Pr2O3 mixed phase NPs (ca. 9:1 at. Ratio Cu:Pr), on GDL	Mixed-phase/Janus	Cu, Pr, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	"ion exchange membrane"	CO2	?	-700 mA/cm ²	46	521
7	La-doped Cu2O hollow sphere NPs, on a GDL	Alloyed/Doped	Cu, La, O	NafionD-521 dispersion	(Gas-phase reactant, supplied from behind)	3.0 M KCI + 0.05 M H2SO4	Nafion 117	CO ₂	?	-800 mA/cm ²	43	544
8	Gd-doped (6.5 %, ICP) CuO NCs (60 nm), on carbon paper	Alloyed/Doped, single atom	Cu, Gd, O	Nafion	(Gas-phase reactant, supplied from behind)	2.0 M KOH	FAA-3-PK-130	CO ₂	-0.8 V -iR vs. RHE	-546 mA/cm ²	42	519
9	La(OH)3 nanosheets supported on CuO nanosheets mixed with Ketjen Black, on carbon paper	Mixed-phase/Janus, A-supports-B	Cu, La, C, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Sustainion X37-50RT	CO ₂	-1.25 V - iR vs. RHE	-1000 mA/cm ²	41	523
10	La2CuO4 calcined at 1000 °C, on glassy carbon	Mixed-phase/Janus	Cu, La, O	Nafion	(Solution-phase reactant, supplied in front)	0.5 M NaHCO3	-	CO ₂	-1.0 V vs. Ag/AgCl	-1 mA/cm²	40	518
11	CuO/Eu2O3 mixed phase NPs (ca. 9:1 at. Ratio Cu:Eu), on GDL	Mixed-phase/Janus	Cu, Eu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	"ion exchange membrane"	CO ₂	?	-700 mA/cm ²	38	521
12	Fragmented Cu NPs derived from CO ₂ -induced electrochemically La- leached La2CuO4 NPs (La content ultra-low, near detection limit of equipment), on GDL	Alloyed/Doped, atomically mixed/crystalline	Cu, La, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KCI	Nafion 117	CO ₂	-2.41 V - iR vs. NHE	-600 mA/cm ²	36 ⁺ - ^{Cu-} La,1	545
13	CuO/La2O3 mixed phase NPs (ca. 9:1 at. Ratio Cu:La), on GDL	Mixed-phase/Janus	Cu, La, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	"ion exchange membrane"	CO ₂	?	-700 mA/cm ²	33	521
14	Er-doped Cu2O hollow sphere NPs, on a GDL	Alloyed/Doped	Cu, Er, O	NafionD-521 dispersion	(Gas-phase reactant, supplied from behind)	3.0 M KCl + 0.05 M H2SO4	Nafion 117	CO ₂	?	-900 mA/cm ²	30	544
15	La2-xCuO4- δ NPs with moderate oxygen vacancy content (x=0.01), on GDL	Atomically mixed	Cu, La, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	"X37-50 anion"	CO ₂	-1.53 V vs. RHE	-160 mA/cm ²	28	546
16	Tb-doped Cu2O hollow sphere NPs, on a GDL	Alloyed/Doped	Cu, Tb, O	NafionD-521 dispersion	(Gas-phase reactant, supplied from behind)	3.0 M KCl + 0.05 M H2SO4	Nafion 117	CO2	?	-900 mA/cm ²	28	544
17	Pr-doped Cu2O hollow sphere NPs, on a GDL	Alloyed/Doped	Cu, Pr, O	NafionD-521 dispersion	(Gas-phase reactant, supplied from behind)	3.0 M KCI + 0.05 M H2SO4	Nafion 117	CO ₂	?	-900 mA/cm ²	26	544
18	Sm-doped Cu2O NCs, on Toray carbon paper	Alloyed/Doped	Cu, Sm, O	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.2 V vs. RHE	-40 mA/cm ²	26	547
	¹ .Cuta.1SI is missing from publisher website, obtained via personal communication with author (provided as SI document for the current manuscript)											

2.5. Various forms of carbon and carbon-derivatives

A somewhat special case of bi-elemental Cu catalysts are the Cu/C catalysts, because of the rich chemistry of carbon making these systems extremely heterogeneous. Partially, this is on account of our decision to consider all morphologies and chemical states of carbon to be a single category. This includes e.g., nanoparticles, fibers, multiwalled nanotubes, graphene, graphene oxide, graphite, carbon nitride (C_3N_4) , carbon nanodots etc. We even went a step further, and included copper-based transition metal complexes (TMCs), copper-containing metal organic frameworks (MOFs) and copper-containing covalent organic frameworks (COFs) in the Cu/C category on account of their propensity to decompose into carbon-rich copper ensembles.^{548,549} It is important to note that in many instances the carbon component is added solely to support/disperse the 'active' catalyst, or possibly to serve as a (presumed catalytically inert) conductivity-enhancing agent. Although the Cu/C catalysts are quite different from the other bi-elemental catalyst systems discussed herein, we consider their inclusion vital on account of the industrial relevance of catalyst supports. Namely, supports can perform various functions within a catalytic system such as optimizing e.g., mass transport properties, heat management, catalyst stability, catalyst loading, and (for electrocatalytic purposes) electric conductivity. In addition, there might exist catalyst-support interactions which could influence binding strengths and therewith tune the inherent properties of the catalytically active sites.⁵⁵⁰

A summary of best-performing Cu/C catalyst systems is provided in Table S22. Due our broad definition, the Cu/C catalyst dataset is derived from 116 unique publications and comprises a total of 132 catalyst systems, with 9 using CO as a reactant and 39 having been identified as alkaline CO₂ systems. A total of 34 of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55%, though 14 of those are reported under alkaline CO₂ reduction reaction (CO2RR) conditions. In our analysis, we will exclude such alkaline CO2RR systems, resulting in a final sample size of 93 catalysts. The top two most-selective catalysts yield 71%⁵⁵¹ and 81%⁵⁵² C₂H₄ and both concern non-alkaline CO2RR systems. Overall, we find that we can assign Cu/C catalysts to one of two categories: being of the core/shell-type, or of the supported-type. Here, the core/shell-type systems consist of copper catalysts modified with a surface layer of (potentially heteroatom functionalized) carbon, whereas the following systems were categorized as being of the supported-type: i) copper particles grown on carbon, ii) copper particles physically mixed with carbon, iii) single-atom copper catalysts (SACs) on carbon-containing supports, and iv) Cu-based TMCs, MOFs and COFs. The various complexed forms of copper (be it as frameworks or individual homogeneous catalysts) were included through reasoning that they can be viewed as either a form of single-atom copper sites 'supported' by a hetero-atom doped carbon environment, or as unstable systems that decompose into (potentially) hetero-atom doped, carbon-rich aggregates that act as a 'support' for the copper particles that form *in-situ*.

Analyzing the various supported-type publications, we find C_2H_4 FEs in the 50%-70% range at the topend of the spectrum. Simultaneously, we observe that virtually none of those systems have been tested under industrially relevant current densities, with only 4 catalysts having been tested at \geq |-180| mA/cm².^{363,553-555} Although this is a direct consequence of us ignoring alkaline CO2RR systems in our analysis, we still find this a worrying observation considering that one of the main reasons behind employing a supporting material is to increase catalyst area and therewith allow for higher reaction rates (higher current densities). In addition, this observation goes to show that relying too much on alkaline CO2RR results may paint a wrong picture of what is achievable in industrial systems. Focusing on the top-performing supported-type catalysts, we find that most of these consist of chemically modified carbon supports, e.g., through the presence of hetero atom-containing ligands⁵⁵⁶, or in the form of hetero atom-functionalization.^{306,552,557} It is only once we start to look at relatively poorer performing catalysts systems (C_2H_4 FEs <55%) that we begin to observe reports of (oxide-derived) copper NPs supported on more traditional, unmodified forms of carbon particles (e.g., Ketjen Black⁵⁵⁸ and Vulcan XC-72¹⁸³) though a single outlier exists in the form of a Cu-based MOF pre-catalyst mixed with Ketjen black (yielding 70% C_2H_4).⁵⁵⁹ In that outlier, they show that the presence of supporting carbon helps limiting the size of the Cu NPs that form upon decomposition of the Cu MOF, making the presence of a carbon support a morphology-directing vector during the *in-situ* reconstruction of the unstable pre-catalyst particles.

To continue, we find that TMC-, COF- and MOF-derived supported catalysts are observed across the entirety of the activity spectrum, with C_2H_4 performance varying from very poor ($\leq 35\%$ C_2H_4)⁵⁶⁰⁻⁵⁶² to relatively high (ca. 70% C_2H_4).^{559,563} We hypothesize that, in many instances, this is related to the morphology and size of the active catalyst that is formed during the decomposition of these materials, being highly dependent on i) the starting material, ii) the reaction environment and iii) the initial process conditions during the reduction (electrochemical decomposition) stage. This hypothesis is substantiated by the outlier we just discussed, wherein they showed that the addition of supporting carbon helped to direct the final size of the Cu NPs that were formed *in-situ*.⁵⁵⁹ Although therein they show that the Cu NPs in the absence of a carbon support grow to be too large, Cu NPs are known to go through a 'size optimum' with respect to C_2H_4 performance.⁶⁴ With the starting conditions and materials dictating which active phase is formed, it is logical that a strong variation in such conditions and materials yields catalyst particles with a wide range of sizes and morphologies, thus resulting in the large spread in performance that we observe.

Besides supported-type Cu/C catalysts, we have also identified a small number of core/shell-type Cu/C catalyst systems (totaling 6). However, the highest-performing samples of this type, consisting of N-functionalized²⁹⁴ (and B-functionalized²⁹⁴, Table S4) carbon shells – yielding ca. 70% C₂H₄ – are alkaline CO2RR systems. Non-alkaline conditions typically result in substantially lower performance, with maximum C₂H₄ FEs ranging between 40%-55%.⁵⁶⁴⁻⁵⁶⁶ The most important observation, in our opinion, is the fact that CO₂ reduction can still take place even if a carbon shell is present. In addition, a similar doping effect as previously discussed for supported-type catalysts is observed considering that the majority (5/6 for full dataset, 3/3 for non-alkaline systems) of the core/shell-type catalysts have hetero atom-doped carbon shells. For more in-depth information regarding such core/shell-type structures, the reader is referred to a review on specifically these structures.⁵⁶⁷

Although good C_2H_4 performance can be achieved under specific circumstances with Cu/C systems, most of these systems have only yielded current densities <|-50| mA/cm². As such, we fail the see one of the key benefits that introducing a support brings: higher reaction rates. It is actually the CORR systems where we observe higher overall reaction rates, though the C_2H_4 performance of those systems is considerably poorer (maximum C_2H_4 FEs \leq 50%)⁵⁶⁸ than the top-performing non-alkaline CO2RR systems.

	Table S22. C-based Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C ₂ H ₄ FE	Reference
1	Cu NPs supported on Cu/SAC-graphitic carbon nitride (g-C3N4), on carbon paper	SAC, supported	Cu, C	-	(Gas-phase reactant, supplied from behind)	0.1 M KHCO3 (pH 6.8)	Fumasep FAA- 3-PK-130	CO ₂	-1.28 V vs. RHE	-45 ^{+_Cu-C-} supported,8 mA/cm ²	81	552
2	Cu2O NPs supported on CNTs modified with Cu-based COF, on glassy carbon	COF, supported	Cu, C. O	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.1 V vs. RHE	-44 mA/cm ²	71	551
3	Thin quasi-graphitic carbon-shell functionalized, N-doped Cu NPs supported on carbon fibers, on GDL	Core/shell	Cu, C, N	Nafion, quasi- graphitic carbon shell	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Sustanion X37-50	CO ₂	-0.69 V -iR vs. RHE	-400 mA/cm ²	71	294
4	Cu3(2,3,6,7,10,11-hexaiminotriphenylene)2 MOF supported on Ketjen Black, on glassy carbon	MOF, supported	Cu, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion	CO ₂	-1.37 V - iR vs. RHE	-38 mA/cm ²	70	559
5	In-situ formed Cu2O ultra-small NPs derived from CO ₂ RR/KCl electro-activated Cu(Pyrazole)2 MOF, on carbon paper	MOF, supported	Cu, O, C, N	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KCI	Nafion	CO ₂	-1.03 V - iR vs. RHE	-18 mA/cm²	70	549
6	Cu NPs supported on XC-72R, on home-made GDL	Supported	Cu, C	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	-	CO ₂	-3 V vs. Ag/AgCl	-400 mA/cm ²	69	93
7	Solution-phase Cu phenanthroline complex with carbon paper cathode	TMC, supported	Cu	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	"Hangzhou Huamo Technology Co., Ltd"	CO2	-1.3 V vs. RHE	-7 mA/cm²	69	563
8	Water-etched Cu MOF ([Cu2(benzene-1,3,5-tricarboxylic acid,)(OH)(H2O)]n-2nH2O), on glassy carbon	MOF, supported	Cu	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 + 0.1 M KCl (pH 6.8)	Nafion 117	CO2	-1.40 V vs. RHE	-23 mA/cm ²	67	569
9	Water-etched Cu MOF ([Cu2(benzene-1,3,5-tricarboxylic acid,)(OH)(H2O)]n·2nH2O), on a GDL	MOF, supported	Cu	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAB-PK-130	CO ₂	-0.73 V - iR vs. RHE	-350 mA/cm ²	65	569
10	Impregnation-derived Cu NPs supported on N-functionalized carbon, on carbon paper (ill-defined carbon support derived from biological source)	Supported	Cu, C, N	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3/C O (pH 8.3)	Nafion 115	CO ₂	-1.0 V vs. RHE	-50 mA/cm ²	64	557
11	Pre-reduced CuOx NPs supported on sheet-like tannic acid substrate, on GDL	Supported	Cu, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Nafion 117	CO2	-0.7 V - iR vs. RHE	-500 mA/cm ²	64	570
12	Cu-MOF calcination derived grainboundary-rich CuOx NPs supported on Ketjen Black, on glassy carbon	MOF, supported	Cu, O, C	Nafion (top-coat)	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.01 V - iR vs. RHE	-11 mA/cm ²	63	571
13	Cu NPs supported on N-doped CNTs, on GDL	Supported	Cu, C, N	Nafion	(Gas-phase reactant, supplied from behind)	5.0 M KOH	"Sustainion"	CO ₂	-0.57 V - iR vs. RHE	-500 mA/cm ²	62	572
14	In-situ generated Cu NPs from 3-(2-Pyridyl)-5-phenyl-1,2,4-triazole- based Cu-TMC, on Cu-sputtered PTFE	TMC, supported	Cu	Nafion	(Gas-phase reactant, supplied from behind)	0.05 M H2SO4 + 2.5 M KCI	Nafion 117	CO2	-1.64 V - iR vs. RHE	-200 mA/cm ²	62	555
15	Cu2O NPs electroplated on Cu-CuTCPP MOF nanosheets, on GDL	MOF, supported	Cu, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 211	CO ₂	-1.3 V vs. RHE	-15 mA/cm ²	62	573
16	Polyvinylpyrrolidone-assisted ("P2") self-assembled Cu-based supramolecular polymer MPs, on glassy carbon	Supramolecular	Cu	? Nafion	(Solution-phase reactant, supplied in front)	1.0 M KOH (pH 14)	FAB-PK-130	CO ₂	-1.4 V vs. RHE	-128 mA/cm ²	62	574
17	(100)-rich Cu NPs derived from reconstruction of Cu-tannic acid NSs, on GDL	TMC, supported	Cu	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK-130	CO2	-2.16 V vs. RHE	-700 mA/cm ²	61	211
18	Ultrafine Cu NPs supported on N-functionalized carbon, on carbon paper	Supported	Cu, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-PK-130	CO2	-1.05 V vs. RHE	-208 mA/cm ²	61	575
19	Cu NPs supported on vacuum-calcined (1800 C) UD-90 nanodiamonds from NanoBlox,Inc., on glassy carbon	Supported	Cu, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3/C O (pH 8.3)	-	CO ₂	-1.8 V vs. RHE	-6 mA/cm ²	60	576
20	Honeycomb-like CuO supported on amorphous carbon annealed at 600 °C, on carbon paper	Supported	Cu, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.2 V vs. RHE	-18 mA/cm ²	60	577
21	Cu-SAC (<1 wt%) on hetero-atom (S) doped C3N4 lamellae, on carbon paper	SAC, supported	Cu, C, N, S	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	"ion exchange membrane"	CO2	-0.9 V vs. RHE	-20 mA/cm ²	60	306
22	Sulfur-doped Cu-MOF Cu3(benzene-1,3,5- tricarboxylate)2·xH2O, on glassy carbon	MOF, supported	Cu, O, S	Nation	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nation 117	CO2	-1.32 V - iR vs. RHE	-19 mA/cm ²	60	556
23	supramolecular polymer MPs, on glassy carbon	Supramolecular	Cu	Nation	(Solution-phase reactant, supplied in front)	KHCO3	Nation 117	0.02	-1.4 V vs. RHE	-29 mA/cm ²	60	574
24	CUO NPs supported on NH2 modified carbon dots, on glassy carbon (possibly carbon paper - unclear)	Supported	Cu, O, C, N	Nation	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nation 212	CO2	-1.4 V vs. RHE	-41 mA/cm ²	57	5/8
25	Sulfur-doped Cu-MOF Cu3(benzene-1,3,5- tricarboxylate)2-xH2O, on Cu-sputtered PTFE GDL	MOF, supported	Cu, O, S	Nation	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO2	-1.09 V - iR vs. RHE	-400 mA/cm ²	57	556
26	1D chains of Cu transition metal complex [Cu(4-"H- pyrazole")2]n-solvent, on carbon paper	TMC, supported	0	Nation	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	<i>*</i>	CO2	-1.0 V - IR vs. RHE	-346 mA/cm ²	56'- Cu-C- suppor ted,1	3/3
27	Cu NPs supported on N-doped CNTs, on Cu-sputtered PTFE GDL	Supported	Cu, C, N	Nafion	(Gas-phase reactant, supplied from behind)	5.0 M KOH	"Sustainion"	CO ₂	-2.6 vs. Hg/HgO	-200 mA/cm ²	56	572
28	CuO NSs supported on Ketjen EC-300 J, on a GDL	Supported	Cu, O, C	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FABPK- 130	CO ₂	-0.87 V - iR vs. RHE	-304 mA/cm ²	56	580
29	Cu2O NPs supported on pyridinic-N-rich graphitic carbon nitride (C3N4), on carbon paper	Supported	Cu, O, C, N	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.2 V vs. RHE	-23 mA/cm ²	56	581
30	Copper-tetracyanoquinodimethane (TCNQ)-derived Cu NPs, on glassy carbon	TMC, supported	Cu	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.3 V vs. RHE	-12 mA/cm ²	56	582
31	Anionic Cu-MOF (a-HKUST1) NPs, on a GDL	MOF, supported	Cu	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAB-PK-130	CO ₂	-0.70 V vs. RHE	-150 mA/cm ²	56	583
32	Cu transition metal complex with oxygen coordination center; ((Cu3(m3-OH)(mpz)3(Im)3)2+)2+ with Br- anion, on carbon paper	TMC, supported	Cu, O,	Nafion	(Gas-phase reactant, supplied from behind)	0.5 M KOH (pH	Fumasep, FAA-3-PK-130	CO ₂	-0.70 V - iR vs. RHE	-130 mA/cm ²	55	584

			Dr			12 7)						
33	Conductive dinuclear Cu-based TMC ([Cu2(ophen)2] (Cuophen) with	TMC, supported	Cu	Nafion	(Solution-phase reactant,	0.1 M	?	CO ₂	-1.4 V	-52	55	585
34	ophen = 1H-[1,10]phenanthrolin-2-one), on GDL Cu-based MOF NPs (109 nm) with many grain boundaries, on glassy	MOF	Cu	Nafion	supplied in front) (Solution-phase reactant,	KHCO3 0.1 M	Nafion 212	CO ₂	vs. RHE -1.15 V - iR	mA/cm ² -13	55	586
25	carbon	Cupported	Cu	Nafian	supplied in front)	кнсоз		60	vs. SHE	mA/cm ²	E AT	587
35	supported on reduced graphene oxide, on carbon cloth (also referred to as "carbon paper" [sic] in text) ¹ . ^{CuC-supported,5}	Supported	0, C	Nation	supplied in front)	KHCO3 (pH 6.8)	-	02	vs. RHE	-12 mA/cm ²	54 - Cu-C- suppor ted.6	
36	C-doped ("6%") CuOX NPs, on a GDL	Alloyed/Doped	Cu, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAA-3-PK-130	CO ₂	-0.72 V -iR vs. RHE	-1250 mA/cm ²	54	588
37	Quasi-1D Cu MOF (Cu(OH)[1,2,3-benzotriazolate]) nanowires, on GDL	MOF, supported	Cu	Nafion	(Gas-phase reactant, supplied from behind)	-	Sustainion x37-50-grade- 60	CO ₂	-3.8 V vs. ANODE	-240 mA/cm ²	54	589
38	Reductively calcined (350 C) dopamine-derived N-functionalized carbon-shell functionalized Cu NPs, on glassy carbon	Core/shell	Cu, C, N	Nafion, carbon shell	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion	CO ₂	-1.4 V vs. RHE	-15 mA/cm²	54	566
39	Cu2O-derived bimodal Cu catalyst supported on Ketjen black, on glassy carbon	Supported	Cu, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.15 V - iR vs. RHE	-40 mA/cm ²	53	558
40	Cu3(2,3,6,7,10,11-hexaiminotriphenylene)2 MOF supported on Ketjen Black, on GDL	MOF, supported	Cu, O, C	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAB-PK-130	CO ₂	-0.82 V - iR vs. RHE	-500 mA/cm ²	53	559
41	Tetraminobenzo-quinone/Cu2+ based hydrogen-bonded network, on GDL (carbon paper modified with PTFE-coated carbon spheres)	COF, supported	Cu	Nafion	(Solution-phase reactant, supplied in front)	1.0 M KOH (pH 14)	Fumasep FAA- 3- PK-130	CO2	-1.17 V - iR vs. RHE	-423 mA/cm ²	53	590
42	Triazolate-based Cu MOF, on glassy carbon	MOF, supported	Cu	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	-	CO2	-1.2 V vs. RHE	-6 mA/cm²	53	591
43	High loading electrosprayed CuO particles on carbon paper/fibers (Toray, TGP-H-120)	Supported	Cu, O, C	-	(Solution-phase reactant, supplied in front)	0.1 M CsHCO3 (pH 6.8)	Selemion AMV	CO2	-1.09 V - iR vs. RHE	-40 mA/cm ²	52	592
44	CUUX NPs prepared through thermal reduction of Cu(acac)2- oleylamine complex, on GDL	IMC, supported	Cu	Nation	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	"Nation"	CO ₂	-1.0 V - iR vs. RHE	-360 mA/cm ²	52	593
45	Dual-site single atom copper on N-doped carbon derived from pyrolysis of Cu-impregnated MOF, on a GDL	MOF, supported	Cu, C, N	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	? Nafion 117	CO ₂	-1.4 V vs. RHE	-180 mA/cm ²	52	554
46	Cu-MOF [azolate] / Cu(I) 3,5-dialkyl-1,2,4-triazolate, on glassy carbon	MOF, supported	Cu, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion	CO2	-1.3 V vs. RHE	-11 mA/cm ²	52	594
47	Ultrathin 'wavy' Cu-MOF based nanosheets, on glassy carbon	MOF, supported	Cu	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	-	CO2	-1.3 V vs. RHE	-12 mA/cm ²	52	595
48	CuOx NPs with hydrophobic porous carbon shell, on Cu-sputtered PTFE GDL	Core/shell	Cu, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	"Sustainion"	CO ₂	?	-300 mA/cm ²	52	596
49	Polystyrene template-assisted interconnected mesoporous Cu2O NPs supported on Vulcan XC-72, on glassy carbon	Supported	Cu, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.4 V vs. RHE	-18 mA/cm ²	51	183
50	Cu NPs encapsulated in cub mesoporous carbon (CMK-8), on GDL	Supported	Cu, C, N	-	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	"Fuel Cell Store"	CO ₂	-1.1 V -iR vs. RHE	-250 mA/cm ²	51	363
51	Calcined (265 C) Cu-MOF [HKUST-1] (C18H6Cu3O12, Cu3(benzene- 1,3,5-tricarboxylate)2·xH2O)-derived CuOx/C, on glassy carbon (?)	MOF, supported	Cu, O, C	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.57 V vs. RHE	?	51	597
52	Cu-based MOF with dual-Cu sites, on a GDL (XGL 29bc)	MOF, supported	Cu	? Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAA- 3-50	CO ₂	-1.6 V vs. RHE	-920 mA/cm ²	51	598
53	Metallic Cu overlayer sputtered on commercial Cu NPs (25 nm, Sigma Aldrich) supported on Ketjen Black mixed with poly(methyl methacrylate) electrosprayed on a GDL	Supported	Cu	Poly(methyl methacrylate)	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FABPK- 130	со	-0.56 V - iR vs. RHE	-60 mA/cm ²	50	568
54	Cu-based TMC (terephthalate), on glassy carbon (?)	TMC, supported	Cu	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.1 V vs. RHE	-12 mA/cm ²	50	599
55	Calcined (265 C) Cu-MOF [HKUST-1] (C18H6Cu3O12, Cu3(benzene- 1,3,5-tricarboxylate)2·xH2O)-derived CuOx/C, on GDL	MOF, supported	Cu, O, C	Nafion	(Solution-phase reactant, supplied in front)	1.0 M KOH (pH 14)	Fumasep FAA-3-PK-130	CO ₂	?	-320 mA/cm ²	50	597
56	Exfoiliated 2D MOF obtained from combining copper(II) acetylacetonate with (2,3,9,10,16,17,23,24-octahydroxyphthalo- cyaninato)copper(II), on glassy carbon	MOF, supported	Cu, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.2 V vs. RHE	-7 mA/cm²	50	600
57	Cu MOF ([Cu3(µ3-OH)(µ3-trz)3(OH)2(H2O)4]·xH2O)-derived CuOx NPs, on GDL	MOF, supported	Cu	Nafion	(Solution-phase reactant, supplied in front)	1.0 M KHCO3	Nafion 117	CO ₂	-0.8 V vs. RHE	-250 mA/cm ²	50	553
58	Ultrafine CuO NPs supported on 2D copper 1,4-dicarboxybenzene (1,4-BDC) MOF, on carbon paper	MOF, supported	Cu	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.1 V vs. RHE	-14 mA/cm ²	50	601
59	Magnetic-assisted catalysis on spin ordered/disordered Cu-based MOF (HKUST) via partial-H2O replacement with TEMPOL, on carbon paper	MOF, supported	Cu, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	?	CO2	-1.8 V vs. Ag/AgCl	-10 mA/cm ²	50	602
60	Cu NCs with N/C shell obtained via in-situ reconstruction of Cu- based MOF (2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine), on Cu foil substrate	Core/shell	Cu, C, N	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.15 V vs. RHE	-27 mA/cm ²	50	603
61	Ultrafine Cu NPs on fibrous pyrenyl-graphdiyne, supported on Cu foil	Supported	Cu, C	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.5 V vs. RHE	-12 mA/cm ²	49	604
62	Cu NPs embedded in carbon matrix derived from pyrolysis of benzoxazine, mixed with PTFE (25 wt%), on GDL	Supported	Cu, C	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK-75	CO ₂	-0.58 V -iR vs. RHE	-200 mA/cm ²	49	605
63	Cu MOF ([Cu2(L1)2(L2)(H2O)2]·SO4·2H2O)-functionalized Cu plate	MOF, supported	Cu	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.11 V - iR vs. RHE	-17 mA/cm ²	49	606
64	Commercial Cu NPs (10-30 nm, Macklin) supported on Ketjen Black, on GDL	Supported	Cu, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion	CO ₂	-1.56 V - iR vs. RHE	-60 mA/cm ²	48	559
65	2D Cu-phenylalanine nanoflakes supported on carbon powder, on GDL	MOF, supported	Cu, O, C	Nafion	(Gas-phase reactant, supplied from behind)	0.5 M KHCO3	Nafion 117	CO ₂	-0.8 V vs. RHE	-88 mA/cm ²	48	607
66	CuO NSs supported on phenol formaldehyde resin carbon (PFRC), on GDL	Supported	Cu, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	Nafion 117	CO ₂	-0.64 V vs. RHE	-1268 mA/cm ²	47	608
67	Individual Cu NPs supported on/embedded in an amorphous CuOx	Supported [on Cu]	Cu,	Nafion	(Gas-phase reactant,	3.0 M KCI	Nafion 117	CO ₂	-0.9 V - iR	-400	46	609
68	CuOx NPs supported on Vulcan XC-72, on GDL	Supported	Cu,	Nafion	(Gas-phase reactant,	1.0 M	FAB-PK-130	CO ₂	-1.65 V	-200	46	610
69	N-doped carbon quantum dots supported on CuOx NRs, on a "PTFE	Supported	Cu,	Nafion	(Gas-phase reactant,	1.0 M	FAA-3-PK-130	CO ₂	-1.5 V -iR	ma/cm ²	46	268
	membrane"		С		supplied from behind)	KOH (pH 14)			vs. RHE			

70	Cu-MOF calcination derived grainboundary-rich CuOx NPs	MOF, supported	Cu,	Nafion (top-coat)	(Gas-phase reactant,	1.0 M	Nafion 117	CO ₂	-0.56 V - iR	-200	46	571
	supported on Ketjen Black, on carbon paper		0, C		supplied from behind)	KOH (pH			vs. RHE	mA/cm ²		
71	Self-assembling Cu-TMC (Bis(triphenylphosphine) Cu(I) nitrate)	TMC, supported	Cu,	Nafion	(Solution-phase reactant,	0.1 M	?	CO ₂	-0.96 V	-2	45	611
72	nanorods supported on XC-72R, on glassy carbon Calcination-distorted Cu-MOE [HKUST-1] (C18H6Cu3O12.	MOE supported	C Cu.	Nafion	supplied in front) (Gas-phase reactant.	1.0 M	2	CO2	vs. RHE -1.07 V - iR	-262	45	612
	Cu3(benzene-1,3,5-tricarboxylate)2·xH2O), on GDL		0, C		supplied from behind)	КОН (рН			vs. RHE	mA/cm ²		
73	CuO nanosheets derived from calcining	MOF, supported	Cu,	Nafion	(Solution-phase reactant,	14) 0.1 M	Nafion 117	CO ₂	-1.4 V	-9	45	613
	Cull/adeninato/carboxylato-MOFs, on glassy carbon		0		supplied in front)	KHCO3			vs. RHE	mA/cm ²		
74	In-situ reduced air-annealed commercial µm sized Cu particles	Supported	Cu,	Nafion	(Gas-phase reactant,	1.0 M	Fumatech	со	-0.72 V - iR	-1050	44	614
	supported on multi-walled carbon nanotubes, on GDL		0, C		supplied from behind)	KOH (pH 14)	FAA-3		vs. RHE	mA/cm ²		
75	CuO NSs supported on VXC-72r, on GDL	Supported	Cu,	Nafion	(Gas-phase reactant,	1.0 M	Nafion 117	CO ₂	-0.66 V	?	44	608
76	Cubic Cu2O microparticles (1 μm) supported on carbon black, on	Supported	Cu,	Nafion	(Solution-phase reactant,	0.5 M	Nafion 117	CO ₂	-1.1 V	-18	44	341
77	glassy carbon	COE supported	C, O	Nafion	supplied in front)	KHCO3	Nation 117	0	vs. RHE	mA/cm ²	44	615
	network, on glassy carbon	cor, supported	Cu	Nation	supplied in front)	KHCO3 +	Nation 117	002	vs. RHE	mA/cm ²		
						0.1 M KCl (pH 6.8)						
78	Thermally decomposed Cu TMC (copper phthalocyanine) supported	TMC, supported	Cu,	Nafion	(Solution-phase reactant,	0.5 M	Nafion 115	80/2	-0.4 V	-8	43	616
	supported catalyst after final heat treatment)				supplied in front)	KHCUS		CO ₂ /	VS. KITE	maycm		
79	CuBaCO3 NPs supported on MWCNTs, on Cu-sputtered PTFF GDI	Supported	Cu.	Nafion	(Gas-phase reactant.	1.0 M	2	02	-0.7 V	-500	43	236
		Supported	Ba,	Halloh	supplied from behind)	кон		002	vs. RHE	mA/cm ²	1.5	
80	Cu NPs with nitrogen-doped carbon shell prepared with a mass	Core/shell	C Cu,	Nafion	(Solution-phase reactant,	0.1 M	QAPPT	CO ₂	-1.1 V	-19	43	565
	ratio of Cu to 7, 7, 8, 8-tetracyanoquinodimethane of 20:4 and		C, N		supplied in front)	KHCO3			vs. RHE	mA/cm ²		
81	Dimeric Cu transition metal complex [Cu2(tris(2-	TMC, supported	Cu,	Nafion	(Solution-phase reactant,	0.1 M KCl	Nafion 117	CO ₂	-1.28 V	-9	42	617
	benzimidazolylmethyl)amine)2Cl2]Cl2 immobilized on nafion- coated mesoporous carbon, on carbon paper		°		supplied in front)				vs. RHE	mA/cm ²		
82	CuO nanoplates mixed with MWCNTs, on GDL	Supported	Cu,	Nafion	(Gas-phase reactant,	1.0 M	Fumatech	СО	-0.69 V -iR	-500	42	618
			0,0		supplied from behind)	14)	FAA		VS. KHE	ma/cm ²		
83	Binuclear Cu phenanthroline TMC mixed with graphite powder, on carbon paper	TMC, supported	Cu,	Nafion	(Solution-phase reactant, supplied in front)	0.1 M	Glass frit	CO ₂	-1.25 V	-6 m4/cm ²	42	619
			Ľ		supplied in noncy	(pH 6.8)						
84	(111)-rich 6 nm Cu NPs supported on Cu-tetrahydroxy-1,4-quinone (THQ) MOF, on glassy carbon	MOF, supported	Cu	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 +	Nafion 117	CO ₂	-1.4 V vs. RHE	-14 mA/cm ²	42	620
						0.1 M KCI						
85	CuOx NPs with carbon nitride shell, on carbon paper	Core/shell	Cu,	C3N4	(Solution-phase reactant,	(pH 6.8) 0.5 M	Nafion 117	CO ₂	-1.2 V	-40	42	564
			0, C N		supplied in front)	КНСОЗ			vs. RHE	mA/cm ²		
86	Cu-TMC (Copper(II) meso -tetra(4-carboxyphenyl)porphine) NSs, on	TMC, supported	Cu	Nafion	(Solution-phase reactant,	0.1 M	Nafion 211	CO ₂	-1.2 V	-8	41	621
	glassy carbon				supplied in front)	KHCO3 (pH 6.8)			vs. RHE	mA/cm ²		
87	Ultrafine Cu NPs supported on graphdiyne, on GDL	Supported	Cu,	Nafion	(Gas-phase reactant, supplied from behind)	0.1 M	Fumatech	со	-1.0 V	-24	40	622
					supplied from berning)	13)			V3. IVITE	inc/cm		
88	Eleborate electrospun fiber-network, eventually yielding conductive CNT/PTFE fibers with half-exposed porous µm-sized CuO particles,	Supported	Cu, O, C	PTFE	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nation 117	CO ₂	-1.4 V vs. RHE	-121 mA/cm ²	40	623
80	on carbon paper	Core/shell	Cu	2	(Gas-phase reactant	10.M	FAA-3-PK-75	0.	-1 27 V - iR	-500	40	624
05	nanofibers, on a GDL ^{1_Cu-Crore/shell,1}	coreyanen	C C		supplied from behind)	КОН (рН	TAC STR 75	0.02	vs. RHE	mA/cm ²	10	
90	"Cu catalyst" supported on mixed carbon powder (Lonza KS-44)	Supported	Cu,	Dibutyle phtalate	?	14) 0.3 M	Nafion 417	CO ₂	-3.5 V	?	38	625
01	with a Cu/C ratio of 0.5, made into a GDE	Supported	C	-	(Gas-phase reactant	KHCO3	Nation 117	0.	vs. SCE	-563+ Cu-C-	37	626
51	on GDL	Supported	0, C		supplied from behind)	КОН (рН			vs. RHE	supported,2		
92	CuOX NPs supported on graphite phase carbon nitride (C3N4), on	Supported	Cu,	Nafion	(Solution-phase reactant,	14) 0.1 M	Nafion 117	CO ₂	-1.0 V - iR	-14	37	627
	carbon paper		0,		supplied in front)	KHCO3			vs. RHE	mA/cm ²		
93	Air-calcined Cu NPs supported on N-doped carbon formed at 700	Supported	Cu,	Nafion	(Solution-phase reactant,	0.1 M	Nafion 117	CO ₂	-1.25 V - iR	-11	36	628
	°C, on carbon paper		0, C. N		supplied in front)	NaHCO3 (pH 6.8)			vs. RHE	mA/cm ²		
94	Crystalline copper(II) Phthalocyanine supported on Vulcan XC-72R,	Supported	Cu,	Nafion	(Solution-phase reactant,	0.5 M KCI	Nafion 424	CO ₂	-1.7 V	-35	35	629
95	Pre-reduction of Cu TMC (cuprous 7,7,8,8-	TMC, supported	Cu	Nafion	(Gas-phase reactant,	1.0 M	"Membrane"	CO	-0.61 V - iR	-330	35	630
	tetracyanoquinodimethane)-derived Cu NPs, on GDL				supplied from behind)	KOH (pH 14)			vs. RHE	mA/cm ²		
96	Pre-reduced dual atom Cu SAC supported on N-doped carbon, on	Supported, SAC	Cu,	Nafion	(Solution-phase reactant,	0.5 M	Nafion 117	CO ₂	-1.23 V	-35	35	631
97	carbon paper CuO NPs supported on N-doped C, on GDL	Supported	C, N Cu,	Nafion	(Gas-phase reactant,	1.0 M	Sustainion X37	CO ₂	-0.72 V -iR	-400	35	376
0.9		COE supported	C, N	Nation	supplied from behind)	KOH	50		VS. RHE	mA/cm ²	25	632
50	cu in s supported on a cu cor (4.8%), on carbon paper	cor, supported	Cu	Nation	supplied in front)	0.5 IVI KUI	1481011115		vs. SHE		35	
99	Post-annealed, electrodeposited Cu2O MPs "supported on" roughened N-doped graphite paper	Supported	Cu, O	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-0.9 V vs. RHE	-24 mA/cm ²	35	633
100	N-doped graphene quantum dots supported on CuOx NRs, on a	Supported	Cu,	Nafion	(Gas-phase reactant,	1.0 M	FAA-3-PK-130	CO ₂	-1.3 V -iR	-348	35	268
	Fire mentorane				supplied from bening)	14)			VS. REE	ma/cm*		
101	Imidazolium-functionalized cationic covalent triazine framework- stabilized Cu NPs supported on Ketien Black, on plassy carbon	COF, supported	Cu, C	Nafion, imidazolium- functionalized	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 +	Nafion 117	CO ₂	-1.3 V vs. RHF	-12 mA/cm ²	35	562
			–	cationic covalent		0.1 M KCI						
102	Cu NPs supported on a Cu COF ("4.8%"), on carbon paper	COF, supported	Cu	Nafion	(Solution-phase reactant,	(pH 6.8) 0.3 M KCl	Nafion 115	со	-1.5 V - iR	?	35	632
102	Motallic 50 pm Cu NWc cupported on Kation 502001 on anthre	Supported	C	Rohainulidana	supplied in front)	0.1.14	Nation 212	60	vs. SHE	94	24	634
103	paper	Supported	Cu,	fluoride	supplied in front)	KHCO3/C	Nation 212		vs. RHE	mA/cm ²	54	
104	"Activated" Cu NPs embedded in self-assembled coordination	TMC, supported	Cu	[Cu2(μ-	(Solution-phase reactant.	O (pH 8.3) 0.5 M	Astom Co. ASF	CO,	-1.34 V	-35	34	635
	polyer ([Cu2(µ-Br)2(PPh3)2(µ-DPB)]n), on carbon paper (C2H4			Br)2(PPh3)2(µ-DPB)]n	supplied in front)	кнсоз			vs. RHE	mA/cm ²	1	
105	Powdered electroplated (40 °C/14 V/60 min) CuOx particles	Supported	Cu,	-	(Solution-phase reactant,	0.2 M	Nafion 117	CO ₂	-0.99 V - iR	-41	34	636
	supported on graphene oxide, pressure sprayed on carbon fiber		0, C		supplied in front)	КНСОЗ			vs. RHE	mA/cm ²		
106	Pre-reduced CuOx NPs supported on polymer-derived N-doped	Supported	Cu,	Nafion	(Solution-phase reactant,	0.1 M	Nafion 117	CO ₂	-1.2 V	-12	34+-	637

_			-									
	carbon fibers prepared via electrospinning and calcination (400 °C/Ar), on glassy carbon		О, С, N		supplied in front)	KHCO3 (pH 6.8)			vs. RHE	mA/cm ²	Cu-C- suppor	
107	Cu2O NPs mixed with N-doped graphene (Figure S20), on a GDL	Supported	Cu, O, C, N	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	-	CO ₂	-1.9 V vs. RHE	-200 mA/cm ²	34	638
108	Cu NCs anchored/immobilized on N-doped graphene oxide, unknown substrate	Supported	Cu, C	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	?	CO2	-1.0 V vs. RHE	-11 mA/cm ²	33	639
109	Cu2O NCs supported on graphitic carbon nitride (g-C3N4), on carbon paper	Supported	Cu, C, N	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.1 V vs. RHE	-13 mA/cm ²	32	640
110	Cu-based TMC (Cu(N,N'-bis-(salicylidene)-o-phenylenediamine) supported on carbon black, on a GDL	TMC, supported	Cu, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAA- 130	CO ₂	-1.1 V vs. RHE	-303 mA/cm ²	32	560
111	Cu2O NPs supported on a Cu MOF (CU-BDC / terephthalic acid), on carbon paper	MOF, supported	Cu	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KBr	Nafion 117	CO ₂	-1.19 V	-7 mA/cm ²	32	641
112	Cu NPs (20 wt%) supported on thermally annealed (800 C)	Supported	Cu, C. N	-	(Solution-phase reactant, supplied in front)	0.2 M KHCO3	Nafion 212	CO ₂	-1.05 V - iR	-11 mA/cm ²	31	642
113	4 nm Cu NPs supported on "moderate" density Cu-SAC/carbon, on GDI	SAC, supported	Cu,	Nafion D-521	(Gas-phase reactant, supplied from behind)	5.0 M	FAA-3-PK-130	CO ₂	-0.6 V - iR	-383	31	643
114	High loading 72 nm Cu2O NCs supported on ionic liquid- functionalized graphite sheets, on glassy carbon	Supported	Cu, O,	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.15 V vs. RHE	-8 mA/cm ²	31	644
115	Cu NPs supported on a Cu COF ("4.8%"), on carbon paper	COF, supported	Cu	Nafion	(Solution-phase reactant, supplied in front)	0.3 M KCl	Nafion 115	CO ₂	-1.47 V - iR	-28	31	632
116	Cu NPs supported on a Cu MOF ([perylene tetracarboxylic di- (propyl imidazole)-Cu-Cl2(H2O)2]n), on a GDL	MOF, supported	Cu	Nafion, perylene tetracarboxylic di- (propyl imidazole)	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO ₂	-1.9 V vs. RHE	-73 mA/cm ²	31	561
117	Cu NPs supported on a Cu COF ("4.8%"), on carbon paper	COF, supported	Cu	Nafion	(Solution-phase reactant, supplied in front)	0.3 M KCI	Nafion 115	CO ₂	-1.47 V - iR vs. SHF	-28 mA/cm ²	31	632
118	Phosphate-buffered saline-treated CuO NPs-turned-nanoshees supported on Vulcan XC-72R, on carbon paper	Supported	Cu, O, C. P	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	-	CO2	-1.4 V vs. RHE	-25 mA/cm ²	30	645
119	Few (~4) atom Cu SACs prepared with a cyclohexene:Cu ratio of 60 supported on CNTs, on Toray carbon paper	SAC, supported	Cu, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	-	CO ₂	-1.4 V vs. RHE	-21 mA/cm ²	29	485
120	Cu-MOF derived, CuOx NPs with carbon shell (2 nm), on a GDL	Core/shell, MOF	Cu, O, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	"Anionic membrane"	CO ₂	-0.88 V -iR vs. RHE	-560 mA/cm ²	29	646
121	Hydrogen annealed, Cu-MOF derived Cu NPs with carbon shell (2 nm), on a GDL	Core/shell, MOF	Cu, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	"Anionic membrane"	CO ₂	-0.98 V -iR vs. RHE	-339 mA/cm ²	28	646
122	Cu2O NCs supported on N-doped carbon "shells" (involving ZnO NP templating - may be a trace contaminant), on glassy carbon	Supported	Cu, O, C, N	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.3 V vs. RHE	-10 mA/cm ²	25	647
123	MOF-derived high loading Cu SAC supported on N-doped carbon nanosheet calcined at 800 °C, on carbon paper	Supported, MOF	Cu, C, N	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.4 V vs. RHE	-28 mA/cm ²	25	648
124	Electroreduced Cu MOF (Cu3(1,3,5-benzenetricarboxylate)2)- derived CuOx NPs supported on N-doped graphene, on carbon paper (ambiguously reported)	Supported, MOF	Cu, O, C, N	Nafion	(Gas-phase reactant, supplied from behind)	0.2 M KI	Nafion 117	CO2	-1.9 V vs. RHE	-15 mA/cm ²	24	649
125	CuOx NCs supported (23 wt%) on Vulcan XC-27R, on glassy carbon	Supported	Cu, O, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 212	CO ₂	-0.97 V - iR vs. RHE	-14 mA/cm ²	22	650
126	Cu NPs supported on N-doped (0.17 at.%) carbon, on GDL	Supported	Cu, C, N	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAB-PK-130	со	-0.91 V -iR vs. RHE	-580 mA/cm ²	22	651
127	Cu2O NCs supported on N-doped reduced graphene oxide, on glassy carbon	Supported	Cu, O, C, N	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.4 V vs. RHE	-12 mA/cm ²	20	652
128	7nm Cu NPs supported on pyridinic-N rich graphene, on carbon paper	Supported	Cu, C, N	Polyvinylidene fluoride	?	0.5 M KHCO3	Nafion 212	CO2	-0.9 V vs. RHE	-311 ⁺ _Cu-C- supported,4 mA/cm ²	19	653
129	Oleylamine-stabilized Cu-NWs supported on CNPs, on glassy carbon, cleaned (ligand removal) via photonic curing method	Supported	Cu, C	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.2 V - iR vs. RHE	?	19	135
130	CuOx NCs supported on Vulcan XC-27R, on GDL	Supported	Cu, O, C	Nafion	(Solution-phase reactant, supplied in front)	1 M KHCO3	Selemion AMV	CO ₂	-1.38 V - iR vs. RHE	-600 mA/cm ²	15	650
131	Cu NPs supported on ENSACO-350 G, on glassy carbon	Supported	Cu, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.08 V -iR vs. RHE	-4 mA/cm ²	15	380
132	Cu NPs supported on Vulcan XC72, on glassy carbon	Supported	Cu, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.1 V -iR vs. RHE	-4 mA/cm ²	12	380
	+_Cu-C-supported.1Value given in main text and in tabular form in SI is different - took tabular value											
	1.Ca-Caupported2This has been calculated from the C2+ FE, the roughness factor extracted from the double layer capacity and specified reference charging value, and the ESCA current density plot in SI											
	^{1. Concentration of the second se}											
	*_co-c-upported3*Text also discusses glassy carbon as an electrode material, but it is unclear to us how this can be combined with other sections and discussed procedures in the text so we cite what we believe to be the most logical electrode											
	$^{\dagger}_{-C^{u-C}\text{-supported,6}}Main text and SI give different numbers, we report the number in the main text$											
	+_Cu-C-supported.7Total FE only computes to ca. 59 % - furthermore, SI states 34 % (reported herein) whilst text states 37 % FE C2H4											
	*_Cu-C-supported.8SI erroneously reports partial jC2H4@80.73 % C2H4 as 60.15, report here image-extracted jtotal											
	+_Cu-C-core/shell. ¹ Electrode manufacturing unspecified, but must be on a GDL considering the reported current density											
								_				

2.6. Bi-metallics with too limited data: Pt, Sb, Bi, Sr, Se, [Mo, Mn, Ru, Rh, Sc, Ge, In, W]

All these bi-elemental catalyst systems share the same primary concern, namely that insufficient literature is available for making reasonable inferences. However, considering that information on bielemental catalysts that make C_2H_4 is relatively scarce, we do not want to disregard the information either. As such, we provide here a brief description of the publications for these elements, trying to lean on the knowledge we have obtained from other bi-elemental works. Overall results for these bielemental systems with limited available sources are summarized in Table S23. The assorted catalyst dataset is derived from 26 unique publications and comprises a total of 33 catalyst systems, with 4 using CO as a reactant and 16 having been identified as alkaline CO_2 systems. A total of 1 of these catalyst systems exhibit maximum C_2H_4 FEs of $\geq 55\%$ (being $55\%^{654}$), having been measured under non-alkaline CO2RR conditions with a Cu/Se catalyst. It should be noted that the small quantity of available sources is not necessarily related to the absence of publications describing these particular Cu/M catalyst systems in general, but rather that these systems seem to exhibit poor overall C_2H_4 performance.

2.6.1. Pt/Cu

The only sources known to us concerning Cu/Pt systems comprise either core/shell particles or alloyed/doped-type particles, all having relatively low Pt contents (0.25 - 5 at. %).^{110,343} The optimum for ethylene formation seems to lie at the lower end of the reported regime (< 1 at. % Pt), which is in line with what is observed for most bi-elemental systems. The product spectrum is found to shift in the direction of ethanol rather than ethylene, though moderate amounts of C_2H_4 are still generated (between $25\%^{343}$ and $39\%^{110}$) when the Pt content is sufficiently low. The enhancement of EtOH formation is also observed for certain Cu/Pd systems^{343,348}, which is a logical partner to compare with on account of the strong similarities between the catalytic properties of Pt and Pd, respectively. Possibly interesting is the observation that pure Pt has also been reported to be able to reduce CO into C_2H_4 , albeit at elevated pressures and with low FE.⁶⁵⁵ However, we are not aware of any researchers having reproduced this particular result. Although we wish to be careful and not overanalyze the results, currently available information is not promising regarding the combination of Cu and Pt for making C₂H₄ electrochemically with Pt doping being detrimental instead by favoring the formation of EtOH.

2.6.2. Sb/Cu

Although the sample size is small (4 works total), there are some recurring themes for Cu/Sb catalysts. Firstly, most of the reported Cu/Sb systems that make appreciable amounts of C_2H_4 do so at moderate Sb contents (< 10%).^{337,656,657} Additionally, two works report on increased quantities of oxygen vacancies upon Sb doping (Cu δ + argument), and posit this is what accounts for the observed shift in catalytic activity.^{337,658} Maximum C₂H₄ FEs are reported in the 40-50% range. However, oftentimes Cu/Sb is not the main topic of study, making details and discussion scarce.

2.6.3. Bi/Cu

Cu/Bi systems that make C_2H_4 are uncommon, with only two references available to our knowledge. Both have relatively low Bi content: 0.5 at.%³³⁷ and 1.15 at.%⁶⁵⁹, and both happen to yield a maximum C_2H_4 FE of 48%.^{337,659} Upon Bi addition, the hydrogen evolution reaction is reported to be suppressed. Changes in catalytic activity are attributed to an increase in the number of oxygen vacancies (V_o) upon bismuth doping, or "... p-d orbital hybridization to modulate the electronic structure of catalyst", respectively. We observe that bismuth- and tin-based copper bi-elemental catalysts exhibit relatively similar behaviors and explanations, though the limited amount of data is insufficient to substantiate this finding.

2.6.4. Sr/Cu

Little information is available for Cu/Sr catalysts, though at least some C_2H_4 performance is observed for such systems.^{105,660} Strontium is found to leach into the electrolyte, but supposedly not in its entirety.⁶⁶⁰ Changes in conductivity could play a role in changes in performance, with the better-performing catalyst (out of 2...) being the one that was mixed with carbon nanoparticles. Overall, Sr seems not too promising as a dopant on account of its poor stability (leaching) and poor C_2H_4 performance (C_2H_4 FE max of 37%).

2.6.5. Se/Cu

Selenium is another uncommon component for bi-elemental Cu-based catalyst systems. We are aware of only two sources that reports on a Cu/Se system that makes appreciable amounts of C_2H_4 .^{654,661} Out of these, Mi *et al.* observe substantially higher C_2H_4 selectivity than Li *et al.* (35% vs. 55%). However, the catalytic activity in Mi's work is convoluted with pressure effects considering that the maximum C_2H_4 FE increases from 41% to 55% when the CO₂ pressure is increased from atmospheric pressure to 10 atm. Additionally, this system is seemingly highly sensitive to Se content, with Cu_{1.81}Se yielding 55% C₂H₄ at 10 atm, but Cu₂Se only yielding 35% C₂H₄ (as reported in the same manuscript). Importantly, these relatively promising results are in direct conflict with another work⁶⁶², wherein they report that Cu2Se makes no C₂H₄ whatsoever at atmospheric CO₂ pressures – although it can still form C-C bonds, yielding EtOH as a product instead. This increase in EtOH is similarly reported by Li *et al.*, who attribute it to the presence of vacancies resulting from the leaching of selenium over time.⁶⁶¹

2.6.6. Mo, Mn, Ru, Rh, Sc, Ge, In, W/Cu

All these bi-elemental systems share the same characteristic of having a very limited (1-2) number of publications with many of them actually originating from a singular source: a work by Lai *et al.* reporting on a high throughput screening methodology for studying the (alkaline) CO2RR.⁶⁵⁷ Furthermore, most of the catalysts in this group exhibit poor C_2H_4 performance (<30% C_2H_4). However, there do exist some outliers in this group. Namely, a Cu/In alloy catalyst with single atom In sites has been reported to yield a decent 49% C_2H_4 albeit experimental details were scarcely provided. Such moderate C_2H_4 performance for low levels of doping yielding single-atom catalyst sites has also been reported for e.g., Cu/Bi (48% C_2H_4)⁶⁵⁹, Cu/Pd (45% C_2H_4)³⁴⁵, Cu/Gd (42% C_2H_4)⁵¹⁹, Cu/Zn (35% C_2H_4)³¹¹ and Cu/Fe (31% C2H4)³⁹⁷ systems.

Similar moderate C_2H_4 performance has been reported for Cu/Ge (C_2H_4 FE max of 47%)²⁷⁷ and Cu/W (C_2H_4 FE max of 42%)⁶⁶³ systems, with the addition of tungsten being reported to result in suppressed EtOH activity.⁶⁶³ Such suppression of EtOH formation could be industrially beneficial considering that currently existing membranes are typically poorly compatible with alcohols.

	Table 23. W/Sr/Se/Sc/Sb/Ru/Rh/Pt/Mo/Mn/In/Ge/Bi-based Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C ₂ H4 FE	Reference
1	Selenized Cu NWs (Cu/Se ratio of 1.8:1) supported on Cu foam	Atomically mixed/Crystalline	Cu,	-	(Solution-phase reactant,	0.1 M	Nafion 115	CO ₂	-1.1 V	-15 mA/cm ²	55	654
2	Cu10Sb1 NPs, on carbon paper - prepared via co-precipitation	Alloyed/Doped	Cu,	Nafion	(Solution-phase reactant,	0.1 M KCl	Nafion 117	CO ₂	-1.19 V	-29	50	656
3	Cu/In alloy prepared via co-electrodeposition with single-atom In	Alloyed/Doped	Sb Cu,	-	supplied in front) (Solution-phase reactant,	0.1 M Csl	Nafion 117	CO ₂	vs. RHE -1.3 V	mA/cm ² -53	49	664
4	sites, on carbon fiber Bi-doned oxygen vacancy-rich CuO panoribbons, on carbon paper	Alloved/Doned	In	Nafion	supplied in front) (Solution-phase reactant	0.1 M	Nafion 117	CO.	vs. RHE -1.05 V -iR	mA/cm ²	48	337
		,,	Bi,		supplied in front)	кнсоз			vs. RHE	mA/cm ²		
5	Bi-doped Cu (3.7 wt% > 1.15 at. % Bi) derived from Bi-CuS precursor, on GDL	Alloyed/Doped	Cu, Bi	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	CO2	-0.75 V -iR vs. RHE	-450 mA/cm ²	48	659
6	Ge-doped CuOx NCs ("CuGe-II"), on Toray GDL	Alloyed/Doped	Cu, Ge, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	CO ₂	?	-900 mA/cm ²	47	277
7	Oxygen vacancy-rich CuOx NPs with atomically dispersed Sb atoms, on glassy carbon	Single atom	Cu, Sb, O	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.1 V vs. RHE	-8 mA/cm²	46	658
8	Bi-doped Cu (3.7 wt% > 1.15 at. % Bi) derived from Bi-CuS	Alloyed/Doped	Cu, Bi	-	(Gas-phase reactant, supplied from behind)	0.1 M	Nafion 117	CO ₂	-1.15 V -iR	-25 m4/cm ²	43	659
9	Core/shell NPs with Cu shell and Cu4W10 core, supported on carbon black, on GDL	Core/shell, A- supports-B	Cu, W,	Nafion	(Gas-phase reactant, supplied from behind)	5.0 M KOH	?	CO ₂	-1.0 V vs. RHE	-200 mA/cm ²	42	663
10	Selenized Cu NWs (Cu/Se ratio of 1.8:1) supported on Cu foam	Atomically	Cu,	-	(Solution-phase reactant,	0.1 M	Nafion 115	CO ₂	-1.1 V	-13	41	654
11	F-doped CulnOx (In/Cu = 0.06) NPs, on carbon paper	Alloyed/Doped	Cu,	Nafion	(Gas-phase reactant,	1.0 M	FAA-3-PK-130	CO ₂	-0.7 V -iR	-216	41	665
12	Sb-doped oxygen vacancy-rich CuO nanoribbons, on carbon paper	Alloyed/Doped	Cu, Sb,	Nafion	(Solution-phase reactant, supplied in front)	КОН 0.1 М КНСОЗ	Nafion 117	CO ₂	vs. RHE	-5 mA/cm ²	40	337
13	CuPtx NPs prepared via ultrasonic-assisted galvanic replacement (atomic ratio not reported, likely Cu1Pt0.008) of commercial Cu NPs (100 nm), on GDL	Core/shell	O Cu, Pt	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-PK-130	СО	-0.63 V - iR vs. RHE	-709 mA/cm ²	39	110
14	SrCuO2 pre-catalyst supported on vulcan, on GDL	Atomically mixed/Crystalline	Cu, Sr, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA_3-PK-130	CO ₂	-0.83 V -iR vs. RHE	-200 mA/cm ²	37	660
15	Se/Cu NPs (54 nm) distributed on porous carbon, derived from	Alloyed/Doped	Cu,	Nafion	(Gas-phase reactant,	1.0 M	FAB-PK-130	CO ₂	-0.83 V - iR	-239	35	661
16	Ultralow (single atom, 1.1 wt%) surface Pt-doped Cu NPs, on a GDL	Alloyed/Doped, SAC	Cu,	-	(Gas-phase reactant,	0.5 M	"Sustanion"	CO2	-1.1 V	-220	35	350
17	Dilute (atomically isolated) Pt-doped (2.2 wt%) Cu2O NCs, on a GDL	Alloyed/Doped	Cu, Pt,	Nafion	(Gas-phase reactant, supplied from behind)	3.0 M KOH	Fumasep FAB- PK-130	CO2	-1.2 V vs. RHE	-828 mA/cm ²	34	666
18	Ru-doped (1 at%) CuOx NWs derived from annealing Cu(OH)2 NW functionalized Cu-sputtered GDL	Alloyed/Doped	Cu, O, Bu	-	(Gas-phase reactant, supplied from behind)	-	PiperION (or Sustainion?)	со	-2.28 V vs. ANODE	-200 mA/cm ²	33	129
19	Sc/Cu alloy layer (5% Sc) (400 nm) sputtered on a GDL	Alloyed/doped	Cu, Sc	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-50	CO ₂	-0.65 V - iR vs. RHE	-200 mA/cm ²	31	139
20	Atomically dispersed Rh-doped Cu2O (Rh:Cu = 0.004) MPs (ca. 1 um) with rhombic dodecahedral shape , on carbon paper	Alloyed/Doped	Cu, Rh	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO ₂	-1.0 V vs. RHE	-12 mA/cm ²	27	667
21	Atomically dispersed Rh-doped Cu2O (Rh:Cu = 0.004) MPs (ca. 1	Alloyed/Doped	Cu,	Nafion	(Gas-phase reactant,	1.0 M	FAA-3-PK-130	CO ₂	-0.65 V - iR	-178	26	667
22	Thermodynamically unstable Cu9In1 NPs prepared via thermal	Alloyed/Doped, A-	Cu,	-	(Gas-phase reactant,	1.0 M	FAA-3	со	-0.70 V -iR	-50	26	334
23	shock, on carbon nanotubes Ru-doped (1 at%) CuOx NWs derived from annealing Cu(OH)2 NW	Alloyed/Doped	Cu,	-	(Gas-phase reactant,	1.0 M	FAB-PK-130	со	-0.7 V	-107	25	129
	functionalized Cu-sputtered GDL		O, Ru		supplied from behind)	кон			vs. RHE	mA/cm ²		
24	CuPt NPs (1:0.00797 at. ratio) prepared via galvanic replacement of Cu NPs (100 nm), on SGL 29BC GDL	Core/shell	Cu, Pt	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAA-3-PK-130	CO2	?	-500 mA/cm ²	25 ⁺ - ^{Cu-} Pt,1	343
25	Mn(OH)x overlayer on Cu-sputtered PTFE GDL	Overlayer, Mixed- phase/Janus	Cu, Mn, O	-	(Gas-phase reactant, supplied from behind)	1 M KOH	FAA-3-PK-130	CO ₂	?	?	23	395
26	Alloy/mixed metal Sr/Cu (1:3 ratio) microparticles, on GDL - obtained via reduction of mixed nitrate salt with NaBH4 over 12h period	Alloyed/Doped	Cu, Sr	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	NEOSEPTA, AHA	CO ₂	-0.8 V vs. RHE	-173 mA/cm ²	21	105
27	Mn/Cu alloy (9.7 at. % Mn) NPs, on GDL	Alloyed/Doped	Cu, Mn	Nafion	(Gas-phase reactant, supplied from behind)	1 M KOH	X37-50 Grade T	CO ₂	-0.8 V vs. RHE	-136 mA/cm ²	21	668
28	Cu/Sb (2 at. % Sb) thin film on Si wafer prepared via DC sputtering	Alloyed/Doped	Cu, Sb	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	"Selemion"	CO ₂	-1.15 V vs. RHE	?	20	657
29	Commercial Cu NPs with Ru shell prepared through galvanic displacement, on Cu foil	Core/shell	Cu, Ru	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Selemion AMV	CO ₂	-1.55 V vs. RHE	-8 mA/cm ²	19	669
30	Alloy/mixed metal Sc/Cu (1:3 ratio) microparticles, on GDL - obtained via reduction of mixed nitrate salt with NaBH4 over 12h partied	Alloyed/Doped	Cu, Sc	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	NEOSEPTA, AHA	CO ₂	-0.8 V vs. RHE	-204 mA/cm ²	18	105
31	Partial Mo overlayer (forming aggregates) sputter-deposited on	Mixed-phase/Janus	Cu,	-	(Solution-phase reactant,	0.1 M	Selemion®	CO ₂	-1.0 V - iR	-8	16	670
32	Alloy/mixed metal W/Cu (1:3 ratio) microparticles, on GDL - obtained via reduction of mixed nitrate salt with NaBH4 over 12h period	Alloyed/Doped	Cu, W	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	AMV NEOSEPTA, AHA	CO ₂	-0.6 V vs. RHE	-104 mA/cm ²	14	105
33	Mn-doped Cu(OH)2 NWs with a PTFE shell, on a GDL	Alloyed/Doped, Core/shell (in-)organic	Cu, Mn, O	PTFE	(Gas-phase reactant, supplied from behind)	-	X37-50 grade RT	CO ₂	-3.6 V vs. ANODE	-200 mA/cm ²	10	311
	LCDPRJSI of publication did not provide per-product FEs for Cu/Pt catalyst, obtained deconvoluted FEs through a personal communication with the authors (provided as SI for this manuscript)											

2.7. Multi-elemental systems (3+)

This final section pertaining to the elemental composition of C_2H_4 forming catalyst systems is on the topic of multi-elemental catalysts that consist of at least 3 constituents. However, the discussion will be more generic than previous sections on account of the increased heterogeneity of this subset of catalyst systems. Please note that we do not count any of the 'oxidic' elements as defined in the main text (X = Li, Na, K, Rb, Cs, N, O, P, S, F, Cl, Br and/or I) as a valid element for the 3+ elemental count in this category.

A summary of multi-elemental Cu/ Σ M catalyst systems for C₂H₄ production is given in Table S24. The Cu/ Σ M catalyst dataset is derived from 25 unique publications and comprises a total of 41 catalyst systems, with 4 using CO as a reactant and 10 having been identified as alkaline CO₂ systems. A total of 11 of these catalyst systems exhibit maximum C₂H₄ FEs of \geq 55%, with 2 having been measured under alkaline CO2RR conditions. The top-most selective catalyst concerns vanadium-copper layered double hydroxide (LDH) particles supported on TiO₂ NPs, yielding up to 84% C₂H₄ under non-alkaline CO2RR conditions. The second-highest catalyst system concerns a Cu/Ag/Au composite material that yields 77% C₂H₄ under alkaline CO2RR conditions.⁶⁷¹

Overall, we find that multi-elemental systems serve to fulfil mostly the same functions as we identified for bi-elemental systems (discussed in the main text). For example, Cu NPs supported on exfoliated Mg/Al LDHs yielded improved performance at increased current densities on account of the supporting effect of the nanosheets.⁶⁷² We also observe the benefits that the presence of nanoconfinement morphologies bring about^{479,673}, with further information on this topic provided in an excellent review.⁶⁷⁴ To continue, we identified various multi-elemental systems that behave similarly as oxide-derived systems on account of their reconstruction under reaction conditions²²⁵, possibly with morphology-directing effects.⁶⁷⁵ Maybe most importantly, we do start seeing an additional function that is not often observed for bi-elemental systems. Specifically, systems start emerging where the addition of extra components is hypothesized to result in improved stability.^{304,353,468,673}

Overall, including additional elements to improve performance provides more options, at least in theory. However, it also adds additional complexity to the catalyst system, with currently seemingly little benefit considering the small portion of reported multi-elemental systems that make $\ge 55\%$ C₂H₄. In the end, we could only identify two truly top-tier multi-elemental catalyst systems. And, looking at the morphology of those specific catalyst systems, a nanoconfinement effect could reasonably be hypothesized to be present for both. The third- and fourth-best systems 'only' yield 72%⁶⁷⁶ and 71%⁴⁷⁹ C₂H₄, which barely qualifies them for a spot in amongst the top-ranking catalysts provided in the main paper which has a cut-off value of $\ge 70\%$.

Thus, the question naturally arises if adding more elements is beneficial compared to simpler, bielemental systems. As for answering this question, we are of the opinion that the additional elements themselves might not be that important, but rather that their presence can be used to facilitate in the creation of conditions that are favorable for C_2H_4 performance as identified during our discussion of bielemental systems in both the main text and the supporting information. Namely, their presence can aid in e.g., i) the formation and stabilization of copper-based 2D nanosheet morphologies⁶⁷⁵, ii) the formation (and stabilization) of nanopores⁶⁷³, iii) creating reactive pre-cursor catalyst species that reconstruct into specific morphologies *in-situ*⁶⁷⁷, or iv) increase electrical conductivity and aid in catalyst dispersion through acting as conductive but electrochemically inert supports.⁶⁷² Importantly, the

function of stabilizing the active phase without influencing catalytic activity is something that is difficult to achieve with bi-elemental systems.^{304,353,468,673}

	Table S24. Multi-elemental Cu											
#	Electromaterial description TIO2 NPs supported on V/Cu-based layered double hydroxide, on	Catalyst type Mixed-phase/Janus,	ć D č	Polymeric / organic & inorganic additives Nafion	Reactant delivery mode (Solution-phase reactant,	Catholyte	Membrane Nafion 117	Reactant CO ²	Е -0.4 V	j -7	5⁴⁴ FE	erence 678
2	carbon paper	A-supports-B	V, Ti, O		Supplied in front)	1.0.14	Fumasan FAD	60	VS. RHE	mA/cm-	77	671
2	nm) post-modified with epitaxially deposited Cu 'overlayer', on GDL	alloyed/doped	Ag, Au, Cu	-	supplied from behind)	KOH (pH 14)	PK-130	CO ₂	vs. RHE	- 305 mA/cm ²	77	676
3	Toray carbon paper	mixed/Crystalline, alloyed/doped	Ag, La	Nation	supplied in front)	кнсоз	Nation	0.02	vs. RHE	-28 mA/cm ²	/2	
4	Single atom Cu sites enclosed in an Ir-containing Zr-based MUF framework with rod-like morphology, on carbon cloth	Atomically mixed/Crystalline	Cu, Ir, Zr	Nation	(Solution-phase reactant, supplied in front)	1.0 M phosphat e buffer saline	Nation 212	CO ₂	-1.0 V vs. RHE	-28 mA/cm ²	/1	473
5	Ag/Au (3:1 ratio) alloy, highly defective, cubic wireframe NPs (59 nm) post-modified with epitaxially deposited Cu 'overlayer', on glassy carbon	A-supports-B, alloyed/doped	Ag, Au, Cu	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	"Nafion"	CO ₂	-1.2 V vs. RHE	-13 mA/cm ²	69	671
6	Single atom Cu sites enclosed in an Ir-containing Zr-based MOF framework with rod-like morphology, on GDL	Single atom, Atomically mixed/Crystalline	Cu, Ir, Zr	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M phosphat e buffer saline	Nafion 212	CO2	-1.0 V vs. RHE	-80 ^{+_Cu-} multi_element, 1 mA/cm ²	67	479
7	Cu2O microcubes (1 µm) decorated with small Pd/Ag NPs (20-50 nm, 0.49 and 0.39 wt%, respectively), prepared via galvanic displacement, mixed with carbon black, on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, Ag, Pd, C	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Nafion 117	CO2	-1.2 V vs. RHE	-31 mA/cm ²	63	353
8	Cu8Zn6Mn alloy (89.3:1.53:3.92 at. %) NPs, on GDL	Alloyed/Doped	Cu, Mn, Zn	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	X37-50 Grade T	CO ₂	-1.4 V vs. RHE	-758 mA/cm²	58	668
9	Trimetallic Cu10La1Cs1 (mol ratio: 10:0.16:0.14) prepared via co- electroplating, on carbon paper	Mixed-phase/Janus	Cu, La, Cs	-	(Solution-phase reactant, supplied in front)	0.1 M KCI	Nafion 117	CO2	-1.2 V vs. RHE	-37 mA/cm ²	57	225
10	Cu/Pd mixed NPs supported on 2D Bi2S3 nanosheets, on copper foam	Mixed-phase/Janus, A-supports-B	Cu, Pd, Bi, S	Nafion	(Gas-phase reactant, forced through surface)	0.1 M KHCO3	Nafion	CO ₂	-0.4 V vs. RHE	-2 mA/cm ²	57	679
11	Exfoliated Mg/Al LDH nanosheets spraycoated onto a Cu-sputtered GDL	Overlayer	Cu, Mg, Al	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	AMVN	CO ₂	-2.8 V vs. RHE	-300 mA/cm ²	55	680
12	Au nanoneedle-impregnated inside of the channels of Zr-based MOF with Cu-TMC sites mixed with CNPs, on glassy carbon	Mixed-phase/Janus, Atomically mixed/Crystalline	Cu, Zr, Au	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 115	CO2	-1.2 V vs. RHE	-12 mA/cm ²	53	673
13	B/Mg-doped CuOX NPs ("Cu5(B0.02 M)Mg1"), on a GDL	Alloyed/Doped, Mixed-phase/Janus	Cu, Mg, B, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH	?	CO2	-1.57 V vs. RHE	-293 mA/cm ²	50	307
14	Trimetallic Cu10Zn1Cs1 prepared via co-electroplating, on carbon paper	Mixed-phase/Janus	Cu, Zn, Cs	-	(Solution-phase reactant, supplied in front)	0.1 M KCl	Nafion 117	CO ₂	-1.2 V vs. RHE	-33 mA/cm ²	48	225
15	Cu and Bi co-impregnated into a Zr-based MOF (UiO-66), on carbon paper	Alloyed/Doped	Cu, Bi, Zr	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.2 V vs. RHE	-51 mA/cm ²	47	482
16	Commercial CuOx NPs (5.8 mg/cm2!) supported on scaffold of exfoliated Mg/AI LDH, on GDL	Mixed-phase/Janus, A-supports-B	Cu, Mg, Al, O	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	SELEMION AMV	со	-0.7 V -iR vs. RHE	-1773 mA/cm ²	46	672
17	Simultaneous galvanic displacement of Zn substrate with Cu and Pb, with traces of Zn present after reaction (0.6-1.1 %), mixed with carbon black, on glassy carbon	Alloyed/Doped, atomically mixed/crystalline	Cu, Pb, Zn, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO2	-1.2 V -iR vs. RHE	?	45	451
18	Trimetallic Cu10La1Zn1 prepared via co-electroplating, on carbon paper	Mixed-phase/Janus	Cu, La, Zn	-	(Solution-phase reactant, supplied in front)	0.1 M KCI	Nafion 117	CO ₂	-1.2 V vs. RHE	-30 mA/cm ²	43	225
19	Cu and Bi co-impregnated (ca 1:1 atomic ratio) into a Zr-based MOF (UiO-66), on GDL	Alloyed/Doped	Cu, Bi, Zr	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	Nafion 117	CO ₂	-0.9 V vs. RHE	-100 mA/cm ²	42	482
20	B-doped Cu (1.4 at. % B; NaBH4 as reductant and Boron source) NPs (0.5 mg/cm2) mixed with Zn NSs (0.01 mg/cm2) and PTFE, on GDL	Alloyed/Doped	Cu, B, Zn	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH	FAB-PK-75	CO2	-0.5 V -iR vs. RHE	-200 mA/cm ²	40	304
21	Trimetallic Cu10Zn1Co1 prepared via co-electroplating, on carbon paper	Mixed-phase/Janus	Cu, Zn, Co	-	(Solution-phase reactant, supplied in front)	0.1 M KCI	Nafion 117	CO ₂	-1.2 V vs. RHE	-26 mA/cm ²	38	225
22	Consecutive galvanic replacement-prepared Ag/Ru-doped (4% and 1 %, XPS) CuOx NPs, on Cu-sputtered PTFE GDL	Alloyed/Doped	Cu, Ag, Ru	Nafion	(Gas-phase reactant, supplied from behind)	-	"Sustainion"	со	?	-600 mA/cm ²	38	447
23	CNP and graphite layers on top of CuZnO/CuZnAl2O4 catalyst prepared via co-precipitation and calcination (800 °C) midlayer , on Cu-sputtered PTFE GDL	Atomically mixed/Crystalline, A- supports-B, Alloyed/Doped	Cu, Zn, Al, O, C	Nafion	(Gas-phase reactant, supplied from behind)	2.0 M KOH	FAA-3-PK-130	CO2	-1.1 V vs. RHE	-400 mA/cm ²	36	290
24	Pd-doped, agglomerated defective Ag/CuOx nanosheets derived from CuOx NPs with Au seed ("Pd0.7Cu40.0Ag59.3"), on a GDL	Mixed-phase/Janus	Cu, Pd, Ag, Au	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Nafion 117	CO2	-1.0 V vs. RHE	-502 mA/cm ²	35	675
25	Consecutive galvanic replacement-prepared Ag/Au-doped CuOx NPs, on Cu-sputtered PTFE GDL	Alloyed/Doped	Cu, Ag, Au	Nafion	(Gas-phase reactant, supplied from behind)	-	"Sustainion"	со	?	-400 mA/cm ²	34	447
26	Consecutive galvanic replacement-prepared Ag/Pd-doped CuOx NPs, on Cu-sputtered PTFE GDL	Alloyed/Doped	Cu, Ag, Pd	Nafion	(Gas-phase reactant, supplied from behind)	-	"Sustainion"	со	?	-600 mA/cm ²	34	447
27	Simultaneous galvanic displacement of Zn substrate with Cu and Sn (Cu/Sn wt of ca. 40), with traces of Zn present after reaction (0.6- 1.1 %), mixed with carbon black, on glassy carbon	Alloyed/Doped, atomically mixed/crystalline	Cu, Sn, Zn,	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO ₂	-1.3 V -iR vs. RHE	-19 mA/cm ²	33	451

			С									
28	Simultaneous galvanic displacement of Zn substrate with Cu and Ag, with traces of Zn present after reaction (0.6-1.1 %), mixed with carbon black, on glassy carbon	Alloyed/Doped, atomically mixed/crystalline	Cu, Ag, Zn, C	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO2	-1.1 V -iR vs. RHE	?	33	451
29	Trimetallic Cu10Ag1Zn1 prepared via co-electroplating, on carbon paper	Mixed-phase/Janus	Cu, Ag, Zn	-	(Solution-phase reactant, supplied in front)	0.1 M KCI	Nafion 117	CO ₂	-1.2 V vs. RHE	-26 mA/cm²	31	225
30	Cu NCs with a non-equilibrium Cu/Ag/Pd alloy shell (Cu79Ag16Pd5), on a GDL	Alloyed/Doped, core/shell	Cu, Ag, Pd	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	"Nafion"	CO2	-1.1 V -iR vs. RHE	?	31	468
31	High entrypy AuAgPtPdCu NPs (16 + 10 nm) with single atom Cu sites, on glassy carbon	Atomically mixed/Crystalline, alloyed/doped	Au, Ag, Pt, Pd, Cu	Nafion	(Solution-phase reactant, supplied in front)	0.5 M K2SO4	?	CO2	-0.3 V vs. RHE	-14 mA/cm ²	30	465
32	Trimetallic Cu10La1Ag1 prepared via co-electroplating, on carbon paper	Mixed-phase/Janus	Cu, La, Ag	-	(Solution-phase reactant, supplied in front)	0.1 M KCI	Nafion 117	CO ₂	-1.2 V vs. RHE	-18 mA/cm ²	28	225
33	Trimetallic Cu10Ag1Au1 prepared via co-electroplating, on carbon paper	Mixed-phase/Janus	Cu, Ag, Au	-	(Solution-phase reactant, supplied in front)	0.1 M KCl	Nafion 117	CO ₂	-1.2 V vs. RHE	-26 mA/cm ²	27	225
34	Au NPs ("small") supported on Cu2O octahedra (ca. 200 nm) through galvanic displacement mixed with Ni-SAC, on a GDL	Mixed-phase/Janus, A-supports-B	Cu, Au, Ni, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	"Selemion"	CO2	-0.94 V -iR vs. RHE	-500 mA/cm ²	25	377
35	Chemically dealloyed (5 M NaOH, 50 °C) Al90Cu7.5Ce2.5 ribbons, with remaining traces of Al (2.2 at %), on GDL	Mixed-phase/Janus	Cu, Ce, Al	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAS- 50	CO2	-0.7 V - iR vs. RHE	- 98 mA/cm ²	23	677
36	Trimetallic Cu10Ag1Co1 prepared via co-electroplating, on carbon paper	Mixed-phase/Janus	Cu, Ag, Co	-	(Solution-phase reactant, supplied in front)	0.1 M KCI	Nafion 117	CO2	-1.2 V vs. RHE	-18 mA/cm ²	22	225
37	Exfoliated B/Cu-based MOF ("BIF-104(Cu)") nanosheets decorated with ultrasmall AgOx NPs mixed with carbon black, on glassy carbon	Mixed-phase/Janus, A-supports-B	Cu, B, Ag, C	Nafion	(Solution-phase reactant, supplied in front)	0.5 M KHCO3 + 0.5 M KCI	Nafion 117	CO2	-1.2 V vs. RHE	-4 mA/cm²	21	681
38	Tensile strained Cu overlayer (32 nm) on NiTi sheet	Overlayer	Cu, Ti, Ni	-	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO ₂	-1.1 V -iR vs. RHE	-11 mA/cm ²	20	682
39	La0.9Sr0.1CuO3 particles, on GDE (little information provided)	Atomically mixed/Crystalline	Cu, La, Sr	?	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Nafion 417	CO ₂	?	-120 mA/cm ²	20	683
40	Gd0.9Sr0.1CuO3 particles, on GDE (little information provided)	Atomically mixed/Crystalline	Cu, Gd, Sr	?	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Nafion 417	CO ₂	?	-240 mA/cm ²	20	683
41	Pr0.9Sr0.1CuO3 particles, on GDE (little information provided)	Atomically mixed/Crystalline	Cu, Pr, Sr	?	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Nafion 417	CO ₂	?	-240 mA/cm ²	17	683
	+_Cu-multi_element,1Used value from LSV, rather than text value											

2.8. (In-)organic polymer modification through core/shell & overlayer structures

We already hinted at the potential of inorganic layers as a means to improve C₂H₄ performance during our discussions of various bi-elemental, such as for an e.g., Cu/Ag system where a Cu NP/Nafion layer was deposited on top of an Ag foil, ^{413,414} and for a Cu/Zn catalyst modified with a Nafion/PVDF coating³¹², and for a Cu/Pb catalyst supported on a polyaniline-modified carbon substrate.³⁵⁹ However the effect can also be observed to exist for pristine and oxide-derived copper systems. To this end, we have compiled the final two summary tables. Table S25describes metallic copper and oxide-derived copper catalysts where each NP is coated by a layer of an organic and/or inorganic component, best described as a core/shell-type morphology comprising an organic/inorganic-based shell. In Table S26, metallic copper and oxide-derived copper catalysts which have been post-modified by an organic and/or inorganic toplayer are summarized, being best described as overlayer-type systems. Examples of organic/inorganic (over-)layers include e.g., polymeric coatings, addition of ionic liquids to the catalyst layer, thiol-bound surface modifying agents, PTFE coatings, cross-linked ionomer overlayers and carbon-derived overlayers. Although morphologically distinct, we believe that the presence of an organic/inorganic component either as an overlayer or as a core/shell-type of structure has similar effects on catalysis. As such, we discuss them together as if they were one.

The first observation is the high number of catalysts belonging to the organic/inorganic-modified category of copper catalysts, totaling 58 unique publications comprising 70 catalyst systems. A total of 11 use CO as the reactant and 29 have been identified as alkaline CO₂ systems. A remarkable total of 31 (i.e., 44%!) of these catalyst systems exhibit maximum C_2H_4 FEs of \geq 55%, with 14 having been measured under alkaline CO2RR conditions. A total of 4+9 = 13 (out of 70) of these systems even yield \geq 70% C_2H_4 . This makes this category of catalysts the highest performing in the entirety of the dataset, with oxide-derived catalysts (generally presumed best-in-class) 'only' having 20 catalyst systems that yield \geq 70% C_2H_4 , but the sample size being ca. 2.2x (70 vs. 157) larger. However, this difference becomes smaller if we remove alkaline CO2RR conditions from the equation with 6/13 catalyst systems remaining for (in-)organic component systems and 11/20 catalyst systems remaining for oxide-derived systems. In addition to high C_2H_4 performance, we also find that several manuscripts report on the combination of high current densities (e.g., \geq 150 mA/cm²) and high C_2H_4 FEs (e.g., 65-86% C_2H_4) under non-alkaline conditions^{491,684-687} for these organic/inorganic-modified catalyst systems, demonstrating the industrial viability of organic/inorganic (over-)layers as modifiers.

However, besides a high-level overview we cannot say much about this category of systems on account of their high heterogeneity. For more detailed information, we refer the reader to other sources more suited to investigating this topic in more depth.⁶⁸⁸⁻⁶⁹³ Irrespectively, just from a high-level perspective it is already evident that the presence of an organic/inorganic (over-)layer has a positive effect on C₂H₄ performance, which matches with our observations for those select bi-elemental systems discussed previously. Importantly, we see few hypothetical issues with combining a bi-elemental strategy to improve intrinsic catalytic performance with an organic/inorganic modification strategy to bring about further improvements. Especially as currently existing systems still tend to suffer from poor stability and low current densities even if industrially relevant FEs has been demonstrated for a relatively large (and diverse) number of catalysts. One can envision a case where intrinsic catalytic activity is optimized in a bi-elemental system, possibly with addition of a third element for stability purposes. Then, an organic/inorganic (over-)layer can be added to further tune the microenvironment to allow for

increased current densities without significantly compromising stability and/or C_2H_4 selectivity. Although for the time being, this is much more a dream than it is reality.

	Table S25. (In-) organic core/shell-Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C2H4 FE	Reference
1	Electroplated Cu modified via grafting an aryl diazonium-based polymeric coating (without Nafion toplayer), on GDL	Core/shell (in-)organic	Cu, O	Aryl diazonium-based polymer	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-50	CO	-2.5 V vs. ANODE	-179 mA/cm ²	86	684
2	CuO NPs coated with 1-dodecanethiol, on GDL	Core/shell (in-)organic	Cu, O	Nafion, 1- dodecanethiol	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO ₂	-1.2 V vs. RHE	-304 mA/cm ²	80	694
3	lonic liquid-coated Cu-MOF (Cu3(1,3,5-Benzenetricarboxylic acid)2), on glassy carbon	Core/shell (in-)organic	Cu	Nafion, 1,3,5- Benzenetricarboxylic acid (BTC), 1-Butyl-3- methylimidazolium nitrate (BmimNO3)	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.49 V vs. RHE	-34 mA/cm ²	77	695
4	CuOx NPs (large size distribution) mixed with PTFE, on carbon paper	Core/shell (in-)organic	Cu, O	Nafion, PTFE	(Solution-phase reactant, supplied in front)	0.5 M KCl + 50 mM benzyl alcohol	FKB PK 130	CO2	-1.38 V vs. RHE	-88 mA/cm²	72	696
5	Hydrophobic Cu NPs electroplated from a PTFE-containing solution, on carbon paper	Core/shell (in-)organic	Cu	PTFE	(Solution-phase reactant, supplied in front)	0.1 M Csl	Nafion 117	CO2	-1.25 V vs. RHE	-35 mA/cm ²	67	697
6	Cu2O NPs coated with a carboxylic-acid terminated C12 alkyl chain, on carbon paper	Core/shell (in-)organic	Cu, O	Nafion, HOOC- (CHy)n-COOH	(Solution-phase reactant, supplied in front)	? 0.1 M KHCO3 (pH 6.8)	? Nafion	CO2	-1.2 V vs. RHE	-7 mA/cm²	63	698
7	Polystyrene vinylbenzyl imidazolium chloride (PSMIM, 0.25 wt%) coated CuO NSs, on carbon paper	Core/shell (in-)organic	Cu, O	Polystyrene vinylbenzyl imidazolium chloride (PSMIM)	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	X37-50 Grade T	CO2	-1.05 V vs. RHE	-119 mA/cm ²	62	699
8	Core/shell-type particles comprising a carbon core with a CuOx shell coated with a PTFE layer, on carbon paper	Core/shell (in-)organic	Cu, C, O	PTFE, nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAB-PK-130	CO ₂	-0.92 V - iR vs. RHE	-230 mA/cm ²	62	700
9	Water-insoluble organosuperbase-modified Cu2O NCs, on GDL	Core/shell (in-)organic	Cu	Nafion, 1,8- bis(dimethylamino) naphthalene	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	Nafion 117	CO ₂	?	-300 mA/cm ²	60	701
10	Commercial Cu NPs (25 nm) coated with a 4,5-dicyanoimidazole shell, on a GDL	Core/shell (in-)organic	Cu	4,5-dicyanoimidazole, Nafion	(Gas-phase reactant, supplied from behind)	3 M KCI + x M HCI (pH 1)	"Nafion"	CO ₂	-2.08 V vs. RHE	-200 mA/cm ²	58	702
11	Water-insoluble organosuperbase-modified Cu NPs, on GDL	Core/shell (in-)organic	Cu	Nafion, 1,8- bis(dimethylamino) naphthalene	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	Nafion 117	CO2	-1.0 V -iR vs. RHE	-200 mA/cm ²	52	701
12	Partially PVP-capped Cu NPs grown from Au seed, supported on Vulcan XC-72, on GDL	Core/shell (in-)organic	Cu	Nafion, PVP capping	(Gas-phase reactant, supplied from behind)	0.5 M KOH	Fumapem FAA-3-PK-130	CO ₂	-0.85 V - iR vs. RHE	-200 mA/cm ²	52	208
13	Pyroglutamic acid-modified ("Pyr1.0") Cu2O NPs (reconstructing into nanoneedles), grown on carbon paper	Core/shell (in-)organic	Cu, O	Pyroglutami acid		1.0 M KHCO3 ("CO ₂ - saturated 1.0 M KOH")	?	CO2	-1.0 V vs. RHE	-510 mA/cm²	52	703
14	Cationic tetrabutylammonium-coated electroplated CuO dendrites (1.75 mg/cm2), on 121 Wet Proofing-modified GDL	Core/shell (in-)organic	Cu, O, N	Nafion, Tetrabutylammonium	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Selemion AMV	СО	-0.60 V vs. RHE	-1223 mA/cm ²	50	704
15	Poly-ionic liquid-coated Cu NPs mixed with CuCl, on GDL	Core/shell (in-)organic	Cu	Imidazolium, bipyridinium-based ionic liquid	(Gas-phase reactant, supplied from behind)	3.0 M KCl + 0.005 M H2SO4 (pH 2)	Nafion 117	CO2	?	-100 mA/cm ²	47	705
16	CuO NPs coated with hexaethynylbenzene layer, on GDL	Core/shell (in-)organic	Cu, O	Hexaethynylbenzene	(Gas-phase reactant, supplied from behind)	-	"Sustainion"	CO ₂	-4 V vs. ANODE	-400 mA/cm ²	44	706
17	Mesoporous Cu(OH)2 NRs mixed with large quantity of Nafion (28.4 wt%), supported on CNTs, on carbon paper	Core/shell (in-)organic, A-supports- B	Cu, O, C	Nafion or Sustainion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO ₂	-0.76 V - iR vs. RHE	-300 mA/cm ²	44	707
18	CuO NPs coated with hexaethynylbenzene layer, on GDL	Core/shell (in-)organic	Cu, O	Hexaethynylbenzene	(Gas-phase reactant, supplied from behind)	1.0 M KCl	"N117"	CO ₂	-1.1 V - iR vs. RHE	-350 mA/cm ²	43	706

	Table S26. (In-) organic overlayer Cu											
#	Electromaterial description	Catalyst type	Main elements	Polymeric / organic & inorganic additives	Reactant delivery mode	Catholyte	Membrane	Reactant	E	j	C2H4 FE	Reference
1	50 μm Cu-exchanged stannosilicate UZAR-S3 'mixed matrix membrane' toplayer, on a PVA/Chitosan midlayer, on a commercial 70 nm Cu NPs with chitosan bio-based polymeric binder underlayer, on Toray TGP-H-60 GDL (exact conditions ambiguously reported)	Overlayer	Cu	Chitosan, Cu exchanged stannosilicate UZAR- S3, polyvinylalcohol	(Gas-phase reactant, supplied from behind)	-	Sustainion X- 37 50 grade	CO2	-0.87 V vs. RHE	-10 mA/cm ²	98	97
2	Nafion overlayer covering a catalyst layer comprised of electroplated Cu modified via grafting an aryl diazonium-based polymeric coating, on GDL	Overlayer	Cu, O	Nafion, Aryl diazonium-based polymer	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-50	CO2	-3.85 V vs. ANODE	-602 mA/cm ²	89	684
3	Poly-N-(6-aminohexyl)acrylamide-coated electrodeposited Cu dendrites on GDL	Overlayer	Cu	Poly-N-(6- aminohexyl)acrylami de	(Gas-phase reactant, supplied from behind)	10 M KOH	?	CO2	-0.47 V -iR vs. RHE	?	87	708
4	N1-/N3-substituted imidazolium-based overlayer on Cu plate	Overlayer	Cu	N1-substituted (1,10- phenanthrolinyl) and N3-substituted (n- butyl) imidazolium	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	"Hangzhou Huamo Technology Co., Ltd"	CO2	-1.24 V vs. RHE	-6 mA/cm²	73	709
5	N-arylpyridinium electrodeposition-modified Cu-sputtered PTFE GDL	Overlayer	Cu	N,N'-(1,4-phenylene) bispyridinium salt	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	Fumapem FAA-3-PK-130	CO ₂	-0.83 V -iR vs. RHE	-325 mA/cm ²	72	685
6	Poly-N-(6-aminohexyl)acrylamide-coated electrodeposited Cu dendrites on GDL	Overlayer	Cu	Poly-N-(6- aminohexyl)acrylami de	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO2	-0.97 V -iR vs. RHE	-433 mA/cm ²	72	708

7	Sputtered Cu with Carbon NP midlayer and graphite toplayer, on PTFE GDL	Overlayer	Cu, C	CNPs, Graphite	(Gas-phase reactant, supplied from behind)	7.0 M KOH (pH	Fumasep FAB- PK-130	CO ₂	-0.57 V - iR vs. RHE	-100 mA/cm ²	70	101
8	Electroplated Cu (60 s @ 400 mA/cm ²) from CuBr2/tartrate/1 M KOH-containing bath with active CO ₂ flow (though CO also seems to work), with Carbon NP midlayer and graphite toplayer, on Cu- souttered PTE GOL (ambiguously reported)	Overlayer	Cu, C	CNPs/Nafion, Graphite/Nafion	(Gas-phase reactant, supplied from behind)	7.0 M KOH (pH 14.7)	Fumapem FAA-3-PK-130	CO2	-0.67 V - iR vs. RHE	-280 mA/cm ²	70	710
9	Carbon black NP (XC72R) overlayer on top of Cu-sputtered PTFE GDL	Overlayer	Cu, C	Nafion	(Gas-phase reactant, supplied from behind)	0.5 M KHCO3 +	Nafion 117	CO2	-0.89 V -iR vs. RHE	-500 mA/cm ²	70	491
10	Aquivion toplayer on N,N'-ethylene-phenanthrolinium electrodeposition-modified Cu-sputtered PTFE GDL	Overlayer	Cu	Aquivion D79-25BS, N,N'-ethylene- phenanthrolinium dibromide	(Gas-phase reactant, supplied from behind)	0.1 M KHCO3 (pH 6.8)	Sustainion X37-50	CO2	-4.4 V vs. ANODE	-330 mA/cm ²	69	686
11	Electroplated Cu (90 s @ 400 mA/cm ³) from CuBr2/tartrate/1 M KOH-containing bath with active CO ₂ flow (though CO also seems to work[insert ref]), with N-tolyl substituted tetrahydro-bipyridine (Py) midlayer and hydrophobic (CdHF704S.C2F4) short sidechain (SSC) ionomer toplayer, n OL-sputtered PTE GDL	Overlayer	Cu	N-tolyl substituted tetrahydro- bipyridine, (C4HF7O4S.C2F4)x	(Gas-phase reactant, supplied from behind)	-	Sustainion X37–50 grade 60	со	-2.5 V vs. ANODE	-164 mA/cm ²	65	687
12	Commercial 25 nm Cu NPs with Hex-Aza COF-based overlayer, on GDL	Overlayer	Cu	Hexaketocyclohexane , 2,3,6,7-tetraamino- phenazine hydrochloride	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-50	CO2	-3.85 V vs. ANODE	-316 mA/cm ²	62	711
13	Electroplated Cu (60 s @ 400 mA/cm ²) from CuBr2/tartrate/1 M KOH-containing bath with active CO, flow (though CO also seems to work), with Carbon NP midlayer and graphite toplayer, on Cu- sputtered PTE GD (ambiguously reported)	Overlayer	Cu, C	CNPs/Nafion, Graphite/Nafion	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-50 grade 60	CO2	-3.7 V vs. ANODE	-330 mA/cm ²	60	710
14	25 nm Cu NPs/nafion mix sprayed on top of nafion pre-covered Cu- sputtered PTFE nanowires	Overlayer	Cu	Nafion	(Gas-phase reactant, supplied from behind)	7.0 M KOH (pH 14.7)	Fumasep FAB- PK-130	CO ₂	-1.3 V -iR vs. RHE	-800 mA/cm ²	60	712
15	Electrodeposited Cu(OH)x dendrites (-200 mA/cm ² for 10 min from 0.05 M H2SO4/2.5 M KCl/7 mM CuSO4 bath with poly(Lys, Phe), with active CO ₂ flow), on Cu-sputtered PTFE GDL	Overlayer	Cu, O	poly(Lys, Phe)	(Gas-phase reactant, supplied from behind)	0.05 M H2SO4 + 2.5 M KCl	Nafion 117	CO2	-2.3 V vs. Ag/AgCl	-200 mA/cm ²	60	204
16	Electroplated Cu on top of polyaniline pre-functionalized carbon paper	Overlayer	Cu	Polyaniline	(Solution-phase reactant, supplied in front)	0.1 M KCI	Nafion 117	CO ₂	-1.2 V -iR vs. RHE	-30 mA/cm ²	59	713
17	Carbon black (Vulcan XC 72) layer on top of Cu2O NCs mixed with PVP/amine-containing microgel spheres midlayer, on PTFE GDL	Overlayer	Cu, C	Nafion	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-50	CO ₂	-4 V vs. ANODE	-358 mA/cm ²	58	714
18	1-octadecanethiol-modified electroplated Cu dendrites, on Cu plate	Overlayer	Cu	1-octadecanethiol	(Solution-phase reactant, supplied in front)	0.1 M CsHCO3	Nafion 115	CO2	-1.5 V -iR vs. RHE	-30 mA/cm ²	56	715
19	Spin-coated tricomponent ionic liquid polymer-modified Cu plate	Overlayer	Cu	Various ionic liquids	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMV	CO2	-1.08 V -iR vs. RHE	-5 mA/cm²	56	716
20	Polypyrrole nanowires-modified Cu NPs, on GDL	Overlayer	Cu	Nafion, Polypyrrole	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumatech FAB-PK-130	со	-0.58 V vs. RHE	-33 mA/cm ²	56 ⁺ - Cu- inorga nic_ov erlayer ,1 (69)	717
21	Carbon black (Vulcan XC 72) layer on top of Cu2O NCs mixed with PVP/amine-containing microgel spheres midlayer, on PTFE GDL	Overlayer	Cu, C	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAA-3-PK-130	CO2	-1.15 V -iR vs. RHE	-700 mA/cm ²	56	714
22	Carbon NP/nafion toplayer on a sputtered Cu midlayer with a MOF/nafion-derived underlayer, on a PTFE GDL	Overlayer	Cu, C	Nafion, Cu3(benzene- 1,3,5- tricarboxylate)2·xH2 O	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-50	CO2	-3.8 V vs. ANODE	-255 mA/cm ²	54	718
23	Aquivion toplayer on N,N'-ethylene-phenanthrolinium electrodeposition-modified Cu-sputtered PTFE GDL	Overlayer	Cu	Aquivion D79-25BS, N,N'-ethylene- phenanthrolinium dibromide	(Gas-phase reactant, supplied from behind)	0.1 M KHCO3 (pH 6.8)	Sustainion X37-50	со	-2.5 V vs. ANODE	-84 mA/cm ²	52	686
24	Polydopamine-coated rod-like Cu-MOF, on glassy carbon	Overlayer	Cu	Nafion, polydopamine	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.2 V -iR vs. RHE	-5 mA/cm²	51	719
25	Carbon NP/nafion toplayer on a sputtered Cu midlayer with a calcined MOF-derived/nafion underlayer, on a PTFE GDL	Overlayer	Cu, C	Nafion, Cu3(benzene- 1,3,5- tricarboxylate)2·xH2 O	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAA- 3-PK-130	CO2	-4.1 V (?) vs. ANODE	-525 mA/cm²	51	718
26	Cs-exchanged Nafion overlayer (0.7 $\mu\text{m})$ on Cu sputtered PTFE GDL	Overlayer	Cu	Nafion (Cs)	(Gas-phase reactant, supplied from behind)	-	-	со	-2.3 V vs. ANODE	-50 mA/cm ²	51	125
27	Polyaniline-coated Cu NPs on glassy carbon	Overlayer	Cu	Nafion, Polyaniline	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Quaternary ammonia poly(N- methylpiperidi ne- co-p- terphenyl)	CO ₂	-1.13 V -iR vs. RHE	-35 mA/cm ²	49	720
28	Commercial 25 nm Cu NPs with Hex-Aza COF-based overlayer, on GDL	Overlayer	Cu	Hexaketocyclohexane , 2,3,6,7-tetraamino- phenazine hydrochloride	(Gas-phase reactant, supplied from behind)	-	Fumasep FAA- 3-50	со	-2.51 V vs. ANODE	-500 mA/cm ²	49	711
29	0.01 mg/cm2 microporous polymer (combination of ethanoanthracene (EA) and Troger's base (TB) monomers)-coated Cu-sputtered GDL	Overlayer	Cu	Ethanoanthracene, Troger's base	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	?	CO2	-0.63 V vs. RHE	-39 mA/cm ²	48	721
30	Metallic Cu NPs with nafion toplayer, on GDL	Overlayer	Cu	Nafion	(Gas-phase reactant, supplied from behind)	1.0 M NaOH (pH 14)	Nafion 117	CO	-1.46 V vs. RHE	-72 mA/cm ²	48	722
31	QAPEEK' overlayer on 1 μ m-thick Cu layer with nanoscale roughness, sputtered on a GDL	Overlayer	Cu	QAPEEK (quaternary ammonia poly(ether ether ketone))	(Gas-phase reactant, supplied from behind)	-	QAPPT	CO ₂	-3.46 V vs. ANODE	-600 mA/cm ²	48	281
32	Surface S-doped 'coral-like' CuO MPs, on carbon paper	Overlayer	Cu, S, O	Nafion, thioacetamide	(Solution-phase reactant, supplied in front)	0.1 M KHCO3	Nafion 117	CO2	-1.3 V vs. RHE	-32 mA/cm ²	48	723
33	Sputtered Cu with Carbon NP midlayer and graphite toplayer, on PTFE GDL	Overlayer	Cu, C	CNPs, Graphite	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-50	CO ₂	-4.1 V vs. ANODE	-182 mA/cm ²	48	724
34	Tip-exposed PTFE-coated electrochemically grown Cu nanoneedles scraped off and deposited on a PTFE GDL	Overlayer	Cu	Nafion, PTFE	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	Fumasep FAB-PK-130	CO ₂	-0.76 V -iR vs. RHE	-300 mA/cm ²	45	725
35	Cu plate with in-situ electrodeposited N-functionalized aryl moiety (10 mM)	Overlayer	Cu	N,N'-ethylene- phenanthrolinium- Br2	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMV	CO ₂	-1.07 V -iR vs. RHE	-4 mA/cm²	45	156
36	Amorphous N-functionalized (34% N)) carbon overlayer on top of Cu-sputtered PTFE GDL	Overlayer	Cu, C, N	-	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAB-PK-130	CO2	-0.59 V -iR vs. RHE	-200 mA/cm ²	45	726
37	Pre-reduced gluconic acid-capped (800 mg) OH-rich Cu2O NPs, on	Overlayer	Cu,	Nafion, Gluconic acid	(Gas-phase reactant,	1.0 M	"Sustainion"	CO ₂	-0.94 V -iR	-350	44	727

	GDL		0		supplied from behind)	KHCO3 (pH 7.8)			vs. RHE	mA/cm ²		
38	Electrolyte-soaked 60 µm-thick porous (0.44 µm pore size) PTFE support overlayer on top of commercial 25 nm Cu NPs, on GDL	Overlayer	Cu	Nafion	(Gas-phase reactant, supplied from behind)	0.5M K2SO4	Home-made BPM with TiO2 NP interlayer	CO2	-5.35 V vs. ANODE	-300 mA/cm ²	44	728
39	Electroplated Cu (60 s @ 400 mA/cm ²) from CuBr2/tartrate/1 M KOH-containing bath with active CO, flow (though CO also seems to work), with Carbon NP midlayer and graphite toplayer, on Cu- sputtered PTFE GDL (ambiguously reported)	Overlayer	Cu, C	CNPs/Nafion, Graphite/Nafion	(Gas-phase reactant, supplied from behind)	1.0 M KHCO3	Fumapem FAA-3-PK-130	CO2	-1.1 V - iR vs. RHE	n/a	42	710
40	Hydrophobic pention D18 overlayer on Cu-sputtered PTFE GDL	Overlayer	Cu	Pention D18	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-50, grade 60	CO2	-2.58 V -iR vs. Au/QRE	-200 mA/cm ²	42	729
41	Carbon black NP (XC72R) overlayer on top of Cu-sputtered PTFE GDL	Overlayer	Cu, C	Nafion	(Gas-phase reactant, supplied from behind)	0.5 M K2SO4 + x M H2SO4 (pH 2)	Nafion 117	со	-0.74 V -iR vs. RHE	?	42	491
42	Carbon NP/nafion toplayer with a MOF/nafion-derived midlayer on a Cu-sputtered PTFE GDL	Overlayer	Cu, C	Nafion, Cu3(benzene- 1,3,5- tricarboxylate)2·xH2 O	(Gas-phase reactant, supplied from behind)	-	Sustainion X37-50	СО	-2.7 V vs. ANODE	-295 mA/cm ²	41	718
43	Electrocycled (CVs in 0.3 M KCl) Cu plate with benzimidazole overlayer	Overlayer	Cu	Benzimidazole	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	?	CO2	-1.07 V vs. RHE	-26 mA/cm ²	41	730
44	Polymerized a-ethyl cyanoacrylate overlayer on top of Cu foil	Overlayer	Cu	a-ethyl cyanoacrylate	(Solution-phase reactant, supplied in front)	0.5 M KCI	Nafion 117	CO ₂	-1.1 V -iR vs. RHE	-22 mA/cm ²	41	731
45	Polymerized a-ethyl cyanoacrylate overlayer on top of commercial Cu NPs on GDL	Overlayer	Cu	a-ethyl cyanoacrylate, nafion	(Gas-phase reactant, supplied from behind)	1.0 M KOH (pH 14)	FAA-3-PK-130	CO ₂	-0.9 V -iR vs. RHE	-190 mA/cm ²	41	731
46	PVDF overlayer on top of CuO NPs on carbon paper	Overlayer	Cu, O	PVDF	(Solution-phase reactant, supplied in front)	0.5 M KHCO3	Glass frit	CO ₂	-1.22 V vs. RHE	-15 mA/cm ²	41	732
47	1-methyl-benzimidazolium-functionalized paraterphenyl- trifluoroheptan-2-one polymer on top of on Cu NPs, on carbon paper	Overlayer	Cu	1-methyl- benzimidazolium, paraterphenyl- trifluoroheptan-2- one	(Gas-phase reactant, supplied from behind)	-	QAPPT (?)	CO2	-3.44 V vs. ANODE	-500 mA/cm ²	40	690
48	Diphenyliodonium salt-derived electrografted overlayer on Cu- sputtered PTFE GDL	Overlayer	Cu	Diphenyliodonium salt	(Solution-phase reactant, supplied in front)	1.0 M H3PO4 + 1.0 M KCl (pH ≈ 1)	Selemion AMV	CO2	?	-100 mA/cm ²	39	733
49	Commercial spherical Cu microparticles with native CuOx film and nafion toplayer, on GDL	Overlayer	Cu	Nafion	(Solution-phase reactant, supplied in front)	0.1 M KOH (pH 13)	Selemion AMV	со	-0.78 V -iR vs. RHE	-21 mA/cm ²	38	734
50	Electropolymerized N-tolyl pyridinium-based overlayer on Cu foil	Overlayer	Cu	N-tolyl pyridinium	(Solution-phase reactant, supplied in front)	H3PO4/0. 1 M KOH (pH 2)	Selemion AMV	CO ₂	-1.41 V -iR vs. RHE	-1 mA/cm ²	34	735
51	Glycine overlayer on top Cu plate	Overlayer	Cu	Glycine	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Nafion 117	CO2	-1.9 V vs. RHE	mA/cm ²	24	736
52	Electropolymerized ethynyl and azide-based overlayer with in-situ generated distrubted Cu NPs, on Cu substrate	Overlayer	Cu	Ethynyl-precursor, azide-precursor	(Solution-phase reactant, supplied in front)	0.1 M KHCO3 (pH 6.8)	Selemion AMV	CO2	-1.3 V vs. RHE	-25 mA/cm ²	20	737
	$^1_\text{Currinorganic_overlayer.1}Many of the total FE values in the publication were shown to be ca. 110 % - thus we report here the highest C2H4 value with a total FE close to 100% (being 56 % as opposed to 69 %)$											

3. References

- 1 Watanabe, M., Shibata, M., Kato, A., Azuma, M. & Sakata, T. Design of Alloy Electrocatalysts for CO2 Reduction III. The Selective and Reversible Reduction of CO2 on Cu Alloy Electrodes. *J Electrochem Soc* **138**, 3382-3389 (1991).
- 2 Qiao, J., Liu, Y., Hong, F. & Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. *Chem Soc Rev* **43**, 631-675 (2014).
- Liu, J., Guo, C., Vasileff, A. & Qiao, S. Nanostructured 2D Materials: Prospective Catalysts for Electrochemical CO2 Reduction. *Small Methods* 1, 1600006, doi:https://doi.org/10.1002/smtd.201600006 (2017).
- 4 Vickers, J. W., Alfonso, D. & Kauffman, D. R. Electrochemical Carbon Dioxide Reduction at Nanostructured Gold, Copper, and Alloy Materials. *Energy Technol* **5**, 775-795, doi:10.1002/ente.201600580 (2017).
- 5 Birhanu, M. K. *et al.* Copper and Copper-Based Bimetallic Catalysts for Carbon Dioxide Electroreduction. *Advanced Materials Interfaces* **5**, 1800919, doi:https://doi.org/10.1002/admi.201800919 (2018).
- 6 Gu, Z. *et al.* Nanostructured Copper-Based Electrocatalysts for CO2 Reduction. *Small Methods* **2**, 1800121, doi:<u>https://doi.org/10.1002/smtd.201800121</u> (2018).
- 7 He, J., Johnson, N. J. J., Huang, A. & Berlinguette, C. P. Electrocatalytic Alloys for CO2 Reduction. *ChemSusChem* **11**, 48-57, doi:<u>https://doi.org/10.1002/cssc.201701825</u> (2018).
- 8 Vasileff, A., Xu, C., Jiao, Y., Zheng, Y. & Qiao, S.-Z. Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction. *Chem* **4**, 1809-1831, doi:<u>https://doi.org/10.1016/j.chempr.2018.05.001</u> (2018).
- 9 Xie, H., Wang, T., Liang, J., Li, Q. & Sun, S. Cu-based nanocatalysts for electrochemical reduction of CO2. *Nano Today* **21**, 41-54, doi:<u>https://doi.org/10.1016/j.nantod.2018.05.001</u> (2018).
- 10 Zhu, W., Tackett, B. M., Chen, J. G. & Jiao, F. Bimetallic Electrocatalysts for CO2 Reduction. *Top Curr Chem* **376**, 41, doi:10.1007/s41061-018-0220-5 (2018).
- 11 Nitopi, S. *et al.* Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. *Chemical Reviews* **119**, 7610-7672, doi:10.1021/acs.chemrev.8b00705 (2019).
- 12 Ren, D., Gao, J., Zakeeruddin, S. M. & Grätzel, M. Bimetallic Electrocatalysts for Carbon Dioxide Reduction. *Chimia* **73**, 928, doi:10.2533/chimia.2019.928 (2019).
- 13 Adegoke, K. A., Adegoke, R. O., Ibrahim, A. O., Adegoke, S. A. & Bello, O. S. Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: Realities and prospects of Cu-based materials. *Sustainable Materials and Technologies* **25**, e00200, doi:<u>https://doi.org/10.1016/j.susmat.2020.e00200</u> (2020).
- 14 Cui, C., Hu, X. & Wen, L. Recent progress on nanostructured bimetallic electrocatalysts for water splitting and electroreduction of carbon dioxide. *J Semicond* **41**, 091705, doi:10.1088/1674-4926/41/9/091705 (2020).
- Hoang, V. C., Gomes, V. G. & Kornienko, N. Metal-based nanomaterials for efficient CO2 electroreduction: Recent advances in mechanism, material design and selectivity. *Nano Energy* 78, 105311, doi:<u>https://doi.org/10.1016/j.nanoen.2020.105311</u> (2020).
- 16 Li, X., Masa, J. & Sun, Z. in *Clean Energy Materials* Vol. 1364 *ACS Symposium Series* Ch. 2, 49-91 (American Chemical Society, 2020).
- 17 Wu, Y. *et al.* Rational Design of Nanocatalysts with Nonmetal Species Modification for Electrochemical CO2 Reduction. *Advanced Energy Materials* **10**, 2000588, doi:<u>https://doi.org/10.1002/aenm.202000588</u> (2020).

- 18 Abdelnaby, M. M., Liu, K., Hassanein, K. & Yin, Z. Photo/electrochemical Carbon Dioxide Conversion into C3+ Hydrocarbons: Reactivity and Selectivity. *ChemNanoMat* 7, 969-981, doi:<u>https://doi.org/10.1002/cnma.202100106</u> (2021).
- 19 Chen, J. *et al.* Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts. *Nano Res* **14**, 3188-3207, doi:10.1007/s12274-021-3335-x (2021).
- Li, Q. *et al.* Bimetallic chalcogenides for electrocatalytic CO2 reduction. *Rare Met* **40**, 3442-3453, doi:10.1007/s12598-021-01772-7 (2021).
- 21 Ma, W. *et al.* Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cubased catalysts. *Chem Soc Rev* **50**, 12897-12914, doi:10.1039/D1CS00535A (2021).
- 22 Ni, Z. *et al.* Research progress of electrochemical CO2 reduction for copper-based catalysts to multicarbon products. *Coord Chem Rev* **441**, 213983, doi:<u>https://doi.org/10.1016/j.ccr.2021.213983</u> (2021).
- 23 Wang, Y., Liu, J. & Zheng, G. Designing Copper-Based Catalysts for Efficient Carbon Dioxide Electroreduction. *Adv Mater* **33**, 2005798, doi:<u>https://doi.org/10.1002/adma.202005798</u> (2021).
- Xiao, C. & Zhang, J. Architectural Design for Enhanced C2 Product Selectivity in Electrochemical CO2 Reduction Using Cu-Based Catalysts: A Review. ACS Nano 15, 7975-8000, doi:10.1021/acsnano.0c10697 (2021).
- 25 Xie, L. *et al.* Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO2 reduction. *Chem Commun* **57**, 1839-1854, doi:10.1039/D0CC07589B (2021).
- 26 Xue, Y., Guo, Y., Cui, H. & Zhou, Z. Catalyst Design for Electrochemical Reduction of CO2 to Multicarbon Products. *Small Methods* 5, 2100736, doi:<u>https://doi.org/10.1002/smtd.202100736</u> (2021).
- 27 Yang, C.-H., Nosheen, F. & Zhang, Z.-C. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. *Rare Met* **40**, 1412-1430, doi:10.1007/s12598-020-01600-4 (2021).
- Yu, J. *et al.* Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copper-Based Catalysts toward Multicarbon Products. *Adv Funct Mater* **31**, 2102151, doi:<u>https://doi.org/10.1002/adfm.202102151</u> (2021).
- 29 Zhu, S. *et al.* Recent Advances in Catalyst Structure and Composition Engineering Strategies for Regulating CO2 Electrochemical Reduction. *Adv Mater* **33**, 2005484, doi:<u>https://doi.org/10.1002/adma.202005484</u> (2021).
- 30 Zhu, Y. *et al.* Tandem catalysis in electrochemical CO2 reduction reaction. *Nano Res* **14**, 4471-4486, doi:10.1007/s12274-021-3448-2 (2021).
- 31 Ahmad, T. *et al.* Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. *Nano Research Energy* **1**, 9120021, doi:10.26599/NRE.2022.9120021 (2022).
- 32 Chen, Z. *et al.* Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives. *Renewable and Sustainable Energy Reviews* **155**, 111922, doi:<u>https://doi.org/10.1016/j.rser.2021.111922</u> (2022).
- Darayen, J. *et al.* Advances in the Key Metal-Based Catalysts for Efficient Electrochemical Conversion of CO2. *ChemBioEng Reviews* 9, 475-496, doi:<u>https://doi.org/10.1002/cben.202200005</u> (2022).
- Dickinson, H. L. A. & Symes, M. D. Recent progress in CO2 reduction using bimetallic electrodes containing copper. *Electrochem Commun* 135, 107212, doi:<u>https://doi.org/10.1016/j.elecom.2022.107212</u> (2022).
- Ji, Y., Guan, A. & Zheng, G. Copper-based catalysts for electrochemical carbon monoxide reduction. *Cell Reports Physical Science*, 101072, doi:<u>https://doi.org/10.1016/j.xcrp.2022.101072</u> (2022).

- Jia, Y., Li, F., Fan, K. & Sun, L. Cu-based bimetallic electrocatalysts for CO2 reduction. *Advanced Powder Materials* **1**, 100012, doi:<u>https://doi.org/10.1016/j.apmate.2021.10.003</u> (2022).
- 37 Jiang, G. *et al.* Rational Manipulation of Intermediates on Copper for CO2 Electroreduction Toward Multicarbon Products. *Transactions of Tianjin University* **28**, 265-291, doi:10.1007/s12209-022-00330-1 (2022).
- 38 Mandal, S. C. *et al.* Developments of the heterogeneous and homogeneous CO2 hydrogenation to value-added C2+-based hydrocarbons and oxygenated products. *Coord Chem Rev* **471**, 214737, doi:<u>https://doi.org/10.1016/j.ccr.2022.214737</u> (2022).
- 39 Mosali, V. S. S., Bond, A. M. & Zhang, J. Alloying strategies for tuning product selectivity during electrochemical CO2 reduction over Cu. *Nanoscale* **14**, 15560-15585, doi:10.1039/D2NR03539A (2022).
- 40 Sarkar, S. & C Peter, S. Catalyst designing strategies for electrochemical CO2 reduction: a perspective. *Progress in Energy* **4**, 032002, doi:10.1088/2516-1083/ac6e23 (2022).
- 41 Su, J. *et al.* Recent development of nanomaterials for carbon dioxide electroreduction. *SmartMat* **3**, 35-53, doi:<u>https://doi.org/10.1002/smm2.1106</u> (2022).
- 42 Wang, J. *et al.* Electrocatalytic Reduction of Carbon Dioxide to High-Value Multicarbon Products with Metal–Organic Frameworks and Their Derived Materials. *ACS Materials Letters* **4**, 2058-2079, doi:10.1021/acsmaterialslett.2c00751 (2022).
- 43 Wang, X., Hu, Q., Li, G., Yang, H. & He, C. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. *Electrochemical Energy Reviews* **5**, 28, doi:10.1007/s41918-022-00171-5 (2022).
- Yin, C. *et al.* Progress in regulating electronic structure strategies on Cu-based bimetallic catalysts for CO2 reduction reaction. *Advanced Powder Materials* 1, 100055, doi:<u>https://doi.org/10.1016/j.apmate.2022.100055</u> (2022).
- 45 Yongxia Shi, M. H., Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction. *Acta Phys. -Chim. Sin.* **38**, 2206020-, doi:10.3866/pku.Whxb202206020 (2022).
- Zang, Y., Wei, P., Li, H., Gao, D. & Wang, G. Catalyst Design for Electrolytic CO2 Reduction Toward Low-Carbon Fuels and Chemicals. *Electrochemical Energy Reviews* 5, 29, doi:10.1007/s41918-022-00140-y (2022).
- 47 Zaza, L., Rossi, K. & Buonsanti, R. Well-Defined Copper-Based Nanocatalysts for Selective Electrochemical Reduction of CO2 to C2 Products. *ACS Energy Letters* **7**, 1284-1291, doi:10.1021/acsenergylett.2c00035 (2022).
- 48 Chang, B. *et al.* Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives. *Energy Environ Sci* **16**, 4714-4758, doi:10.1039/D3EE00964E (2023).
- 49 Ding, M. *et al.* Electrochemical CO2 reduction: Progress and opportunity with alloying copper. *Materials Reports: Energy* **3**, 100175, doi:<u>https://doi.org/10.1016/j.matre.2023.100175</u> (2023).
- 50 Farooqi, S. A., Farooqi, A. S., Sajjad, S., Yan, C. & Victor, A. B. Electrochemical reduction of carbon dioxide into valuable chemicals: a review. *Environ Chem Lett* **21**, 1515-1553, doi:10.1007/s10311-023-01565-7 (2023).
- 51 Jeyachandran, N., Yuan, W. & Giordano, C. Cutting-Edge Electrocatalysts for CO2RR. *Molecules* 28, 3504 (2023).
- 52 Kong, Q. *et al.* Copper-based catalysts for the electrochemical reduction of carbon dioxide: progress and future prospects. *Materials Horizons* **10**, 698-721, doi:10.1039/D2MH01218A (2023).
- Li, L., Su, J., Lu, J. & Shao, Q. Recent Advances of Core-Shell Cu-Based Catalysts for the Reduction of CO2 to C2+ Products. *Chemistry An Asian Journal* 18, e202201044, doi:<u>https://doi.org/10.1002/asia.202201044</u> (2023).

- 54 Li, M. & Zhang, J.-N. Rational design of bimetallic catalysts for electrochemical CO2 reduction reaction: A review. *Science China Chemistry* **66**, 1288-1317, doi:10.1007/s11426-023-1565-5 (2023).
- 55 Liu, L., Akhoundzadeh, H., Li, M. & Huang, H. Alloy Catalysts for Electrocatalytic CO2 Reduction. *Small Methods* **7**, 2300482, doi:<u>https://doi.org/10.1002/smtd.202300482</u> (2023).
- 56 Ma, L., Yang, Z., Wang, Y. & Xia, Y. Cu-Based Catalytic Materials for Electrochemical Carbon Dioxide Reduction: Recent Advances and Perspectives. *Advanced Energy and Sustainability Research* **4**, 2300034, doi:<u>https://doi.org/10.1002/aesr.202300034</u> (2023).
- 57 Maniam, K. K. *et al.* Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products. *Processes* **11**, 1148 (2023).
- 58 Qu, J. *et al.* Electrochemical Carbon Dioxide Reduction to Ethylene: From Mechanistic Understanding to Catalyst Surface Engineering. *Nano-Micro Letters* **15**, 178, doi:10.1007/s40820-023-01146-x (2023).
- 59 Wu, T. *et al.* Recent Progress on Perovskite-Based Electrocatalysts for Efficient CO2 Reduction. *Molecules* **28**, 8154 (2023).
- 60 Xu, D. *et al.* Electrocatalytic CO2 reduction towards industrial applications. *Carbon Energy* **5**, e230, doi:<u>https://doi.org/10.1002/cey2.230</u> (2023).
- 61 Yang, H., Li, S. & Xu, Q. Efficient strategies for promoting the electrochemical reduction of CO2 to C2+ products over Cu-based catalysts. *Chin J Catal* **48**, 32-65, doi:https://doi.org/10.1016/S1872-2067(23)64429-8 (2023).
- 62 Cui, S. *et al.* Progress in Cu-based electrocatalysts for electrochemical CO2 reduction to C2+ products. *Catal Sci Technol* **14**, 2697-2716, doi:10.1039/D4CY00101J (2024).
- 63 Ding, Q. *et al.* Electrochemical CO2 reduction by Cu-VIA (O, S, Se, Te) compounds and their derivatives: a review. *Materials Today Sustainability* **24**, 100516, doi:<u>https://doi.org/10.1016/j.mtsust.2023.100516</u> (2023).
- 64 Guo, F. & He, G. Size, alloy and interface effects on Cu-based catalysts for enhancing electrochemical reduction of CO2. *Results in Engineering* **20**, 101510, doi:<u>https://doi.org/10.1016/j.rineng.2023.101510</u> (2023).
- 65 Hong, X., Zhu, H., Du, D., Zhang, Q. & Li, Y. Research Progress of Copper-Based Bimetallic Electrocatalytic Reduction of CO2. *Catalysts* **13**, 376 (2023).
- 66 Liu, L.-X. *et al.* Cu MOF-based electrocatalysts for CO2 reduction to multi-carbon products. *J Mater Chem A* **12**, 26421-26438, doi:10.1039/D4TA05059B (2024).
- 67 Ruqia, B. *et al.* Recent advances in the electrochemical CO reduction reaction towards highly selective formation of Cx products (X = 1–3). *Chem Catalysis* **2**, 1961-1988, doi:<u>https://doi.org/10.1016/j.checat.2022.06.009</u> (2022).
- Song, Z., Wang, X., Ren, Z. & Fu, H. Relationships between structural design and synthesis engineering of Cu-based catalysts for CO2 to C2 electroreduction. *Chemical Engineering Journal* 479, 147606, doi:<u>https://doi.org/10.1016/j.cej.2023.147606</u> (2024).
- 69 Sun, B. *et al.* Challenges and strategies towards copper-based catalysts for enhanced electrochemical CO2 reduction to multi-carbon products. *Fuel* **332**, 126114, doi:<u>https://doi.org/10.1016/j.fuel.2022.126114</u> (2023).
- Wang, F. *et al.* Copper-based catalysts for CO2 electroreduction to C2/2+ products: Advance and perspective. *Coord Chem Rev* 515, 215962, doi:<u>https://doi.org/10.1016/j.ccr.2024.215962</u> (2024).
- 71 Woldu, A. R., Huang, Z., Zhao, P., Hu, L. & Astruc, D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. *Coord Chem Rev* 454, 214340, doi:<u>https://doi.org/10.1016/j.ccr.2021.214340</u> (2022).

- 72 Xie, L. *et al.* Cu-based catalyst designs in CO2 electroreduction: precise modulation of reaction intermediates for high-value chemical generation. *Chem Sci* **14**, 13629-13660, doi:10.1039/D3SC04353C (2023).
- 73 Xue, Y. *et al.* Rare earth nanomaterials in electrochemical reduction of carbon dioxide. *Coord Chem Rev* **516**, 215983, doi:<u>https://doi.org/10.1016/j.ccr.2024.215983</u> (2024).
- Yang, F., Sun, S., Liu, J., Zhao, M. & Zheng, J. in *Copper-Based Nanomaterials in Organic Transformations* Vol. 1466 ACS Symposium Series Ch. 6, 153-182 (American Chemical Society, 2024).
- 75 Yang, P.-P. & Gao, M.-R. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. *Chem Soc Rev* **52**, 4343-4380, doi:10.1039/D2CS00849A (2023).
- 76 Yousaf, S., Ahmad, I., Farooq Warsi, M. & Ali, A. Engineering strategies in the rational design of Cu-based catalysts for electrochemical CO2 reduction: from doping of elements to defect creation. *Materials Advances* **5**, 7891-7978, doi:10.1039/D4MA00321G (2024).
- 77 Zhang, B. *et al.* Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction. *Nano Energy* **80**, 105504, doi:<u>https://doi.org/10.1016/j.nanoen.2020.105504</u> (2021).
- 78 Zhao, L. *et al.* Surface regulation of Cu-based catalysts to adjust the selectivity and promotion strategy of electrochemical reduction of CO2 to C2 products. *Journal of Environmental Chemical Engineering* **12**, 111905, doi:<u>https://doi.org/10.1016/j.jece.2024.111905</u> (2024).
- 79 Zhu, H.-L., Huang, J.-R., Liao, P.-Q. & Chen, X.-M. Rational Design of Metal–Organic Frameworks for Electroreduction of CO2 to Hydrocarbons and Carbon Oxygenates. *ACS Cent Sci* **8**, 1506-1517, doi:10.1021/acscentsci.2c01083 (2022).
- 80 Zoubir, O., Atourki, L., Ait Ahsaine, H. & BaQais, A. Current state of copper-based bimetallic materials for electrochemical CO2 reduction: a review. *RSC Adv* **12**, 30056-30075, doi:10.1039/D2RA05385C (2022).
- 81 Wang, Q., Wei, H., Liu, P., Su, Z. & Gong, X.-Q. Recent advances in copper-based catalysts for electrocatalytic CO2 reduction toward multi-carbon products. *Nano Research Energy* **3**, e9120112, doi:10.26599/NRE.2024.9120112 (2024).
- Yan, T. *et al.* Multiscale CO2 Electrocatalysis to C2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. *Chemical Reviews* 123, 10530-10583, doi:10.1021/acs.chemrev.2c00514 (2023).
- 83 You, S. *et al.* Doping engineering of Cu-based catalysts for electrocatalytic CO2 reduction to multi-carbon products. *Energy Environ Sci* **17**, 5795-5818, doi:10.1039/D4EE01325E (2024).
- Li, Z., Wang, L., Wang, T., Sun, L. & Yang, W. Steering the Dynamics of Reaction Intermediates and Catalyst Surface during Electrochemical Pulsed CO2 Reduction for Enhanced C2+ Selectivity. *J Am Chem Soc* **145**, 20655-20664, doi:10.1021/jacs.3c08005 (2023).
- DiDomenico, R. C. & Hanrath, T. Pulse Symmetry Impacts the C2 Product Selectivity in Pulsed
 Electrochemical CO2 Reduction. ACS Energy Letters 7, 292-299,
 doi:10.1021/acsenergylett.1c02166 (2022).
- 86 Arán-Ais, R. M., Scholten, F., Kunze, S., Rizo, R. & Roldan Cuenya, B. The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction. *Nature Energy* **5**, 317-325, doi:10.1038/s41560-020-0594-9 (2020).
- 87 Shiratsuchi, R., Aikoh, Y. & Nogami, G. Pulsed Electroreduction of CO 2 on Copper Electrodes. *J Electrochem Soc* **140**, 3479, doi:10.1149/1.2221113 (1993).
- 88 Nogami, G., Itagaki, H. & Shiratsuchi, R. Pulsed Electroreduction of CO 2 on Copper Electrodes-II. *J Electrochem Soc* **141**, 1138, doi:10.1149/1.2054886 (1994).
- 89 Prajapati, A. *et al.* CO2-free high-purity ethylene from electroreduction of CO2 with 4% solar-toethylene and 10% solar-to-carbon efficiencies. *Cell Reports Physical Science* **3**, 101053, doi:<u>https://doi.org/10.1016/j.xcrp.2022.101053</u> (2022).

- 90 Zhang, X.-D. *et al.* Asymmetric Low-Frequency Pulsed Strategy Enables Ultralong CO2 Reduction Stability and Controllable Product Selectivity. *J Am Chem Soc* **145**, 2195-2206, doi:10.1021/jacs.2c09501 (2023).
- 91 Zhang, J. *et al.* Selective, Stable Production of Ethylene Using a Pulsed Cu-Based Electrode. *ACS Appl Mater Interfaces* **14**, 19388-19396, doi:10.1021/acsami.2c01230 (2022).
- 92 Casebolt, R., Levine, K., Suntivich, J. & Hanrath, T. Pulse check: Potential opportunities in pulsed electrochemical CO2 reduction. *Joule* **5**, 1987-2026, doi:10.1016/j.joule.2021.05.014 (2021).
- 93 Cook, R. L., MacDuff, R. C. & Sammells, A. F. High rate gas phase CO2 reduction to ethylene and methane using gas diffusion electrodes. *J Electrochem Soc* **137**, 607-608 (1990).
- 94 Alerte, T. *et al.* Downstream of the CO2 Electrolyzer: Assessing the Energy Intensity of Product Separation. *ACS Energy Letters* **6**, 4405-4412, doi:10.1021/acsenergylett.1c02263 (2021).
- 95 Choi, C. *et al.* Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. *Nature Catalysis* **3**, 804-812, doi:10.1038/s41929-020-00504-x (2020).
- 96 Merino-Garcia, I., Albo, J. & Irabien, A. Tailoring gas-phase CO2 electroreduction selectivity to hydrocarbons at Cu nanoparticles. *Nanotechnology* **29**, 014001, doi:10.1088/1361-6528/aa994e (2018).
- 97 Marcos-Madrazo, A., Casado-Coterillo, C., Iniesta, J. & Irabien, A. Use of Chitosan as Copper Binder in the Continuous Electrochemical Reduction of CO2 to Ethylene in Alkaline Medium. *Membranes* **12**, 783 (2022).
- 98 She, X. *et al.* Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 A. *Nature Energy*, doi:10.1038/s41560-023-01415-4 (2024).
- 99 Li, Z. *et al.* Planar defect-driven electrocatalysis of CO2-to-C2H4 conversion. *Journal of Materials Chemistry A* **9**, 19932-19939, doi:10.1039/D1TA02565A (2021).
- 100 Liu, M. *et al.* Potential Alignment in Tandem Catalysts Enhances CO2-to-C2H4 Conversion Efficiencies. *Journal of the American Chemical Society* **146**, 468-475, doi:10.1021/jacs.3c09632 (2024).
- 101 Dinh, C.-T. *et al.* CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. *Science* **360**, 783-787, doi:10.1126/science.aas9100 (2018).
- 102 Gu, Z. *et al.* Efficient Electrocatalytic CO2 Reduction to C2+ Alcohols at Defect-Site-Rich Cu Surface. *Joule* **5**, 429-440, doi:10.1016/j.joule.2020.12.011 (2021).
- 103 De Gregorio, G. L. *et al.* Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially Viable Current Densities. *ACS Catal* **10**, 4854-4862, doi:10.1021/acscatal.0c00297 (2020).
- 104 Wang, Y. *et al.* Copper Nanocubes for CO2 Reduction in Gas Diffusion Electrodes. *Nano Letters* **19**, 8461-8468, doi:10.1021/acs.nanolett.9b02748 (2019).
- 105 Xie, M. *et al.* Fast Screening for Copper-Based Bimetallic Electrocatalysts: Efficient Electrocatalytic Reduction of CO2 to C2+ Products on Magnesium-Modified Copper. *Angew Chem Int Ed* **61**, e202213423, doi:<u>https://doi.org/10.1002/anie.202213423</u> (2022).
- 106 Ren, W., Xu, A., Chan, K. & Hu, X. A Cation Concentration Gradient Approach to Tune the Selectivity and Activity of CO2 Electroreduction. *Angewandte Chemie International Edition* **61**, e202214173, doi:<u>https://doi.org/10.1002/anie.202214173</u> (2022).
- 107 Zhang, Y. *et al.* Selective CO2 Reduction to Ethylene Over a Wide Potential Window by Copper Nanowires with High Density of Defects. *Inorganic Chemistry* **61**, 20666-20673, doi:10.1021/acs.inorgchem.2c03649 (2022).
- 108 Huo, H., Wang, J., Fan, Q., Hu, Y. & Yang, J. Cu-MOFs Derived Porous Cu Nanoribbons with Strengthened Electric Field for Selective CO2 Electroreduction to C2+ Fuels. *Advanced Energy Materials* **11**, 2102447, doi:<u>https://doi.org/10.1002/aenm.202102447</u> (2021).

- 109 Phong Duong, H. *et al.* Silver and Copper Nitride Cooperate for CO Electroreduction to Propanol. *Angewandte Chemie International Edition* **n/a**, e202310788, doi:<u>https://doi.org/10.1002/anie.202310788</u> (2023).
- 110 Li, J. *et al.* Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. *Nature Communications* **11**, 3685, doi:10.1038/s41467-020-17499-5 (2020).
- 111 Obasanjo, C. A. *et al.* In situ regeneration of copper catalysts for long-term electrochemical CO2 reduction to multiple carbon products. *Journal of Materials Chemistry A* **10**, 20059-20070, doi:10.1039/D2TA02709G (2022).
- 112 Bernasconi, F., Senocrate, A., Kraus, P. & Battaglia, C. Enhancing C≥2 product selectivity in electrochemical CO2 reduction by controlling the microstructure of gas diffusion electrodes. *EES Catalysis* **1**, 1009-1016, doi:10.1039/D3EY00140G (2023).
- 113 Zhang, H., Gao, J., Raciti, D. & Hall, A. S. Promoting Cu-catalysed CO2 electroreduction to multicarbon products by tuning the activity of H2O. *Nature Catalysis* **6**, 807-817, doi:10.1038/s41929-023-01010-6 (2023).
- 114 Chen, R. *et al.* Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide. *Angewandte Chemie* **132**, 160-166, doi:<u>https://doi.org/10.1002/ange.201910662</u> (2020).
- 115 Gao, J. *et al.* Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals. *Nat Chem*, doi:10.1038/s41557-023-01163-8 (2023).
- 116 Romero Cuellar, N. S., Wiesner-Fleischer, K., Fleischer, M., Rucki, A. & Hinrichsen, O. Advantages of CO over CO2 as reactant for electrochemical reduction to ethylene, ethanol and n-propanol on gas diffusion electrodes at high current densities. *Electrochimica Acta* **307**, 164-175, doi:<u>https://doi.org/10.1016/j.electacta.2019.03.142</u> (2019).
- 117 Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. *J Mol Catal A: Chem* **199**, 39-47 (2003).
- 118 Choi, C. *et al.* A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials. *Advanced Materials* **31**, 1805405, doi:https://doi.org/10.1002/adma.201805405 (2019).
- 119 Corral, D. *et al.* Advanced manufacturing for electrosynthesis of fuels and chemicals from CO2. *Energy & Environmental Science* **14**, 3064-3074, doi:10.1039/D0EE03679J (2021).
- 120 Liu, J. *et al.* Controlled Synthesis of EDTA-Modified Porous Hollow Copper Microspheres for High-Efficiency Conversion of CO2 to Multicarbon Products. *Nano Letters* **20**, 4823-4828, doi:10.1021/acs.nanolett.0c00639 (2020).
- 121 Huang, Y., Ong, C. W. & Yeo, B. S. Effects of Electrolyte Anions on the Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper (100) and (111) Surfaces. *ChemSusChem* **11**, 3299-3306, doi:doi:10.1002/cssc.201801078 (2018).
- 122 Hori, Y., Murata, A., Takahashi, R. & Suzuki, S. Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. *J Chem Soc, Chem Commun*, 17-19 (1988).
- 123 Akira, M. & Yoshio, H. Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO2 and CO at a Cu Electrode. *Bulletin of the Chemical Society of Japan* **64**, 123-127, doi:doi:10.1246/bcsj.64.123 (1991).
- 124 Guan, A. *et al.* Steric effect induces CO electroreduction to CH4 on Cu–Au alloys. *J Mater Chem A* 9, 21779-21784, doi:10.1039/D1TA06162C (2021).
- 125 Adnan, M. A., Nabil, S. K., Kannimuthu, K. & Kibria, M. G. Modulating Cation and Water Transports for Enhanced CO Electrolysis via Ionomer Coating. *ChemSusChem* **n/a**, e202301425, doi:<u>https://doi.org/10.1002/cssc.202301425</u>.

- 126 Sun, J. *et al.* Rational catalyst layer design enables tailored transport channels for efficient CO2 electrochemical reduction to multi-carbon products. *Energy & Environmental Science*, doi:10.1039/D4EE03743J (2025).
- 127 Schellekens, M. P., Raaijman, S. J., T. M. Koper, M. & Corbett, P. J. Temperature-dependent selectivity for CO electroreduction on copper-based gas-diffusion electrodes at high current densities. *Chemical Engineering Journal* **483**, 149105, doi:<u>https://doi.org/10.1016/j.cej.2024.149105</u> (2024).
- 128 Romero Cuellar, N. S. *et al.* Two-step electrochemical reduction of CO2 towards multi-carbon products at high current densities. *Journal of CO2 Utilization* **36**, 263-275, doi:<u>https://doi.org/10.1016/j.jcou.2019.10.016</u> (2020).
- 129 Zhou, G. *et al.* Concentrated C2+ Alcohol Production Enabled by Post-Intermediate Modulation and Augmented CO Adsorption in CO Electrolysis. *Journal of the American Chemical Society* **146**, 31788-31798, doi:10.1021/jacs.4c10629 (2024).
- 130 Ma, M. *et al.* Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. *Energy & Environmental Science* **13**, 977-985, doi:10.1039/D0EE00047G (2020).
- 131 Ma, M. *et al.* Local reaction environment for selective electroreduction of carbon monoxide. *Energy & Environmental Science* **15**, 2470-2478, doi:10.1039/D1EE03838A (2022).
- 132 Zhang, T. *et al.* The Conventional Gas Diffusion Electrode May Not Be Resistant to Flooding during CO2/CO Reduction. *Journal of The Electrochemical Society* **169**, 104506, doi:10.1149/1945-7111/ac9b96 (2022).
- 133 Pang, Y. *et al.* Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. *Nature Catalysis* **2**, 251-258, doi:10.1038/s41929-019-0225-7 (2019).
- 134 Ji, Y. *et al.* Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. *Nature Catalysis* **5**, 251-258, doi:10.1038/s41929-022-00757-8 (2022).
- 135 Hou, Y. *et al.* Photonic Curing: Activation and Stabilization of Metal Membrane Catalysts (MMCs) for the Electrochemical Reduction of CO2. *ACS Catal* **9**, 9518-9529, doi:10.1021/acscatal.9b03664 (2019).
- Loiudice, A. *et al.* Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction. *Angewandte Chemie International Edition* 55, 5789-5792, doi:10.1002/anie.201601582 (2016).
- 137 Sassenburg, M. *et al.* Characterizing CO2 Reduction Catalysts on Gas Diffusion Electrodes: Comparing Activity, Selectivity, and Stability of Transition Metal Catalysts. *ACS Applied Energy Materials* 5, 5983-5994, doi:10.1021/acsaem.2c00160 (2022).
- 138 Hahn, C. *et al.* Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons. *Proceedings of the National Academy of Sciences* **114**, 5918-5923, doi:doi:10.1073/pnas.1618935114 (2017).
- 139 Crandall, B. S. *et al.* Cu Based Dilute Alloys for Tuning the C2+ Selectivity of Electrochemical CO2 Reduction. *Small* **n/a**, 2401656, doi:<u>https://doi.org/10.1002/smll.202401656</u>.
- 140 Wang, L. *et al.* Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products. *ACS Catal* **8**, 7445-7454, doi:10.1021/acscatal.8b01200 (2018).
- 141 Yang, K. D. *et al.* Morphology-Directed Selective Production of Ethylene or Ethane from CO2 on a Cu Mesopore Electrode. *Angewandte Chemie* **129**, 814-818, doi:<u>https://doi.org/10.1002/ange.201610432</u> (2017).
- 142 Yang, Y., Fu, H., Xiao, C., Du, X. & Song, Z. Efficient electrochemical CO2 reduction to C2+ hydrocarbons on Zn-doped Cu films. *Applied Surface Science* **646**, 158866, doi:<u>https://doi.org/10.1016/j.apsusc.2023.158866</u> (2024).

- 143 Wang, Y., Cheng, Q., Zhang, H., Ma, L. & Yang, H. Cobalt(II) tetraphenylporphyrin trapped in the pores of Cu2O to enhance the C2+ selectivity towards acidic CO2 electroreduction. *Chemical Engineering Journal* **492**, 152254, doi:<u>https://doi.org/10.1016/j.cej.2024.152254</u> (2024).
- 144 Duong, H. P. *et al.* Highly Selective Copper-Based Catalysts for Electrochemical Conversion of Carbon Monoxide to Ethylene Using a Gas-Fed Flow Electrolyzer. *ACS Catal* **12**, 10285-10293, doi:10.1021/acscatal.2c03143 (2022).
- 145 Zhang, B. *et al.* Highly Electrocatalytic Ethylene Production from CO2 on Nanodefective Cu Nanosheets. *J Am Chem Soc* **142**, 13606-13613, doi:10.1021/jacs.0c06420 (2020).
- 146 Wang, R. *et al.* Selective Generation of Electroreduction C1–C2 Products Through Self-Regulation of Catalytically Active Cu Sites on the Same Coordination Cluster Catalyst. *CCS Chemistry* **5**, 2237-2250, doi:doi:10.31635/ccschem.022.202202316 (2023).
- Han, J. *et al.* Structuring Cu Membrane Electrode for Maximizing Ethylene Yield from CO2 Electroreduction. *Advanced Materials* n/a, 2313926, doi:<u>https://doi.org/10.1002/adma.202313926</u>.
- 148 Liu, W. *et al.* Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. *Nature Communications* **13**, 1877, doi:10.1038/s41467-022-29428-9 (2022).
- 149 Wang, Y. *et al.* Enhanced Local CO Coverage on Cu Quantum Dots for Boosting Electrocatalytic CO2 Reduction to Ethylene. *Advanced Functional Materials* **n/a**, 2417764, doi:<u>https://doi.org/10.1002/adfm.202417764</u>.
- 150 Zhou, W. *et al.* Multiple Tuning of the Local Environment Enables Selective CO2 Electroreduction to Ethylene in Neutral Electrolytes. *Advanced Functional Materials* **34**, 2311226, doi:<u>https://doi.org/10.1002/adfm.202311226</u> (2024).
- Luo, H., Li, B., Ma, J.-G. & Cheng, P. Surface Modification of Nano-Cu2O for Controlling CO2
 Electrochemical Reduction to Ethylene and Syngas. *Angewandte Chemie International Edition* 61, e202116736, doi:<u>https://doi.org/10.1002/anie.202116736</u> (2022).
- Tao, H., Wang, F., Zhang, Z. & Min, S. Surface N-coordinated Cu catalysts for CO2 electroreduction to ethylene at industry-level current densities. *Sustainable Energy & Fuels* 7, 2991-2996, doi:10.1039/D3SE00501A (2023).
- 153 Xue, W. *et al.* Operando reconstruction towards stable Cul nanodots with favorable facets for selective CO2 electroreduction to C2H4. *Science China Chemistry* **66**, 1834-1843, doi:10.1007/s11426-023-1591-6 (2023).
- 154 Bian, L. *et al.* Grain boundary-abundant copper nanoribbons on balanced gas-liquid diffusion electrodes for efficient CO2 electroreduction to C2H4. *Chinese Journal of Catalysis* **54**, 199-211, doi:<u>https://doi.org/10.1016/S1872-2067(23)64540-1</u> (2023).
- 155 Zhang, C. *et al.* Exploration of Gas-Dependent Self-Adaptive Reconstruction Behavior of Cu2O for Electrochemical CO2 Conversion to Multi-Carbon Products. *Nano-Micro Letters* **17**, 66, doi:10.1007/s40820-024-01568-1 (2024).
- Thevenon, A., Rosas-Hernández, A., Peters, J. C. & Agapie, T. In-Situ Nanostructuring and Stabilization of Polycrystalline Copper by an Organic Salt Additive Promotes Electrocatalytic CO2 Reduction to Ethylene. *Angewandte Chemie* 131, 17108-17114, doi:<u>https://doi.org/10.1002/ange.201907935</u> (2019).
- 157 Zhang, X. Y. *et al.* Direct OC-CHO coupling towards highly C2+ products selective electroreduction over stable Cu0/Cu2+ interface. *Nature Communications* **14**, 7681, doi:10.1038/s41467-023-43182-6 (2023).
- 158 Bai, H. *et al.* Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction. *Science Bulletin* **66**, 62-68, doi:<u>https://doi.org/10.1016/j.scib.2020.06.023</u> (2021).

- 159 Yang, W. et al. Boosting C–C coupling to multicarbon products via high-pressure CO electroreduction. Journal of Energy Chemistry 85, 102-107, doi:<u>https://doi.org/10.1016/j.jechem.2023.06.013</u> (2023).
- 160 He, C. *et al.* Cu2–xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. *Nano Research* **16**, 4494-4498, doi:10.1007/s12274-021-3532-7 (2021).
- 161 Zi, X. *et al.* Breaking K+ Concentration Limit on Cu Nanoneedles for Acidic Electrocatalytic CO2 Reduction to Multi-Carbon Products. *Angewandte Chemie International Edition* **n/a**, e202309351, doi:<u>https://doi.org/10.1002/anie.202309351</u>.
- 162 Kim, J. *et al.* Branched Copper Oxide Nanoparticles Induce Highly Selective Ethylene Production by Electrochemical Carbon Dioxide Reduction. *Journal of the American Chemical Society* **141**, 6986-6994, doi:10.1021/jacs.9b00911 (2019).
- 163 Tran, N.-H. *et al.* Selective Ethylene Production from CO2 and CO Reduction via Engineering Membrane Electrode Assembly with Porous Dendritic Copper Oxide. *ACS Applied Materials & Interfaces* **14**, 31933-31941, doi:10.1021/acsami.2c06068 (2022).
- 164 Han, J. *et al.* A reconstructed porous copper surface promotes selectivity and efficiency toward C2 products by electrocatalytic CO2 reduction. *Chemical Science* **11**, 10698-10704, doi:10.1039/D0SC01202E (2020).
- 165 Zhang, B. *et al.* Steering CO2 electroreduction toward methane or ethylene production. *Nano Energy* **88**, 106239, doi:<u>https://doi.org/10.1016/j.nanoen.2021.106239</u> (2021).
- 166 Gao, Y. *et al.* Promoting Electrocatalytic Reduction of CO2 to C2H4 Production by Inhibiting C2H5OH Desorption from Cu2O/C Composite. *Small* **18**, 2105212, doi:<u>https://doi.org/10.1002/smll.202105212</u> (2022).
- Anastasiadou, D., Schellekens, M., de Heer, M., Verma, S. & Negro, E. Electrodeposited Cu2O
 Films on Gas Diffusion Layers for Selective CO2 Electroreduction to Ethylene in an Alkaline Flow
 Electrolyzer. *ChemElectroChem* 6, 3928-3932, doi:<u>https://doi.org/10.1002/celc.201900971</u>
 (2019).
- 168 Mi, Y. *et al.* Selective Electroreduction of CO2 to C2 Products over Cu3N-Derived Cu Nanowires. *ChemElectroChem* **6**, 2393-2397, doi:<u>https://doi.org/10.1002/celc.201801826</u> (2019).
- 169 Stalinraja, A. & Gopalram, K. Electrochemical reduction of CO2 to C2 products—effect of surfactant on copper electrodeposition. *Journal of Solid State Electrochemistry*, doi:10.1007/s10008-023-05671-y (2023).
- 170 Jiao, J. *et al.* Lattice Strain Engineering Boosts CO2 Electroreduction to C2+ Products. *Angewandte Chemie International Edition* **63**, e202409563, doi:<u>https://doi.org/10.1002/anie.202409563</u> (2024).
- 171 Ma, W. *et al.* Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogenassisted C–C coupling over fluorine-modified copper. *Nature Catalysis* **3**, 478-487, doi:10.1038/s41929-020-0450-0 (2020).
- 172 Zhao, Y. *et al.* Industrial-Current-Density CO2-to-C2+ Electroreduction by Anti-swelling Anion-Exchange Ionomer-Modified Oxide-Derived Cu Nanosheets. *Journal of the American Chemical Society* **144**, 10446-10454, doi:10.1021/jacs.2c02594 (2022).
- 173 Li, J. *et al.* Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. *Nature Catalysis* **2**, 1124-1131, doi:10.1038/s41929-019-0380-x (2019).
- 174 Shah, A. H. *et al.* New aspects of C2 selectivity in electrochemical CO2 reduction over oxidederived copper. *Physical Chemistry Chemical Physics* **22**, 2046-2053, doi:10.1039/C9CP06009J (2020).

- 175 Rabiee, H. *et al.* Tuning flow-through cu-based hollow fiber gas-diffusion electrode for highefficiency carbon monoxide (CO) electroreduction to C2+products. *Applied Catalysis B: Environmental* **330**, 122589, doi:<u>https://doi.org/10.1016/j.apcatb.2023.122589</u> (2023).
- 176 Gu, Z. *et al.* Oxygen Vacancy Tuning toward Efficient Electrocatalytic CO2 Reduction to C2H4. *Small Methods* **3**, 1800449, doi:<u>https://doi.org/10.1002/smtd.201800449</u> (2019).
- 177 Zhang, J. *et al.* Grain Boundary-Derived Cu+/Cu0 Interfaces in CuO Nanosheets for Low Overpotential Carbon Dioxide Electroreduction to Ethylene. *Advanced Science* **9**, 2200454, doi:<u>https://doi.org/10.1002/advs.202200454</u> (2022).
- 178 Kang, C. *et al.* Acidic chloride electrolyte mediates the high conversion ratio of CO2-to-C2H4 and direct production of Cl2. *Sustainable Energy & Fuels* **8**, 1730-1739, doi:10.1039/D3SE01717F (2024).
- 179 Zhang, J. *et al.* Reconstructing two-dimensional defects in CuO nanowires for efficient CO2 electroreduction to ethylene. *Chemical Communications* **57**, 8276-8279, doi:10.1039/D1CC03171F (2021).
- 180 Kibria, M. G. *et al.* A Surface Reconstruction Route to High Productivity and Selectivity in CO2 Electroreduction toward C2+ Hydrocarbons. *Advanced Materials* **30**, 1804867, doi:<u>https://doi.org/10.1002/adma.201804867</u> (2018).
- 181 Yang, R.-X. *et al.* Self-Assembly of Hydroxyl Metal–Organic Polyhedra and Polymer into Cu-Based Hollow Spheres for Product-Selective CO2 Electroreduction. *Small Structures* **2**, 2100012, doi:<u>https://doi.org/10.1002/sstr.202100012</u> (2021).
- 182 Wang, H. *et al.* Cu3N nanoparticles with both (100) and (111) facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene. *New Journal of Chemistry* **46**, 12523-12529, doi:10.1039/D2NJ02175G (2022).
- Fan, L. *et al.* Evoking C2+ production from electrochemical CO2 reduction by the steric confinement effect of ordered porous Cu2O. *Chem Sci* 14, 13851-13859, doi:10.1039/D3SC04840C (2023).
- 184 Mistry, H. *et al.* Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. *Nature Communications* **7**, 12123, doi:10.1038/ncomms12123

http://www.nature.com/articles/ncomms12123#supplementary-information (2016).

- 185 Yin, Z. *et al.* Cu3N Nanocubes for Selective Electrochemical Reduction of CO2 to Ethylene. *Nano Letters* **19**, 8658-8663, doi:10.1021/acs.nanolett.9b03324 (2019).
- Du, R. *et al.* Cu-C(O) Interfaces Deliver Remarkable Selectivity and Stability for CO2 Reduction to C2+ Products at Industrial Current Density of 500 mA cm-2. *Small* 19, 2301289, doi:<u>https://doi.org/10.1002/smll.202301289</u> (2023).
- 187 Gao, Y. *et al.* Revealing the Lattice Carbonate Mediated Mechanism in Cu2(OH)2CO3 for Electrocatalytic Reduction of CO2 to C2H4. *Advanced Science* **n/a**, 2308949, doi:<u>https://doi.org/10.1002/advs.202308949</u>.
- 188 Zhou, Z., Hu, X., Li, J., Xie, H. & Wen, L. Enhanced CO2 Electroreduction to Multi-Carbon Products on Copper via Plasma Fluorination. *Advanced Science* n/a, 2309963, doi:<u>https://doi.org/10.1002/advs.202309963</u>.
- 189 Gao, Y. *et al.* Cu2O Nanoparticles with Both {100} and {111} Facets for Enhancing the Selectivity and Activity of CO2 Electroreduction to Ethylene. *Advanced Science* 7, 1902820, doi:<u>https://doi.org/10.1002/advs.201902820</u> (2020).
- 190 Zhang, G. *et al.* Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. *Nature Communications* **12**, 5745, doi:10.1038/s41467-021-26053-w (2021).

- 191 Xiao, Y. *et al.* Multi-Shell Copper Catalysts for Selective Electroreduction of CO2 to Multicarbon Chemicals. *Advanced Energy Materials* **14**, 2302556, doi:https://doi.org/10.1002/aenm.202302556 (2024).
- Liu, H. *et al.* Bottom-up Growth of Convex Sphere with Adjustable Cu(0)/Cu(I) Interfaces for Effective C2 Production from CO2 Electroreduction. *Angewandte Chemie International Edition* 63, e202404123, doi:<u>https://doi.org/10.1002/anie.202404123</u> (2024).
- 193 Zhong, D. *et al.* Coupling of Cu(100) and (110) Facets Promotes Carbon Dioxide Conversion to Hydrocarbons and Alcohols. *Angewandte Chemie International Edition* **60**, 4879-4885, doi:<u>https://doi.org/10.1002/anie.202015159</u> (2021).
- 194 Lu, J. *et al.* Nanoconfinement Effects of Yolk–Shell Cu2O Catalyst for Improved C2+ Selectivity and Cu+ Stability in Electrocatalytic CO2 Reduction. *ACS Applied Nano Materials* **6**, 20746-20756, doi:10.1021/acsanm.3c03645 (2023).
- 195 Lyu, Z. *et al.* Controlling the Surface Oxidation of Cu Nanowires Improves Their Catalytic Selectivity and Stability toward C2+ Products in CO2 Reduction. *Angewandte Chemie International Edition* **60**, 1909-1915, doi:<u>https://doi.org/10.1002/anie.202011956</u> (2021).
- Yang, Z.-x. *et al.* Facilitating CO2 electroreduction to C2H4 through facile regulating {100} & {111} grain boundary of Cu2O. *Catalysis Communications* 174, 106595, doi:https://doi.org/10.1016/j.catcom.2022.106595 (2023).
- 197 Zhao, D. *et al.* Amorphous-Confined Crystalline CuO Nanoflakes for Enhanced Ethylene Production from CO2 Electroreduction. *ChemCatChem* **15**, e202201413, doi:<u>https://doi.org/10.1002/cctc.202201413</u> (2023).
- 198 Wang, J. *et al.* Microwave-induced surface amorphization of Cu2(OH)2CO3 catalyst promotes multi-carbon products selectivity of CO2 electroreduction. *Science China Chemistry*, doi:10.1007/s11426-024-2326-7 (2024).
- 199 He, X. *et al.* Roles of copper(I) in water-promoted CO2 electrolysis to multi-carbon compounds. *Nature Communications* **15**, 9923, doi:10.1038/s41467-024-54282-2 (2024).
- 200 Jung, H. *et al.* Electrochemical Fragmentation of Cu2O Nanoparticles Enhancing Selective C–C Coupling from CO2 Reduction Reaction. *Journal of the American Chemical Society* **141**, 4624-4633, doi:10.1021/jacs.8b11237 (2019).
- 201 Wu, Q. *et al.* Nanograin-Boundary-Abundant Cu2O-Cu Nanocubes with High C2+ Selectivity and Good Stability during Electrochemical CO2 Reduction at a Current Density of 500 mA/cm2. *ACS Nano* **17**, 12884-12894, doi:10.1021/acsnano.3c04951 (2023).
- 202 Reller, C. *et al.* Selective Electroreduction of CO2 toward Ethylene on Nano Dendritic Copper Catalysts at High Current Density. *Advanced Energy Materials* **7**, 1602114-n/a, doi:10.1002/aenm.201602114 (2017).
- 203 Park, D. G. *et al.* Increasing CO Binding Energy and Defects by Preserving Cu Oxidation State via O2-Plasma-Assisted N Doping on CuO Enables High C2+ Selectivity and Long-Term Stability in Electrochemical CO2 Reduction. *ACS Catal* **13**, 9222-9233, doi:10.1021/acscatal.3c01441 (2023).
- 204 Cao, Y. *et al.* Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions. *Nature Communications* **14**, 2387, doi:10.1038/s41467-023-37898-8 (2023).
- Peng, C. *et al.* Lithiation-Enabled High-Density Nitrogen Vacancies Electrocatalyze CO2 to C2 Products. *Advanced Materials* 33, 2103150, doi:<u>https://doi.org/10.1002/adma.202103150</u> (2021).
- 206 Du, R. *et al.* In Situ Engineering of the Cu+/Cu0 Interface to Boost C2+ Selectivity in CO2 Electroreduction. *ACS Applied Materials & Interfaces* **14**, 36527-36535, doi:10.1021/acsami.2c05992 (2022).
- Li, J. *et al.* Interplanar synergy of a copper-based electrocatalyst favors the reduction of CO2 into C2+ products. *EES Catalysis* **3**, 80-86, doi:10.1039/D4EY00141A (2025).
- 208 Fan, Q. *et al.* Manipulating Cu Nanoparticle Surface Oxidation States Tunes Catalytic Selectivity toward CH4 or C2+ Products in CO2 Electroreduction. *Advanced Energy Materials* **11**, 2101424, doi:<u>https://doi.org/10.1002/aenm.202101424</u> (2021).
- 209 Cheng, T.-K. *et al.* Spherical and porous Cu2O nanocages with Cu2O/Cu(OH)2 Surface: Synthesis and their promising selectivity for catalysing CO2 electroreduction to C2H4. *Applied Surface Science* **660**, 159978, doi:https://doi.org/10.1016/j.apsusc.2024.159978 (2024).
- 210 Wang, Y. *et al.* Alkyl sulfonate surfactant mediates electroreduction of carbon dioxide to ethylene or ethanol over hydroxide-derived copper catalysts. *Chemical Science*, doi:10.1039/D3SC06351H (2024).
- 211 Wu, M. *et al.* Sequential *CO management via controlling in situ reconstruction for efficient industrial-current-density CO2-to-C2+ electroreduction. *Proceedings of the National Academy of Sciences* **120**, e2302851120, doi:10.1073/pnas.2302851120 (2023).
- 212 Yang, F., Fang, W., Wang, Q., Deng, P. & Xia, B. Y. Optimizing Copper Oxidation State to Promote Ethylene Generation in Efficient Carbon Dioxide Conversion. *ACS Sustainable Chemistry & Engineering* **10**, 4677-4682, doi:10.1021/acssuschemeng.2c00123 (2022).
- 213 Jeong, H. M. *et al.* Atomic-Scale Spacing between Copper Facets for the Electrochemical Reduction of Carbon Dioxide. *Advanced Energy Materials* **10**, 1903423, doi:<u>https://doi.org/10.1002/aenm.201903423</u> (2020).
- 214 Tan, D. *et al.* Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. *Nano Research* **13**, 768-774, doi:10.1007/s12274-020-2692-1 (2020).
- 215 Peng, C. *et al.* Lithium Vacancy-Tuned [CuO4] Sites for Selective CO2 Electroreduction to C2+ Products. *Small* **18**, 2106433 (2022).
- 216 Wu, Y. *et al.* Effect of the coordination environment of Cu in Cu2O on the electroreduction of CO2 to ethylene. *Green Chemistry* **22**, 6340-6344, doi:10.1039/D0GC02842H (2020).
- 217 Ren, X., Zhang, X., Cao, X. & Wang, Q. Efficient electrochemical reduction of carbon dioxide into ethylene boosted by copper vacancies on stepped cuprous oxide. *Journal of CO2 Utilization* **38**, 125-131, doi:<u>https://doi.org/10.1016/j.jcou.2020.01.018</u> (2020).
- 218 Kim, T. & Palmore, G. T. R. A scalable method for preparing Cu electrocatalysts that convert CO2 into C2+ products. *Nature Communications* **11**, 3622, doi:10.1038/s41467-020-16998-9 (2020).
- 219 Peng, C. *et al.* Lithium Vacancy-Tuned [CuO4] Sites for Selective CO2 Electroreduction to C2+ Products. *Small* **18**, 2106433, doi:<u>https://doi.org/10.1002/smll.202106433</u> (2022).
- Li, M. *et al.* Strong electric field at the sharp tips of Cu(OH)2 nanochrysanthemums for selective electrochemical CO2 conversion into ethylene. *Materials Today Energy* **42**, 101568, doi:<u>https://doi.org/10.1016/j.mtener.2024.101568</u> (2024).
- Yuan, L. *et al.* Converting CO2 to multi-carbon products at >1 A/cm2 using gas diffusion electrode based on commercial materials via transfer process engineering. *Electrochimica Acta* 475, 143662, doi:<u>https://doi.org/10.1016/j.electacta.2023.143662</u> (2024).
- 222 Zhang, Z.-Y. *et al.* Nanocavity enriched CuPd alloy with high selectivity for CO2 electroreduction toward C2H4. *Rare Metals*, doi:10.1007/s12598-023-02527-2 (2024).
- Inoue, A., Harada, T., Nakanishi, S. & Kamiya, K. Ultra-high-rate CO2 reduction reactions to multicarbon products with a current density of 1.7 A cm-2 in neutral electrolytes. *EES Catalysis* 1, 9-16, doi:10.1039/D2EY00035K (2023).
- 224 Gao, D., Scholten, F. & Roldan Cuenya, B. Improved CO2 Electroreduction Performance on Plasma-Activated Cu Catalysts via Electrolyte Design: Halide Effect. *ACS Catal* **7**, 5112-5120, doi:10.1021/acscatal.7b01416 (2017).
- Jia, S. *et al.* Preparation of trimetallic electrocatalysts by one-step co-electrodeposition and efficient CO2 reduction to ethylene. *Chem Sci* **13**, 7509-7515, doi:10.1039/D1SC06964K (2022).

- 226 Shen, B. *et al.* Enhanced electrochemical CO2 reduction for high ethylene selectivity using iodine-doped copper oxide catalysts. *Journal of Alloys and Compounds* **980**, 173550, doi:<u>https://doi.org/10.1016/j.jallcom.2024.173550</u> (2024).
- 227 Gao, D. *et al.* Selective CO2 Electroreduction to Ethylene and Multicarbon Alcohols via Electrolyte-Driven Nanostructuring. *Angewandte Chemie International Edition* **58**, 17047-17053, doi:<u>https://doi.org/10.1002/anie.201910155</u> (2019).
- 228 Gao, D. *et al.* Activity and Selectivity Control in CO2 Electroreduction to Multicarbon Products over CuOx Catalysts via Electrolyte Design. *ACS Catal* **8**, 10012-10020, doi:10.1021/acscatal.8b02587 (2018).
- 229 Shi, H. *et al.* Stabilizing Cu+ Species in Cu2O/CuO Catalyst via Carbon Intermediate Confinement for Selective CO2RR. *Advanced Functional Materials* **n/a**, 2310913, doi:<u>https://doi.org/10.1002/adfm.202310913</u>.
- 230 Zheng, M. *et al.* Electrocatalytic CO2-to-C2+ with Ampere-Level Current on Heteroatom-Engineered Copper via Tuning *CO Intermediate Coverage. *Journal of the American Chemical Society* **144**, 14936-14944, doi:10.1021/jacs.2c06820 (2022).
- 231 Zhang, J. *et al.* Steering CO2 electroreduction pathway toward ethanol via surface-bounded hydroxyl species-induced noncovalent interaction. *Proceedings of the National Academy of Sciences* **120**, e2218987120, doi:10.1073/pnas.2218987120 (2023).
- 232 Jang, J. *et al.* Facile design of oxide-derived Cu nanosheet electrocatalyst for CO2 reduction reaction. *EcoMat* **n/a**, e12334, doi:<u>https://doi.org/10.1002/eom2.12334</u>.
- 233 Ma, Z. *et al.* CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. *Nature Communications* **13**, 7596, doi:10.1038/s41467-022-35415-x (2022).
- 234 Ren, W., Ma, W. & Hu, X. Tailored water and hydroxide transport at a quasi-two-phase interface of membrane electrode assembly electrolyzer for CO electroreduction. *Joule* **7**, 2349-2360, doi:<u>https://doi.org/10.1016/j.joule.2023.08.008</u> (2023).
- 235 Zhang, L. *et al.* Highly Ethylene-Selective Electroreduction CO2 Over Cu Phosphate Nanostructures with Tunable Morphology. *Topics in Catalysis* **66**, 1527-1538, doi:10.1007/s11244-023-01783-x (2023).
- 236 Wu, F.-Y. *et al.* Copper–barium-decorated carbon-nanotube composite for electrocatalytic CO2 reduction to C2 products. *Journal of Materials Chemistry A* **11**, 13217-13222, doi:10.1039/D3TA01912H (2023).
- 237 Yan, X. *et al.* Boosting CO2 electroreduction to C2+ products on fluorine-doped copper. *Green Chemistry* **24**, 1989-1994, doi:10.1039/D1GC04824D (2022).
- 238 Ma, S. *et al.* One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. *Journal of Power Sources* **301**, 219-228, doi:https://doi.org/10.1016/j.jpowsour.2015.09.124 (2016).
- Zhang, J. *et al.* Switching CO2 Electroreduction Selectivity Between C1 and C2 Hydrocarbons on Cu Gas-Diffusion Electrodes. *ENERGY & ENVIRONMENTAL MATERIALS* 6, e12307, doi:<u>https://doi.org/10.1002/eem2.12307</u> (2023).
- 240 Sun, M., Cheng, J. & Yamauchi, M. Gas diffusion enhanced electrode with ultrathin superhydrophobic macropore structure for acidic CO2 electroreduction. *Nature Communications* **15**, 491, doi:10.1038/s41467-024-44722-4 (2024).
- 241 Kong, X. *et al.* Enhance the activity of multi-carbon products for Cu via P doping towards CO2 reduction. *Science China Chemistry* **64**, 1096-1102, doi:10.1007/s11426-020-9934-0 (2021).
- 242 Wang, J. *et al.* Trilayer Polymer Electrolytes Enable Carbon-Efficient CO2 to Multicarbon Product Conversion in Alkaline Electrolyzers. *Angewandte Chemie International Edition* **63**, e202404110, doi:<u>https://doi.org/10.1002/anie.202404110</u> (2024).

- 243 Gao, D. *et al.* Plasma-Activated Copper Nanocube Catalysts for Efficient Carbon Dioxide Electroreduction to Hydrocarbons and Alcohols. *ACS Nano* **11**, 4825-4831, doi:10.1021/acsnano.7b01257 (2017).
- 244 Zhang, W. *et al.* Atypical Oxygen-Bearing Copper Boosts Ethylene Selectivity toward Electrocatalytic CO2 Reduction. *Journal of the American Chemical Society* **142**, 11417-11427, doi:10.1021/jacs.0c01562 (2020).
- 245 Lum, Y., Yue, B., Lobaccaro, P., Bell, A. T. & Ager, J. W. Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction. *J Phys Chem C* **121**, 14191-14203, doi:10.1021/acs.jpcc.7b03673 (2017).
- 246 Xu, Z. *et al.* Dynamic restructuring induced Cu nanoparticles with ideal nanostructure for selective multi-carbon compounds production via carbon dioxide electroreduction. *Journal of Catalysis* **383**, 42-50, doi:<u>https://doi.org/10.1016/j.jcat.2020.01.002</u> (2020).
- 247 Lv, X. *et al.* Grain refining enables mixed Cu+/Cu0 states for CO2 electroreduction to C2+ products at high current density. *Applied Catalysis B: Environmental* **324**, 122272, doi:<u>https://doi.org/10.1016/j.apcatb.2022.122272</u> (2023).
- 248 Yao, K. *et al.* In situ copper faceting enables efficient CO2/CO electrolysis. *Nature Communications* **15**, 1749, doi:10.1038/s41467-024-45538-y (2024).
- 249 Pan, F. *et al.* Long-Range Confinement-Driven Enrichment of Surface Oxygen-Relevant Species Promotes C–C Electrocoupling in CO2 Reduction. *Advanced Energy Materials* **14**, 2303118, doi:<u>https://doi.org/10.1002/aenm.202303118</u> (2024).
- 250 Wu, Z. *et al.* Boosting C2+ Alcohols Selectivity and Activity in High-Current CO Electroreduction using Synergistic Cu/Zn Co-Catalysts. *Angewandte Chemie International Edition* **n/a**, e202420283, doi:<u>https://doi.org/10.1002/anie.202420283</u>.
- 251 Zhang, Y. *et al.* Direct reduction of diluted CO2 gas to C2 products by copper hydroxyphosphate microrods. *AIChE Journal* **n/a**, e18233, doi:<u>https://doi.org/10.1002/aic.18233</u> (2023).
- 252 Pham, T. H. M. *et al.* Enhanced Electrocatalytic CO2 Reduction to C2+ Products by Adjusting the Local Reaction Environment with Polymer Binders. *Advanced Energy Materials* **12**, 2103663, doi:<u>https://doi.org/10.1002/aenm.202103663</u> (2022).
- Fang, M. *et al.* Hydrophobic, Ultrastable Cuδ+ for Robust CO2 Electroreduction to C2 Products at Ampere-Current Levels. *Journal of the American Chemical Society* 145, 11323-11332, doi:10.1021/jacs.3c02399 (2023).
- 254 Ye, M. *et al.* Phase engineering of Cu@Cu2O core-shell nanospheres for boosting tandem electrochemical CO2 reduction to C2+ products. *Applied Surface Science* **622**, 156981, doi:<u>https://doi.org/10.1016/j.apsusc.2023.156981</u> (2023).
- 255 Martić, N. *et al.* Paramelaconite-Enriched Copper-Based Material as an Efficient and Robust Catalyst for Electrochemical Carbon Dioxide Reduction. *Advanced Energy Materials* **9**, 1901228, doi:<u>https://doi.org/10.1002/aenm.201901228</u> (2019).
- 256 Lv, X. *et al.* Iodine-Mediated C–C Coupling in Neutral Flow Cell for Electrochemical CO2 Reduction. *Advanced Functional Materials* n/a, 2311236, doi:<u>https://doi.org/10.1002/adfm.202311236</u>.
- Li, J. *et al.* Copper adparticle enabled selective electrosynthesis of n-propanol. *Nature Communications* **9**, 4614, doi:10.1038/s41467-018-07032-0 (2018).
- 258 Han, S. *et al.* Boosting promote C2 products formation in electrochemical CO2 reduction reaction via phosphorus-enhanced proton feeding. *Chemical Engineering Journal* **479**, 147735, doi:<u>https://doi.org/10.1016/j.cej.2023.147735</u> (2024).
- 259 Yang, C. *et al.* Fast cooling induced grain-boundary-rich copper oxide for electrocatalytic carbon dioxide reduction to ethanol. *Journal of Colloid and Interface Science* **570**, 375-381, doi:<u>https://doi.org/10.1016/j.jcis.2020.03.017</u> (2020).

- 260 Wang, M., Wan, L., Cheng, J. & Luo, J. Scalable preparation of a CuO nanosheet array via corrosion engineering for selective C–C coupling in CO2 electroreduction. *Journal of Materials Chemistry A* **10**, 14070-14077, doi:10.1039/D2TA01634F (2022).
- 261 Kurihara, R. *et al.* Carbon Monoxide Reduction Reaction to Produce Multicarbon Products in Acidic Electrolytes Using Gas Diffusion Electrode Loaded with Copper Nanoparticles. *Advanced Materials Interfaces* **n/a**, 2300731, doi:<u>https://doi.org/10.1002/admi.202300731</u> (2023).
- 262 Wu, Z.-Z. *et al.* Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO2 Electroreduction. *Journal of the American Chemical Society* **144**, 259-269, doi:10.1021/jacs.1c09508 (2022).
- 263 Kim, C. *et al.* Cu/Cu2O Interconnected Porous Aerogel Catalyst for Highly Productive Electrosynthesis of Ethanol from CO2. *Advanced Functional Materials* **31**, 2102142, doi:<u>https://doi.org/10.1002/adfm.202102142</u> (2021).
- 264 Zhao, C. *et al.* In Situ Topotactic Transformation of an Interstitial Alloy for CO Electroreduction. *Advanced Materials* **32**, 2002382, doi:<u>https://doi.org/10.1002/adma.202002382</u> (2020).
- 265 Sang, J. *et al.* A Reconstructed Cu2P2O7 Catalyst for Selective CO2 Electroreduction to Multicarbon Products. *Angewandte Chemie International Edition* **61**, e202114238, doi:<u>https://doi.org/10.1002/anie.202114238</u> (2022).
- 266 Qin, T., Qian, Y., Zhang, F. & Lin, B.-L. Cloride-derived copper electrode for efficient electrochemical reduction of CO2 to ethylene. *Chinese Chemical Letters* **30**, 314-318, doi:https://doi.org/10.1016/j.cclet.2018.07.003 (2019).
- 267 Zhuang, T.-T. *et al.* Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. *Nature Catalysis* **1**, 946-951, doi:10.1038/s41929-018-0168-4 (2018).
- 268 Chen, C. *et al.* Highly Efficient Electroreduction of CO2 to C2+ Alcohols on Heterogeneous Dual Active Sites. *Angewandte Chemie* **132**, 16601-16606, doi:https://doi.org/10.1002/ange.202006847 (2020).
- Grosse, P. *et al.* Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu
 Nanocubes during CO2 Electroreduction: Size and Support Effects. *Angewandte Chemie* 130, 6300-6305, doi:<u>https://doi.org/10.1002/ange.201802083</u> (2018).
- Li, H. *et al.* Changing the Product Selectivity for Electrocatalysis of CO2 Reduction Reaction on Plated Cu Electrodes. *ChemCatChem* 11, 6139-6146, doi:<u>https://doi.org/10.1002/cctc.201901748</u> (2019).
- Sullivan, I. *et al.* A Hybrid Catalyst-Bonded Membrane Device for Electrochemical Carbon Monoxide Reduction at Different Relative Humidities. *ACS Sustainable Chemistry & Engineering* 7, 16964-16970, doi:10.1021/acssuschemeng.9b04959 (2019).
- 272 Chen, H. *et al.* Promotion of electrochemical CO2 reduction to ethylene on phosphorus-doped copper nanocrystals with stable Cuδ+ sites. *Applied Surface Science* 544, 148965, doi:<u>https://doi.org/10.1016/j.apsusc.2021.148965</u> (2021).
- 273 Zhong, M. *et al.* Accelerated discovery of CO2 electrocatalysts using active machine learning. *Nature* **581**, 178-183, doi:10.1038/s41586-020-2242-8 (2020).
- 274 Sultan, S. *et al.* Interface rich CuO/Al2CuO4 surface for selective ethylene production from electrochemical CO2 conversion. *Energy & Environmental Science*, doi:10.1039/D1EE03861C (2022).
- 275 Wang, X. *et al.* Identifying an Interfacial Stabilizer for Regeneration-Free 300 h Electrochemical CO2 Reduction to C2 Products. *J Am Chem Soc* **144**, 22759-22766, doi:10.1021/jacs.2c11109 (2022).

- 276 Li, H. *et al.* Facet-Selective Deposition of Ultrathin Al2O3 on Copper Nanocrystals for Highly Stable CO2 Electroreduction to Ethylene. *Angewandte Chemie International Edition* **60**, 24838-24843, doi:<u>https://doi.org/10.1002/anie.202109600</u> (2021).
- 277 Li, P. *et al.* p–d Orbital Hybridization Induced by p-Block Metal-Doped Cu Promotes the Formation of C2+ Products in Ampere-Level CO2 Electroreduction. *Journal of the American Chemical Society* **145**, 4675-4682, doi:10.1021/jacs.2c12743 (2023).
- 278 Jang, J. *et al.* Distinct reconstruction of aluminum-doped oxide-derived copper enhances the selectivity of C2+ products in CO2 electroreduction. *J Mater Chem A* **11**, 19066-19073, doi:10.1039/D3TA02375C (2023).
- 279 Wan, J., Lin, L., Yang, T. & Li, Y. Newly generated Cu2OCu interface for CO2 electroreduction in the presence of reconstructed aluminum hydroxide. *Electrochimica Acta* **421**, 140488, doi:<u>https://doi.org/10.1016/j.electacta.2022.140488</u> (2022).
- 280 Cheng, H. *et al.* Stabilization of Cu+ sites by amorphous Al2O3 to enhance electrochemical CO2 reduction to C2+ products. *Green Chem*, doi:10.1039/D3GC04492K (2024).
- Li, W. *et al.* Bifunctional ionomers for efficient co-electrolysis of CO2 and pure water towards ethylene production at industrial-scale current densities. *Nature Energy* **7**, 835-843, doi:10.1038/s41560-022-01092-9 (2022).
- 282 Zhang, J. *et al.* Surface promotion of copper nanoparticles with alumina clusters derived from layered double hydroxide accelerates CO2 reduction to ethylene in membrane electrode assemblies. *Nano Research* **16**, 4685-4690, doi:10.1007/s12274-022-5128-2 (2023).
- 283 Yang, X. *et al.* Al-doped oxide-derived copper catalyst with stable Cu+ site for efficient electrocatalytic CO2 reduction to C2H4. *Chemical Engineering Science* **299**, 120415, doi:<u>https://doi.org/10.1016/j.ces.2024.120415</u> (2024).
- Li, S., Sha, X., Gao, X. & Peng, J. Al-Doped Octahedral Cu2O Nanocrystal for Electrocatalytic CO2 Reduction to Produce Ethylene. *International Journal of Molecular Sciences* **24**, 12680 (2023).
- 285 Fang, M. *et al.* Aluminum-Doped Mesoporous Copper Oxide Nanofibers Enabling High-Efficiency CO2 Electroreduction to Multicarbon Products. *Chemistry of Materials* **34**, 9023-9030, doi:10.1021/acs.chemmater.2c01478 (2022).
- 286 Wang, X. *et al.* Stabilizing Cu+ species by Al-doping with enhanced *CO coverage for highly efficient electrochemical CO2 reduction to C2+ products. *Journal of Materials Chemistry A*, doi:10.1039/D4TA07386J (2025).
- 287 Jia, Y. *et al.* Dynamic Surface Reconstruction of Amphoteric Metal (Zn, Al) Doped Cu2O for Efficient Electrochemical CO2 Reduction to C2+ Products. *Advanced Science* **10**, 2303726, doi:<u>https://doi.org/10.1002/advs.202303726</u> (2023).
- 288 Weitzner, S. E. *et al.* Evaluating the stability and activity of dilute Cu-based alloys for electrochemical CO2 reduction. *The Journal of Chemical Physics* **155**, doi:10.1063/5.0067700 (2021).
- 289 Wen, X. *et al.* Controllable dual Cu–Cu2O sites derived from CuxAl-LDH for CO2 electroreduction to hydrocarbons. *Vacuum* **222**, 112974, doi:<u>https://doi.org/10.1016/j.vacuum.2024.112974</u> (2024).
- Zhang, Z.-Y. *et al.* Cu-Zn-based alloy/oxide interfaces for enhanced electroreduction of CO2 to C2+ products. *Journal of Energy Chemistry* 83, 90-97, doi:<u>https://doi.org/10.1016/j.jechem.2023.04.034</u> (2023).
- 291 Qi, Z. *et al.* Scalable fabrication of high activity nanoporous copper powders for electrochemical CO2 reduction via ball milling and dealloying. *Journal of CO2 Utilization* **45**, 101454, doi:<u>https://doi.org/10.1016/j.jcou.2021.101454</u> (2021).

- 292 Zhang, T., Yuan, B., Wang, W., He, J. & Xiang, X. Tailoring *H Intermediate Coverage on the CuAl2O4/CuO Catalyst for Enhanced Electrocatalytic CO2 Reduction to Ethanol. *Angewandte Chemie* **135**, e202302096, doi:<u>https://doi.org/10.1002/ange.202302096</u> (2023).
- 293 Zhang, L. *et al.* Oxophilicity-Controlled CO2 Electroreduction to C2+ Alcohols over Lewis Acid Metal-Doped Cuδ+ Catalysts. *Journal of the American Chemical Society* **145**, 21945-21954, doi:10.1021/jacs.3c06697 (2023).
- 294 Kim, J.-Y. *et al.* Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. *Nature Communications* **12**, 3765, doi:10.1038/s41467-021-24105-9 (2021).
- 295 Liu, Q. *et al.* Highly Tensile Strained Cu(100) Surfaces by Epitaxial Grown Hexagonal Boron Nitride for CO2 Electroreduction to C2+ Products. *Nano Letters* **24**, 13741-13746, doi:10.1021/acs.nanolett.4c03863 (2024).
- 296 Zhou, Y. *et al.* Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. *Nat Chem* **10**, 974-980, doi:10.1038/s41557-018-0092-x (2018).
- 297 Li, Z. *et al.* Boron-modified CuO as catalyst for electroreduction of CO2 towards C2+ products. *Appl Surf Sci* **647**, 158919, doi:<u>https://doi.org/10.1016/j.apsusc.2023.158919</u> (2024).
- 298 Yang, C. *et al.* Engineering stable Cu+-Cu0 sites and oxygen defects in boron-doped copper oxide for electrocatalytic reduction of CO2 to C2+ products. *Chemical Engineering Journal* 484, 149710, doi:<u>https://doi.org/10.1016/j.cej.2024.149710</u> (2024).
- 299 Yao, K. *et al.* Mechanistic Insights into OC–COH Coupling in CO2 Electroreduction on Fragmented Copper. *J Am Chem Soc* **144**, 14005-14011, doi:10.1021/jacs.2c01044 (2022).
- 300 Löffelholz, M. *et al.* Optimized scalable CuB catalyst with promising carbon footprint for the electrochemical CO2 reduction to ethylene. *Sustainable Chemistry for Climate Action* **3**, 100035, doi:<u>https://doi.org/10.1016/j.scca.2023.100035</u> (2023).
- Yao, Y. *et al.* Restraining lattice oxygen of Cu2O by enhanced Cu–O hybridization for selective and stable production of ethylene with CO2 electroreduction. *Journal of Materials Chemistry A* 10, 20914-20923, doi:10.1039/D2TA05565A (2022).
- 302 Wan, Q. *et al.* Boron-doped CuO nanobundles for electroreduction of carbon dioxide to ethylene. *Green Chemistry* **22**, 2750-2754, doi:10.1039/D0GC00730G (2020).
- 303 Yang, Z. *et al.* Coupling regulation of boron doping and morphology in nano-floral CuO using one pot method for electrocatalytic CO2 reduction. *Separation and Purification Technology* **353**, 128326, doi:<u>https://doi.org/10.1016/j.seppur.2024.128326</u> (2025).
- 304 Song, Y. *et al.* B-Cu-Zn Gas Diffusion Electrodes for CO2 Electroreduction to C2+ Products at High Current Densities. *Angewandte Chemie International Edition* **60**, 9135-9141, doi:<u>https://doi.org/10.1002/anie.202016898</u> (2021).
- 305 Patra, K. K. *et al.* Operando Spectroscopic Investigation of a Boron-Doped CuO Catalyst and Its Role in Selective Electrochemical C–C Coupling. *ACS Applied Energy Materials* **3**, 11343-11349, doi:10.1021/acsaem.0c02284 (2020).
- Shen, Y. *et al.* Enhanced electrochemical CO2-to-ethylene conversion through second-shell coordination on a Cu single-atom catalyst. *J Mater Chem A* **12**, 9075-9087, doi:10.1039/D3TA08073K (2024).
- 307 Yang, H. *et al.* Steady Cu+ species via magnesium and boron co-modification for enhanced CO2 electroreduction to C2+ products: an in situ Raman spectroscopic study. *Inorganic Chemistry Frontiers* **11**, 4770-4779, doi:10.1039/D4QI00842A (2024).
- 308 Song, H., Song, J. T., Kim, B., Tan, Y. C. & Oh, J. Activation of C2H4 reaction pathways in electrochemical CO2 reduction under low CO2 partial pressure. *Applied Catalysis B-Environmental* **272**, doi:10.1016/j.apcatb.2020.119049 (2020).

- 309 Ji, Q. *et al.* Establishing Active Cu+–O–Mg2+ Sites at the Cu2O/CuO Interface for Efficient Electroreduction of CO2 to C2+ Products. *ACS Materials Letters*, 333-342, doi:10.1021/acsmaterialslett.4c02319 (2024).
- Li, X. *et al.* Design and synthesis of magnesium-modified copper oxide nanosheets as efficient electrocatalysts for CO2 reduction. *Nanoscale*, doi:10.1039/D4NR02240H (2024).
- 311 Kim, D. *et al.* Guidelines for dopant selection in Cu catalysts to promote the electrochemical CO2 reduction reaction for ethylene production. *Journal of Energy Chemistry* **103**, 674-681, doi:<u>https://doi.org/10.1016/j.jechem.2024.12.030</u> (2025).
- 312 Pan, H., Akter, T. & Barile, C. J. Electrochemical CO2 Reduction on Zinc and Brass with Modulated Proton Transfer Using Membrane-Modified Electrodes. *ACS Applied Energy Materials* 5, 12860-12868, doi:10.1021/acsaem.2c02468 (2022).
- 313 Merino-Garcia, I., Albo, J., Solla-Gullón, J., Montiel, V. & Irabien, A. Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion. *J CO2 Util* **31**, 135-142, doi:<u>https://doi.org/10.1016/j.jcou.2019.03.002</u> (2019).
- 314 Zhang, J. *et al.* Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces. *Nat Commun* **14**, 1298, doi:10.1038/s41467-023-36926-x (2023).
- 315 Zhu, S. *et al.* Core-Shell ZnO@Cu2O as Catalyst to Enhance the Electrochemical Reduction of Carbon Dioxide to C2 Products. *Catalysts* **11**, 535 (2021).
- 316 Wu, X. *et al.* Modification of the CuO electronic structure for enhanced selective electrochemical CO2 reduction to ethylene. *Nano Research* **17**, 7194-7202, doi:10.1007/s12274-024-6708-0 (2024).
- 317 Zhang, X. *et al.* Regulating ethane and ethylene synthesis by proton corridor microenvironment for CO2 electrolysis. *Journal of Energy Chemistry* **87**, 368-377, doi:<u>https://doi.org/10.1016/j.jechem.2023.08.034</u> (2023).
- 318 Li, Z. *et al.* CuO/ZnO/C electrocatalysts for CO2-to-C2+ products conversion with high yield: On the effect of geometric structure and composition. *Applied Catalysis A: General* **606**, 117829, doi:<u>https://doi.org/10.1016/j.apcata.2020.117829</u> (2020).
- 319 Zhang, T., Li, Z., Zhang, J. & Wu, J. Enhance CO2-to-C2+ products yield through spatial management of CO transport in Cu/ZnO tandem electrodes. *Journal of Catalysis* 387, 163-169, doi:<u>https://doi.org/10.1016/j.jcat.2020.05.002</u> (2020).
- 320 Yang, Z. *et al.* *CO spillover induced by bimetallic xZnO@yCuO active centers for enhancing C–C coupling over electrochemical CO2 reduction. *Separation and Purification Technology* **332**, 125870, doi:<u>https://doi.org/10.1016/j.seppur.2023.125870</u> (2024).
- Zhang, T. *et al.* Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. *Nature Catalysis* 5, 202-211, doi:10.1038/s41929-022-00751-0 (2022).
- 322 Zhang, S. *et al.* Chemically dezincified copper nanowires catalysts with competitive selectivity for ethylene production by carbon dioxide reduction reaction. *Ionics* **28**, 4817-4824, doi:10.1007/s11581-022-04723-z (2022).
- 323 Suliman, M. H., Al Naji, H. & Usman, M. Zn-Cu bimetallic gas diffusion electrodes for electrochemical reduction of CO2 to ethylene. *Electrochimica Acta* 500, 144723, doi:<u>https://doi.org/10.1016/j.electacta.2024.144723</u> (2024).
- 324 Rüscher, M. *et al.* Tracking heterogeneous structural motifs and the redox behaviour of copperzinc nanocatalysts for the electrocatalytic CO2 reduction using operando time resolved spectroscopy and machine learning. *Catalysis Science & Technology* **12**, 3028-3043, doi:10.1039/D2CY00227B (2022).

- 325 da Silva, A. H. M. *et al.* Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: Effects of chemical composition and surface morphology. *Journal of Electroanalytical Chemistry* **880**, 114750, doi:<u>https://doi.org/10.1016/j.jelechem.2020.114750</u> (2021).
- Zhang, Y. *et al.* Lowering *CO Affinity over Cu Nanoparticles for Enhanced Electrochemical CO2 Conversion to Multicarbon Products at High Current Density. *CCS Chemistry* 6, 2950-2960, doi:doi:10.31635/ccschem.024.202404245 (2024).
- 327 Sun, B. *et al.* Highly-exposed copper and ZIF-8 interface enables synthesis of hydrocarbons by electrocatalytic reduction of CO2. *Journal of Colloid and Interface Science* **661**, 831-839, doi:<u>https://doi.org/10.1016/j.jcis.2024.01.205</u> (2024).
- 328 Deng, T. *et al.* Electrochemical CO2 reduction to C2+ products over Cu/Zn intermetallic catalysts synthesized by electrodeposition. *Frontiers in Energy*, doi:10.1007/s11708-023-0898-0 (2023).
- 329 Meng, X. *et al.* Cu/Zn bimetallic catalysts prepared by facial potential steps electrodeposition favoring Zn deposition and grain boundary formation for efficient CO2ER to ethylene. *Fuel* **369**, 131775, doi:<u>https://doi.org/10.1016/j.fuel.2024.131775</u> (2024).
- 330 Velasco-Vélez, J.-J. *et al.* Cationic Copper Species Stabilized by Zinc during the Electrocatalytic Reduction of CO2 Revealed by In Situ X-Ray Spectroscopy. *Advanced Sustainable Systems* 7, 2200453, doi:<u>https://doi.org/10.1002/adsu.202200453</u> (2023).
- 331 Dong, G. *et al.* Manipulating electrochemical CO2 reduction pathway by engineering energy level of Cu/Zn dual-metal single atom catalysts. *Appl Surf Sci* **660**, 159956, doi:https://doi.org/10.1016/j.apsusc.2024.159956 (2024).
- 332 Feng, Y. *et al.* Laser-Prepared CuZn Alloy Catalyst for Selective Electrochemical Reduction of CO2 to Ethylene. *Langmuir* **34**, 13544-13549, doi:10.1021/acs.langmuir.8b02837 (2018).
- Luo, Y. *et al.* Cobalt phthalocyanine promoted copper catalysts toward enhanced electro reduction of CO2 to C2: Synergistic catalysis or tandem catalysis? *Journal of Energy Chemistry* **92**, 499-507, doi:<u>https://doi.org/10.1016/j.jechem.2024.01.008</u> (2024).
- 334 Yang, C. *et al.* Overcoming immiscibility toward bimetallic catalyst library. *Science Advances* **6**, eaaz6844, doi:doi:10.1126/sciadv.aaz6844 (2020).
- 335 Chen, X. *et al.* Controlling Speciation during CO2 Reduction on Cu-Alloy Electrodes. *ACS Catal* **10**, 672-682, doi:10.1021/acscatal.9b04368 (2020).
- Jiang, Y. et al. Enhanced electrochemical CO2 reduction to ethylene over CuO by synergistically tuning oxygen vacancies and metal doping. *Cell Reports Physical Science* 2, 100356, doi:<u>https://doi.org/10.1016/j.xcrp.2021.100356</u> (2021).
- Li, W. *et al.* Lowering C–C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO. *Applied Catalysis B: Environmental* **318**, 121823, doi:<u>https://doi.org/10.1016/j.apcatb.2022.121823</u> (2022).
- 338 Lan, Y., Niu, G., Wang, F., Cui, D. & Hu, Z. SnO2-Modified Two-Dimensional CuO for Enhanced Electrochemical Reduction of CO2 to C2H4. ACS Applied Materials & Interfaces 12, 36128-36136, doi:10.1021/acsami.0c09240 (2020).
- 339 Dauda, M. *et al.* Activity and Selectivity in the Electrochemical Reduction of CO2 at CuSnx Electrocatalysts Using a Zero-Gap Membrane Electrode Assembly. *Journal of The Electrochemical Society* **171**, 084503, doi:10.1149/1945-7111/ad6fd7 (2024).
- 340 Du, Y.-R. *et al.* Sn-based redox cycle mediated microenvironment regulation of Cu sites on poly(ionic liquid) enhance electrocatalytic CO-to-C2+ conversion. *Applied Catalysis B: Environmental* **337**, 122969, doi:<u>https://doi.org/10.1016/j.apcatb.2023.122969</u> (2023).
- 341 Xiao, D. *et al.* Stabilizing Cu2O for enhancing selectivity of CO2 electroreduction to C2H4 with the modification of Pd nanoparticles. *Chemical Engineering Journal* **452**, 139358, doi:https://doi.org/10.1016/j.cej.2022.139358 (2023).

- 342 Zhou, D. *et al.* Cooperation of Different Active Sites to Promote CO2 Electroreduction to Multicarbon Products at Ampere-Level. *Angewandte Chemie International Edition* **n/a**, e202400439, doi:<u>https://doi.org/10.1002/anie.202400439</u>.
- Li, X. *et al.* Enhanced CO Affinity on Cu Facilitates CO2 Electroreduction toward Multi-Carbon Products. *Small* **19**, 2302530, doi:<u>https://doi.org/10.1002/smll.202302530</u> (2023).
- 344 Feng, R. *et al.* Electrodeposited Cu–Pd bimetallic catalysts for the selective electroreduction of CO2 to ethylene. *Green Chemistry* **22**, 7560-7565, doi:10.1039/D0GC03051A (2020).
- 345 Wang, B., Song, L., Peng, C., Lv, X. & Zheng, G. Pd-induced polarized Cu0-Cu+ sites for electrocatalytic CO2-to-C2+ conversion in acidic medium. *J Colloid Interface Sci* **671**, 184-191, doi:<u>https://doi.org/10.1016/j.jcis.2024.05.156</u> (2024).
- 346 Zhu, C. *et al.* Cu–Pd Bimetallic Gas Diffusion Electrodes for Electrochemical Reduction of CO2 to C2+ Products. *Small Structures* **4**, 2200328, doi:<u>https://doi.org/10.1002/sstr.202200328</u> (2023).
- 347 Zhang, Z. *et al.* Charge-Separated Pdδ––Cuδ+ Atom Pairs Promote CO2 Reduction to C2. *Nano Lett* **23**, 2312-2320, doi:10.1021/acs.nanolett.2c05112 (2023).
- Li, X.-Q., Duan, G.-Y., Yang, X.-X., Han, L.-J. & Xu, B.-H. Electroreduction of carbon dioxide to multi-electron reduction products using poly(ionic liquid)-based Cu-Pd catalyst. *Fundamental Research* **2**, 937-945, doi:<u>https://doi.org/10.1016/j.fmre.2021.12.009</u> (2022).
- Liu, S. *et al.* Epitaxial Growth of Atomic-Layer Cu on Pd Nanocatalysts for Electrochemical CO2 Reduction. *Chemistry of Materials*, doi:10.1021/acs.chemmater.4c02541 (2024).
- 350 Chhetri, M. *et al.* Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO2 reduction. *Nature Communications* **14**, 3075, doi:10.1038/s41467-023-38777-y (2023).
- 351 Xie, Y. *et al.* High carbon utilization in CO2 reduction to multi-carbon products in acidic media. *Nature Catalysis* **5**, 564-570, doi:10.1038/s41929-022-00788-1 (2022).
- 352 Chu, Y.-C. *et al.* Dynamic (Sub)surface-Oxygen Enables Highly Efficient Carbonyl-Coupling for Electrochemical Carbon Dioxide Reduction. *Advanced Materials* **n/a**, 2400640, doi:<u>https://doi.org/10.1002/adma.202400640</u>.
- 353 Xu, X. *et al.* Pd-Decorated Cu2O–Ag Catalyst Promoting CO2 Electroreduction to C2H4 by Optimizing CO Intermediate Adsorption and Hydrogenation. *ACS Appl Mater Interfaces* **16**, 16243-16252, doi:10.1021/acsami.4c00472 (2024).
- 354 Ma, S. *et al.* Electroreduction of Carbon Dioxide to Hydrocarbons Using Bimetallic Cu–Pd Catalysts with Different Mixing Patterns. *Journal of the American Chemical Society* **139**, 47-50, doi:10.1021/jacs.6b10740 (2017).
- 355 Du, X. *et al.* Ultrathin Palladium-loaded Cuprous oxide stabilises Copper(I) to facilitate electrochemical carbon dioxide reduction reaction. *Journal of Colloid and Interface Science* **685**, 537-545, doi:<u>https://doi.org/10.1016/j.jcis.2025.01.132</u> (2025).
- 356 Lyu, Z. *et al.* Kinetically Controlled Synthesis of Pd–Cu Janus Nanocrystals with Enriched Surface Structures and Enhanced Catalytic Activities toward CO2 Reduction. *Journal of the American Chemical Society* **143**, 149-162, doi:10.1021/jacs.0c05408 (2021).
- 357 Zhu, L. *et al.* Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products. *Chinese Journal of Catalysis* **42**, 1500-1508, doi:<u>https://doi.org/10.1016/S1872-2067(20)63754-8</u> (2021).
- 358 Zhai, Z. *et al.* Heteroatom-induced tensile strain in copper lattice boosts CO2 electroreduction toward multi-carbon products. *Carbon Energy* **n/a**, e648, doi:<u>https://doi.org/10.1002/cey2.648</u>.
- 359 Han, S. *et al.* CO2 Electroreduction to C2+ Products over Cu-Pb Heterojunction Catalyst. *ChemCatChem* **n/a**, e202300918, doi:<u>https://doi.org/10.1002/cctc.202300918</u>.
- 360 Schwartz, M., Vercauteren, M. E. & Sammells, A. F. Fischer-Tropsch Electrochemical CO2 Reduction to Fuels and Chemicals. *J Electrochem Soc* **141**, 3119, doi:10.1149/1.2059287 (1994).

- 361 Wang, P. *et al.* Synergized Cu/Pb Core/Shell Electrocatalyst for High-Efficiency CO2 Reduction to C2+ Liquids. *ACS Nano* **15**, 1039-1047, doi:10.1021/acsnano.0c07869 (2021).
- 362 Ma, X. *et al.* Stabilizing Cu0–Cu+ sites by Pb-doping for highly efficient CO2 electroreduction to C2 products. *Green Chemistry* **25**, 7635-7641, doi:10.1039/D3GC01506H (2023).
- 363 Chen, B. *et al.* Tandem Catalysis for Enhanced CO2 to Ethylene Conversion in Neutral Media. *Adv Funct Mater* **n/a**, 2310029, doi:<u>https://doi.org/10.1002/adfm.202310029</u>.
- 364 Yan, Y. *et al.* Ultrathin CuNi Nanosheets for CO2 Reduction and O2 Reduction Reaction in Fuel Cells. *ACS Materials Letters* **3**, 1143-1150, doi:10.1021/acsmaterialslett.1c00351 (2021).
- 365 Yin, Z. *et al.* Hybrid Catalyst Coupling Single-Atom Ni and Nanoscale Cu for Efficient CO2 Electroreduction to Ethylene. *J Am Chem Soc* **144**, 20931-20938, doi:10.1021/jacs.2c09773 (2022).
- 366 Chen, J. *et al.* Accelerated Transfer and Spillover of Carbon Monoxide through Tandem Catalysis for Kinetics-boosted Ethylene Electrosynthesis. *Angew Chem Int Ed* **62**, e202215406, doi:<u>https://doi.org/10.1002/anie.202215406</u> (2023).
- 367 Huang, L. *et al.* Enhanced CO2 Electroreduction Selectivity toward Ethylene on Pyrazolate-Stabilized Asymmetric Ni–Cu Hybrid Sites. *Journal of the American Chemical Society* **145**, 26444-26451, doi:10.1021/jacs.3c10600 (2023).
- 368 Mao, X. *et al.* Sustainedly High-Rate Electroreduction of CO2 to Multi-Carbon Products on Nickel Oxygenate/Copper Interfacial Catalysts. *Advanced Energy Materials* n/a, 2400827, doi:<u>https://doi.org/10.1002/aenm.202400827</u>.
- 369 Min, S. *et al.* Transition metal (Fe, Co, Ni)-doped cuprous oxide nanowire arrays as selfsupporting catalysts for electrocatalytic CO2 reduction reaction to ethylene. *Appl Surf Sci* **663**, 160150, doi:<u>https://doi.org/10.1016/j.apsusc.2024.160150</u> (2024).
- 370 Song, H., Tan, Y. C., Kim, B., Ringe, S. & Oh, J. Tunable Product Selectivity in Electrochemical CO2 Reduction on Well-Mixed Ni–Cu Alloys. ACS Appl Mater Interfaces 13, 55272-55280, doi:10.1021/acsami.1c19224 (2021).
- 371 She, X. et al. Tandem Electrodes for Carbon Dioxide Reduction into C2+ Products at Simultaneously High Production Efficiency and Rate. Cell Reports Physical Science 1, 100051, doi:<u>https://doi.org/10.1016/j.xcrp.2020.100051</u> (2020).
- 372 Li, L. *et al.* Hydrophobicity graded gas diffusion electrode with enhanced CO intermediate coverage for high-performance electroreduction of CO2 to ethylene. *Applied Catalysis B: Environmental* **331**, 122597, doi:<u>https://doi.org/10.1016/j.apcatb.2023.122597</u> (2023).
- 373 Xu, K. *et al.* Nanowire arrays with abundant Cu–Ni interfaces for electroreduction of CO2 to ethylene. *Chemical Engineering Journal* **498**, 155831, doi:https://doi.org/10.1016/j.cej.2024.155831 (2024).
- 374 Meng, D.-L. *et al.* Highly Selective Tandem Electroreduction of CO2 to Ethylene over Atomically Isolated Nickel–Nitrogen Site/Copper Nanoparticle Catalysts. *Angewandte Chemie International Edition* **60**, 25485-25492, doi:<u>https://doi.org/10.1002/anie.202111136</u> (2021).
- Lin, Y.-R. *et al.* Vapor-Fed Electrolyzers for Carbon Dioxide Reduction Using Tandem
 Electrocatalysts: Cuprous Oxide Coupled with Nickel-Coordinated Nitrogen-Doped Carbon.
 Advanced Functional Materials 32, 2113252, doi:<u>https://doi.org/10.1002/adfm.202113252</u>
 (2022).
- 376 Zhang, Y. *et al.* Multicarbons generation factory: CuO/Ni single atoms tandem catalyst for boosting the productivity of CO2 electrocatalysis. *Science Bulletin* **67**, 1679-1687, doi:<u>https://doi.org/10.1016/j.scib.2022.07.029</u> (2022).
- Wang, S. *et al.* Delicate control of a gold-copper oxide tandem structure enables the efficient production of high-value chemicals by electrochemical carbon dioxide reduction. *Nano Energy* 130, 110176, doi:https://doi.org/10.1016/j.nanoen.2024.110176 (2024).

- 378 Yan, T., Guo, J.-H., Liu, Z.-Q. & Sun, W.-Y. Metalloporphyrin Encapsulation for Enhanced Conversion of CO2 to C2H4. *ACS Applied Materials & Interfaces* **13**, 25937-25945, doi:10.1021/acsami.1c03557 (2021).
- 379 Zhang, X. *et al.* Atomic nickel cluster decorated defect-rich copper for enhanced C2 product selectivity in electrocatalytic CO2 reduction. *Applied Catalysis B: Environmental* **291**, 120030, doi:<u>https://doi.org/10.1016/j.apcatb.2021.120030</u> (2021).
- 380 Choukroun, D. *et al.* Bifunctional Nickel–Nitrogen-Doped-Carbon-Supported Copper Electrocatalyst for CO2 Reduction. *The Journal of Physical Chemistry C* **124**, 1369-1381, doi:10.1021/acs.jpcc.9b08931 (2020).
- 381 Suzuki, T. M. *et al.* Electrochemical CO2 reduction over nanoparticles derived from an oxidized Cu–Ni intermetallic alloy. *Chemical Communications* 56, 15008-15011, doi:10.1039/D0CC06130A (2020).
- 382 Yan, Y. *et al.* Atomic-thin hexagonal CuCo nanocrystals with d-band tuning for CO2 reduction. *J Mater Chem A* **9**, 7496-7502, doi:10.1039/D0TA12022G (2021).
- 383 Kong, X. *et al.* Understanding the Effect of *CO Coverage on C–C Coupling toward CO2 Electroreduction. *Nano Lett* **22**, 3801-3808, doi:10.1021/acs.nanolett.2c00945 (2022).
- 384 Liu, J. *et al.* Integration of Cobalt Phthalocyanine, Acetylene Black and Cu2O Nanocubes for Efficient Electroreduction of CO2 to C2H4. *ChemSusChem* 16, e202300601, doi:<u>https://doi.org/10.1002/cssc.202300601</u> (2023).
- 385 Wang, M., Loiudice, A., Okatenko, V., Sharp, I. D. & Buonsanti, R. The spatial distribution of cobalt phthalocyanine and copper nanocubes controls the selectivity towards C2 products in tandem electrocatalytic CO2 reduction. *Chemical Science* 14, 1097-1104, doi:10.1039/D2SC06359J (2023).
- 386 Ma, M. et al. Metalloporphyrin Frameworks to Encapsulate Copper Oxides for Boosting Ethylene Production in Neutral Electrolyte. Adv Funct Mater n/a, 2315667, doi:<u>https://doi.org/10.1002/adfm.202315667</u>.
- 387 Kim, B. *et al.* Trace-Level Cobalt Dopants Enhance CO2 Electroreduction and Ethylene Formation on Copper. *ACS Energy Letters* **8**, 3356-3364, doi:10.1021/acsenergylett.3c00418 (2023).
- 388 Takatsuji, Y. *et al.* Highly Selective Methane Production Through Electrochemical CO2 reduction by Electrolytically Plated Cu-Co Electrode. *Electrocatalysis* **10**, 29-34, doi:10.1007/s12678-018-0492-0 (2019).
- 389 Wang, J. *et al.* Cold plasma activated Cu–Co multi-active centers tandem catalysts for efficient electrocatalytic CO2 into C2H4. *Vacuum* 222, 113017, doi:<u>https://doi.org/10.1016/j.vacuum.2024.113017</u> (2024).
- 390 Min, S. *et al.* Construction of Cobalt Porphyrin-Modified Cu2O Nanowire Array as a Tandem Electrocatalyst for Enhanced CO2 Reduction to C2 Products. *Small* **n/a**, 2400592, doi:<u>https://doi.org/10.1002/smll.202400592</u>.
- 391 Li, F. *et al.* Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule– metal catalyst interfaces. *Nature Catalysis* **3**, 75-82, doi:10.1038/s41929-019-0383-7 (2020).
- 392 Sanaz, S. *et al.* Selective electroreduction of CO2 to C2+ products on cobalt decorated copper catalysts. *Chemical Synthesis* **4**, 44 (2024).
- 393 Yan, S. *et al.* High-Power CO2-to-C2 Electroreduction on Ga-Spaced, Square-like Cu Sites. *J Am Chem Soc* **145**, 26374-26382, doi:10.1021/jacs.3c10202 (2023).
- 394 Okatenko, V. *et al.* Alloying as a Strategy to Boost the Stability of Copper Nanocatalysts during the Electrochemical CO2 Reduction Reaction. *J Am Chem Soc* **145**, 5370-5383, doi:10.1021/jacs.2c13437 (2023).
- 395 Luo, M. *et al.* Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. *Nat Commun* **10**, 5814, doi:10.1038/s41467-019-13833-8 (2019).

- Wang, M. *et al.* Tandem electrocatalytic CO2 reduction with Fe-porphyrins and Cu nanocubes enhances ethylene production. *Chem Sci* **13**, 12673-12680, doi:10.1039/D2SC04794B (2022).
- 397 Hung, S.-F. *et al.* A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. *Nature Communications* **13**, 819, doi:10.1038/s41467-022-28456-9 (2022).
- 398 Chen, Y. *et al.* Ethylene Selectivity in Electrocatalytic CO2 Reduction on Cu Nanomaterials: A Crystal Phase-Dependent Study. *Journal of the American Chemical Society* **142**, 12760-12766, doi:10.1021/jacs.0c04981 (2020).
- Lum, Y. & Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. *Energy & Environmental Science* **11**, 2935-2944, doi:10.1039/C8EE01501E (2018).
- 400 Gao, J., Ren, D., Guo, X., Zakeeruddin, S. M. & Grätzel, M. Sequential catalysis enables enhanced C–C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts. *Faraday Discussions* **215**, 282-296, doi:10.1039/C8FD00219C (2019).
- 401 Cao, X. *et al.* Enhanced Ethylene Formation from Carbon Dioxide Reduction through Sequential Catalysis on Au Decorated Cubic Cu2O Electrocatalyst. *Eur J Inorg Chem* **2021**, 2353-2364, doi:<u>https://doi.org/10.1002/ejic.202100229</u> (2021).
- 402 Zhou, J.-H. *et al.* The site pair matching of a tandem Au/CuO–CuO nanocatalyst for promoting the selective electrolysis of CO2 to C2 products. *RSC Advances* **11**, 38486-38494, doi:10.1039/D1RA07507A (2021).
- 403 Fu, J. *et al.* Bipyridine-Assisted Assembly of Au Nanoparticles on Cu Nanowires To Enhance the Electrochemical Reduction of CO2. *Angew Chem Int Ed* **58**, 14100-14103, doi:<u>https://doi.org/10.1002/anie.201905318</u> (2019).
- 404 Zhang, R. *et al.* Highly stability Cu+ species in hollow Cu2O nanoreactors by modulating cavity size for CO2 electroreduction to C2+ products. *Chemical Engineering Journal* **461**, 142052, doi:<u>https://doi.org/10.1016/j.cej.2023.142052</u> (2023).
- 405 Shen, S. *et al.* AuCu Alloy Nanoparticle Embedded Cu Submicrocone Arrays for Selective Conversion of CO2 to Ethanol. *Small* **15**, 1902229, doi:<u>https://doi.org/10.1002/smll.201902229</u> (2019).
- 406 Huang, J. *et al.* Bimetallic Au-Cu gradient alloy for electrochemical CO2 reduction into C2H4 at low overpotential. *J Catal* **415**, 134-141, doi:<u>https://doi.org/10.1016/j.jcat.2022.09.033</u> (2022).
- 407 Jia, H. *et al.* Symmetry-Broken Au–Cu Heterostructures and their Tandem Catalysis Process in Electrochemical CO2 Reduction. *Advanced Functional Materials* **31**, 2101255, doi:<u>https://doi.org/10.1002/adfm.202101255</u> (2021).
- 408 Zheng, Y. *et al.* Seeded Growth of Gold–Copper Janus Nanostructures as a Tandem Catalyst for Efficient Electroreduction of CO2 to C2+ Products. *Small* **18**, 2201695, doi:https://doi.org/10.1002/smll.202201695 (2022).
- 409 Zhu, C. *et al.* Dynamic restructuring of epitaxial Au-Cu biphasic interface for tandem CO2-to-C2+ alcohol conversion. *Chem* **8**, 3288-3301, doi:10.1016/j.chempr.2022.08.016 (2022).
- 410 Jeong, S. *et al.* Facet-Defined Dilute Metal Alloy Nanorods for Efficient Electroreduction of CO2 to n-Propanol. *J Am Chem Soc* **146**, 4508-4520, doi:10.1021/jacs.3c11013 (2024).
- 411 Wei, Z., Yue, S., Gao, S., Cao, M. & Cao, R. Synergetic effects of gold-doped copper nanowires with low Au content for enhanced electrocatalytic CO2 reduction to multicarbon products. *Nano Research* **16**, 7777-7783, doi:10.1007/s12274-023-5430-z (2023).
- 412 Rakhsha, A. *et al.* Tandem gold/copper catalysis and morphological tuning via wrinkling to boost CO2 electroreduction into C2+ products. *Nano Energy* **133**, 110457, doi:<u>https://doi.org/10.1016/j.nanoen.2024.110457</u> (2025).

- 413 Akter, T., Pan, H. & Barile, C. J. Tandem Electrocatalytic CO2 Reduction inside a Membrane with Enhanced Selectivity for Ethylene. *The Journal of Physical Chemistry C* **126**, 10045-10052, doi:10.1021/acs.jpcc.2c01663 (2022).
- 414 Akter, T. & Barile, C. J. Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol. *Journal of Materials Chemistry A* **11**, 11354-11363, doi:10.1039/D3TA00613A (2023).
- 415 Zhang, Y. *et al.* Enhanced interfacial effect-induced asymmetric coupling boost electroreduction of CO2 to ethylene. *Applied Catalysis B: Environment and Energy* **344**, 123666, doi:<u>https://doi.org/10.1016/j.apcatb.2023.123666</u> (2024).
- 416 Guo, P., Liu, K., Liu, X., Liu, R. & Yin, Z. Perspectives on Cu–Ag Bimetallic Catalysts for Electrochemical CO2 Reduction Reaction: A Mini-Review. *Energy Fuels* **38**, 5659-5675, doi:10.1021/acs.energyfuels.3c05194 (2024).
- 417 Jiang, R., Parameshwaran, V. S., Boltersdorf, J. & Baker, D. R. Copper-Nanowires Incorporated with Silver-Nanoparticles for Catalytic CO2 Reduction in Alkaline Zero Gap Electrolyzer. *ACS Applied Energy Materials* **6**, 10475-10486, doi:10.1021/acsaem.3c01605 (2023).
- 418 Dong, G. *et al.* Synergetic enhancement of selectivity for electroreduction of CO2 to C2H4 by crystal facet engineering and tandem catalysis over silver-incorporated-cuprous oxides. *Materials Reports: Energy* **3**, 100195, doi:<u>https://doi.org/10.1016/j.matre.2023.100195</u> (2023).
- 419 Wei, Z. *et al.* Constructing Ag/Cu2O Interface for Efficient Neutral CO2 Electroreduction to C2H4. *Angewandte Chemie International Edition* **n/a**, e202417066, doi:https://doi.org/10.1002/anie.202417066.
- 420 Duan, H. *et al.* In-situ electrochemical interface of Cu@Ag/C towards the ethylene electrosynthesis with adequate *CO supply. *Journal of Energy Chemistry* **99**, 292-299, doi:<u>https://doi.org/10.1016/j.jechem.2024.07.047</u> (2024).
- 421 Feng, J. *et al.* Restructuring multi-phase interfaces from Cu-based metal–organic frameworks for selective electroreduction of CO2 to C2H4. *Chemical Science*, doi:10.1039/D4SC00967C (2024).
- 422 Sun, B. *et al.* Metal-organic framework-derived silver/copper-oxide catalyst for boosting the productivity of carbon dioxide electrocatalysis to ethylene. *Journal of Colloid and Interface Science* **679**, 615-623, doi:<u>https://doi.org/10.1016/j.jcis.2024.10.014</u> (2025).
- 423 Hoang, T. T. H. *et al.* Nanoporous Copper–Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. *Journal of the American Chemical Society* **140**, 5791-5797, doi:10.1021/jacs.8b01868 (2018).
- 424 Wu, H. *et al.* Improved electrochemical conversion of CO2 to multicarbon products by using molecular doping. *Nature Communications* **12**, 7210, doi:10.1038/s41467-021-27456-5 (2021).
- 425 Ma, Y. *et al.* Confined Growth of Silver–Copper Janus Nanostructures with {100} Facets for Highly Selective Tandem Electrocatalytic Carbon Dioxide Reduction. *Advanced Materials* **34**, 2110607, doi:<u>https://doi.org/10.1002/adma.202110607</u> (2022).
- 426 Yang, Z. *et al.* Modulating surface microenvironment based on Ag-adorned CuO flower-liked nanospheres for strengthening C-C coupling during CO2RR. *Surfaces and Interfaces* **48**, 104267, doi:<u>https://doi.org/10.1016/j.surfin.2024.104267</u> (2024).
- 427 Liu, J. *et al.* Dynamic determination of Cu+ roles for CO2 reduction on electrochemically stable Cu2O-based nanocubes. *Journal of Materials Chemistry A* **10**, 8459-8465, doi:10.1039/D1TA10831J (2022).
- 428 Wei, C. *et al.* Nanoscale Management of CO Transport in CO2 Electroreduction: Boosting Faradaic Efficiency to Multicarbon Products via Nanostructured Tandem Electrocatalysts. *Advanced Functional Materials* **33**, 2214992, doi:<u>https://doi.org/10.1002/adfm.202214992</u> (2023).

- 429 Yang, R. *et al.* In Situ Halogen-Ion Leaching Regulates Multiple Sites on Tandem Catalysts for Efficient CO2 Electroreduction to C2+ Products. *Angewandte Chemie International Edition* **61**, e202116706, doi:<u>https://doi.org/10.1002/anie.202116706</u> (2022).
- 430 Du, C. *et al.* Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products. *Nature Communications* **14**, 6142, doi:10.1038/s41467-023-41871-w (2023).
- 431 Yang, R. *et al.* Directional Reconstruction to Highly Active Tandem Sites for Superior Acidic CO2 Electroreduction. *Advanced Materials* **n/a**, 2414642, doi:https://doi.org/10.1002/adma.202414642.
- 432 Wang, X. *et al.* Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. *Nature Communications* **10**, 5186, doi:10.1038/s41467-019-13190-6 (2019).
- Zhong, Y. *et al.* Adjusting Local CO Confinement in Porous-Shell Ag@Cu Catalysts for Enhancing C–C Coupling toward CO2 Eletroreduction. *Nano Letters* 22, 2554-2560, doi:10.1021/acs.nanolett.1c04815 (2022).
- 434 Zhang, J. *et al.* Tandem effect of Ag@C@Cu catalysts enhances ethanol selectivity for electrochemical CO2 reduction in flow reactors. *Cell Reports Physical Science* **3**, 100949, doi:<u>https://doi.org/10.1016/j.xcrp.2022.100949</u> (2022).
- 435 Tang, H., Liu, Y., Zhou, Y., Qian, Y. & Lin, B.-L. Boosting the Electroreduction of CO2 to Ethanol via the Synergistic Effect of Cu–Ag Bimetallic Catalysts. *ACS Applied Energy Materials* **5**, 14045-14052, doi:10.1021/acsaem.2c02595 (2022).
- 436 Xue, L. *et al.* Ultralow Ag-assisted carbon–carbon coupling mechanism on Cu-based catalysts for electrocatalytic CO2 reduction. *Journal of Energy Chemistry* **82**, 414-422, doi:<u>https://doi.org/10.1016/j.jechem.2023.04.005</u> (2023).
- 437 Herzog, A. *et al.* Operando Investigation of Ag-Decorated Cu2O Nanocube Catalysts with Enhanced CO2 Electroreduction toward Liquid Products. *Angewandte Chemie International Edition* **60**, 7426-7435, doi:<u>https://doi.org/10.1002/anie.202017070</u> (2021).
- 438 Gao, J. *et al.* Selective C–C Coupling in Carbon Dioxide Electroreduction via Efficient Spillover of Intermediates As Supported by Operando Raman Spectroscopy. *Journal of the American Chemical Society* **141**, 18704-18714, doi:10.1021/jacs.9b07415 (2019).
- 439 Fu, J. *et al.* Unveiling the Interfacial Species Synergy in Promoting CO2 Tandem Electrocatalysis in Near-Neutral Electrolyte. *Journal of the American Chemical Society* **146**, 23625-23632, doi:10.1021/jacs.4c08844 (2024).
- 440 Wang, J. *et al.* Silver/Copper Interface for Relay Electroreduction of Carbon Dioxide to Ethylene. *ACS Applied Materials & Interfaces* **11**, 2763-2767, doi:10.1021/acsami.8b20545 (2019).
- 441 Hou, L. *et al.* Ag nanoparticle embedded Cu nanoporous hybrid arrays for the selective electrocatalytic reduction of CO2 towards ethylene. *Inorganic Chemistry Frontiers* **7**, 2097-2106, doi:10.1039/D0QI00025F (2020).
- 442 Lu, Y. *et al.* Confinement Catalysis of Reaction Intermediates in Ag@Cu2O Cascade Nanoreactors toward Boosted Electrochemical C–C Coupling. *ACS Catal* **14**, 14744-14753, doi:10.1021/acscatal.4c04115 (2024).
- 443 Su, W. *et al.* Highly dispersive trace silver decorated Cu/Cu2O composites boosting electrochemical CO2 reduction to ethanol. *Journal of CO2 Utilization* **52**, 101698, doi:<u>https://doi.org/10.1016/j.jcou.2021.101698</u> (2021).
- Li, Y. C. *et al.* Binding Site Diversity Promotes CO2 Electroreduction to Ethanol. *Journal of the American Chemical Society* **141**, 8584-8591, doi:10.1021/jacs.9b02945 (2019).
- 445 Xu, J. *et al.* Ag-Precipitated CuO Nanospheres for Enhanced Electrochemical Reduction of CO2. *Sustainability* **16**, 5888 (2024).

- 446 Wang, P. *et al.* Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling. *Nature Communications* **13**, 3754, doi:10.1038/s41467-022-31427-9 (2022).
- 447 Wang, X. *et al.* Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. *Nature Energy* **7**, 170-176, doi:10.1038/s41560-021-00967-7 (2022).
- 448 Huang, J., Mensi, M., Oveisi, E., Mantella, V. & Buonsanti, R. Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO2 Reduction Revealed by Ag–Cu Nanodimers. *Journal of the American Chemical Society* **141**, 2490-2499, doi:10.1021/jacs.8b12381 (2019).
- 449 Zhu, Q. *et al.* Graphdiyne supported Ag–Cu tandem catalytic scheme for electrocatalytic reduction of CO2 to C2+ products. *Nanoscale* **15**, 2106-2113, doi:10.1039/D2NR05399C (2023).
- 450 Cai, Z. *et al.* Hierarchical Ag-Cu interfaces promote C-C coupling in tandem CO2 electroreduction. *Applied Catalysis B: Environmental* **325**, 122310, doi:<u>https://doi.org/10.1016/j.apcatb.2022.122310</u> (2023).
- 451 Li, M. *et al.* Engineering Surface Oxophilicity of Copper for Electrochemical CO2 Reduction to Ethanol. *Advanced Science* **10**, 2204579, doi:<u>https://doi.org/10.1002/advs.202204579</u> (2023).
- 452 Suliman, M. H. *et al.* CO2 electroreduction to C2 products on bimetallic silver copper melamine complexes. *Carbon Capture Science & Technology* **14**, 100355, doi:https://doi.org/10.1016/j.ccst.2024.100355 (2025).
- 453 Kuhn, A. N. *et al.* Engineering Silver-Enriched Copper Core-Shell Electrocatalysts to Enhance the Production of Ethylene and C2+ Chemicals from Carbon Dioxide at Low Cell Potentials. *Advanced Functional Materials* **31**, 2101668, doi:<u>https://doi.org/10.1002/adfm.202101668</u> (2021).
- Li, J. *et al.* Copper sulfide as the cation exchange template for synthesis of bimetallic catalysts for CO2 electroreduction. *RSC Advances* **11**, 23948-23959, doi:10.1039/D1RA03811G (2021).
- 455 Yu, F., Liu, X., Liao, L., Xia, G. & Wang, H. Multilayer-Cavity Tandem Catalyst for Profiling Sequentially Coupling of Intermediate CO in Electrocatalytic Reduction Reaction of CO2 to Multi-Carbon Products. *Small* **19**, 2301558, doi:<u>https://doi.org/10.1002/smll.202301558</u> (2023).
- 456 Liu, H. *et al.* High-performance carbon dioxide reduction to multi-carbon products on EDTAmodified Cu–Ag tandem catalyst. *Journal of Catalysis* **429**, 115227, doi:https://doi.org/10.1016/j.jcat.2023.115227 (2024).
- 457 Chang, C.-J. *et al.* Quantitatively Unraveling the Redox Shuttle of Spontaneous Oxidation/Electroreduction of CuOx on Silver Nanowires Using in Situ X-ray Absorption Spectroscopy. *ACS Cent Sci* **5**, 1998-2009, doi:10.1021/acscentsci.9b01142 (2019).
- Zhang, S. *et al.* Electrochemical Reduction of CO2 Toward C2 Valuables on Cu@Ag Core-Shell Tandem Catalyst with Tunable Shell Thickness. *Small* 17, 2102293, doi:<u>https://doi.org/10.1002/smll.202102293</u> (2021).
- 459 Gao, X. *et al.* Intermediate-regulated dynamic restructuring at Ag-Cu biphasic interface enables selective CO2 electroreduction to C2+ fuels. *Nature Communications* **15**, 10331, doi:10.1038/s41467-024-54630-2 (2024).
- 460 Zou, X. *et al.* Nitrogen-doped carbon confined Cu-Ag bimetals for efficient electroreduction of CO2 to high-order products. *Chemical Engineering Journal* **468**, 143606, doi:<u>https://doi.org/10.1016/j.cej.2023.143606</u> (2023).
- 461 Martić, N. *et al.* Ag2Cu2O3 a catalyst template material for selective electroreduction of CO to C2+ products. *Energy & Environmental Science* **13**, 2993-3006, doi:10.1039/D0EE01100B (2020).
- 462 Sassenburg, M., Iglesias van Montfort, H. P., Kolobov, N., Smith, W. A. & Burdyny, T. Bulk Layering Effects of Ag and Cu for Tandem CO2 Electrolysis. *ChemSusChem* **n/a**, e202401769, doi:<u>https://doi.org/10.1002/cssc.202401769</u>.
- 463 Chang, Z., Huo, S., Zhang, W., Fang, J. & Wang, H. The Tunable and Highly Selective Reduction Products on Ag@Cu Bimetallic Catalysts Toward CO2 Electrochemical Reduction Reaction. *J Phys Chem C* **121**, 11368-11379, doi:10.1021/acs.jpcc.7b01586 (2017).

- 464 Li, J. *et al.* Weak CO binding sites induced by Cu–Ag interfaces promote CO electroreduction to multi-carbon liquid products. *Nature Communications* **14**, 698, doi:10.1038/s41467-023-36411-5 (2023).
- 465 Nellaiappan, S. *et al.* High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization. *ACS Catal* **10**, 3658-3663, doi:10.1021/acscatal.9b04302 (2020).
- 466 Niu, D. *et al.* Cu2O-Ag Tandem Catalysts for Selective Electrochemical Reduction of CO2 to C2 Products. *Molecules* **26**, 2175 (2021).
- 467 Kim, Y. E. *et al.* Ag decorated-Cu2O catalysts with enhanced selectivity for CO2 electroreduction toward C2+ products. *Journal of Environmental Chemical Engineering* **11**, 111028, doi:<u>https://doi.org/10.1016/j.jece.2023.111028</u> (2023).
- 468 Koolen, C. D. *et al.* Low-temperature non-equilibrium synthesis of anisotropic multimetallic nanosurface alloys for electrochemical CO2 reduction. *Nature Synthesis* **3**, 47-57, doi:10.1038/s44160-023-00387-3 (2024).
- 469 Zha, J. *et al.* Surface Site-Specific Replacement for Catalysis Selectivity Switching. *ACS Applied Materials & Interfaces* **15**, 3985-3992, doi:10.1021/acsami.2c18553 (2023).
- 470 Choukroun, D. *et al.* Mapping Composition–Selectivity Relationships of Supported Sub-10 nm Cu–Ag Nanocrystals for High-Rate CO2 Electroreduction. *ACS Nano* **15**, 14858-14872, doi:10.1021/acsnano.1c04943 (2021).
- 471 Junqueira, J. R. C. *et al.* Combining Nanoconfinement in Ag Core/Porous Cu Shell Nanoparticles with Gas Diffusion Electrodes for Improved Electrocatalytic Carbon Dioxide Reduction. *ChemElectroChem* **8**, 4848-4853, doi:https://doi.org/10.1002/celc.202100906 (2021).
- 472 Choi, C. *et al.* Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. *Nano Research* **14**, 3497-3501, doi:10.1007/s12274-021-3639-x (2021).
- 473 Wei, D. *et al.* Decrypting the Controlled Product Selectivity over Ag–Cu Bimetallic Surface Alloys for Electrochemical CO2 Reduction. *Angewandte Chemie International Edition* **62**, e202217369, doi:<u>https://doi.org/10.1002/anie.202217369</u> (2023).
- 474 Guo, P.-P. *et al.* Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes. *Green Chem* **24**, 1527-1533, doi:10.1039/D1GC04284J (2022).
- 475 Li, X. *et al.* Engineering the CuO–HfO2 interface toward enhanced CO2 electroreduction to C2H4. *Chemical Communications* **58**, 7412-7415, doi:10.1039/D2CC01776H (2022).
- Li, X. *et al.* Selective Electroreduction of CO2 and CO to C2H4 by Synergistically Tuning
 Nanocavities and the Surface Charge of Copper Oxide. *ACS Sustainable Chemistry & Engineering* 10, 6466-6475, doi:10.1021/acssuschemeng.2c01600 (2022).
- 477 Li, X. *et al.* Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes. *Chem* **8**, 2148-2162, doi:10.1016/j.chempr.2022.04.004 (2022).
- 478 Li, X. *et al.* Hetero-Interfaces on Cu Electrode for Enhanced Electrochemical Conversion of CO2 to Multi-Carbon Products. *Nano-Micro Letters* **14**, 134, doi:10.1007/s40820-022-00879-5 (2022).
- 479 Mo, Q. *et al.* Engineering Dual Sites into the Confined Nanospace of the Porphyrinic Metal– Organic Framework for Tandem Transformation of CO2 to Ethylene. *ACS Sustainable Chemistry* & Engineering, doi:10.1021/acssuschemeng.3c06240 (2024).
- Zhou, L. *et al.* Synergistic Electroconversion of CO2-to-n-Propanol Over Atomically Dispersed Lewis Acid Zr-Doped Cuδ+ Catalysts. *Advanced Functional Materials* n/a, 2418727, doi:<u>https://doi.org/10.1002/adfm.202418727</u>.
- 481 Kim, D., Yun, H., Kim, J., Lee, C. W. & Hwang, Y. J. Enhanced C–C coupling of Cu-based catalysts via zirconia-driven carbonate interaction for electrochemical CO2 reduction reaction. *Journal of Materials Chemistry A* **12**, 23780-23788, doi:10.1039/D4TA04707A (2024).

- 482 Wu, M., Yang, Y., Zhao, J. & Liu, R. Spontaneous spatial-optimizing CO2 electroreduction to C2H4 over dynamically synergistic Cu-Bi pair. *Journal of Colloid and Interface Science* **677**, 452-461, doi:<u>https://doi.org/10.1016/j.jcis.2024.08.077</u> (2025).
- 483 Bao, H. *et al.* Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. *Nature Communications* **12**, 238, doi:10.1038/s41467-020-20336-4 (2021).
- 484 Wang, Y. *et al.* Single-Atomic Cu with Multiple Oxygen Vacancies on Ceria for Electrocatalytic CO2 Reduction to CH4. *ACS Catal* **8**, 7113-7119, doi:10.1021/acscatal.8b01014 (2018).
- 485 Guan, A. *et al.* Atomic-Level Copper Sites for Selective CO2 Electroreduction to Hydrocarbon. *ACS Sustainable Chemistry & Engineering* **9**, 13536-13544, doi:10.1021/acssuschemeng.1c04519 (2021).
- 486 Zhao, Q. *et al.* Selective Etching Quaternary MAX Phase toward Single Atom Copper Immobilized MXene (Ti3C2Clx) for Efficient CO2 Electroreduction to Methanol. *ACS Nano* **15**, 4927-4936, doi:10.1021/acsnano.0c09755 (2021).
- 487 Stalinraja, A. *et al.* Electrochemical reduction of CO2 on Cu doped titanium nanotubes—An insight on ethylene selectivity. *Electrochimica Acta* **431**, 141078, doi:<u>https://doi.org/10.1016/j.electacta.2022.141078</u> (2022).
- 488 Zhou, Y. & Yeo, B. S. Formation of C–C bonds during electrocatalytic CO2 reduction on noncopper electrodes. *J Mater Chem A* **8**, 23162-23186, doi:10.1039/D0TA08402F (2020).
- 489 Xu, Y. *et al.* Oxygen-tolerant electroproduction of C2 products from simulated flue gas. *Energy & Environmental Science* **13**, 554-561, doi:10.1039/C9EE03077H (2020).
- 490 Fan, X. *et al.* Biomimetic Cu4 Cluster Encapsulated within Hollow Titanium-Oxo Nanoring for Electrochemical CO2 Reduction to Ethylene. *ACS Materials Letters* **5**, 1527-1531, doi:10.1021/acsmaterialslett.3c00101 (2023).
- 491 Wang, Z. *et al.* Localized Alkaline Environment via In Situ Electrostatic Confinement for Enhanced CO2-to-Ethylene Conversion in Neutral Medium. *J Am Chem Soc* **145**, 6339-6348, doi:10.1021/jacs.2c13384 (2023).
- 492 Hu, X. *et al.* Establishing Non-Stoichiometric Ti4O7 Assisted Asymmetrical C–C Coupling for Highly Energy-Efficient Electroreduction of Carbon Monoxide. *Angewandte Chemie International Edition* **n/a**, e202414416, doi:<u>https://doi.org/10.1002/anie.202414416</u>.
- 493 Li, Q. *et al.* Efficient CO2 Electroreduction to Multicarbon Products at CuSiO3/CuO Derived Interfaces in Ordered Pores. *Advanced Materials* **n/a**, 2305508, doi:<u>https://doi.org/10.1002/adma.202305508</u>.
- 494 Wang, Y. *et al.* CO2 Electroreduction to Multicarbon Products Over Cu2O@Mesoporous SiO2 Confined Catalyst: Relevance of the Shell Thickness. *Advanced Energy Materials* **n/a**, 2404606, doi:<u>https://doi.org/10.1002/aenm.202404606</u>.
- Wang, M. *et al.* Hydrophobic SiO2 Armor: Stabilizing Cuδ+ to Enhance CO2 Electroreduction toward C2+ Products in Strong Acidic Environments. *ACS Nano*, doi:10.1021/acsnano.4c04780 (2024).
- Xu, Z. *et al.* Confinement and interface engineering of CuSiO3 nanotubes for enhancing CO2 electroreduction to C2+ products. *Electrochim Acta* 470, 143291, doi:<u>https://doi.org/10.1016/j.electacta.2023.143291</u> (2023).
- 497 Yang, Z. *et al.* High dispersion dendritic fibrous morphology nanospheres for electrochemical CO2 reduction to C2H4. *Journal of Colloid and Interface Science* **650**, 1446-1456, doi:<u>https://doi.org/10.1016/j.jcis.2023.07.118</u> (2023).
- 498 Yuan, X. *et al.* Controllable Cu0-Cu+ sites for electrocatalytic reduction of carbon dioxide. *Angewandte Chemie* **133**, 15472-15475 (2021).

- 499 Zhao, T. *et al.* Tailoring the Catalytic Microenvironment of Cu2O with SiO2 to Enhance C2+ Product Selectivity in CO2 Electroreduction. *ACS Catal* **13**, 4444-4453, doi:10.1021/acscatal.3c00056 (2023).
- 500 Zhang, Z.-Y. *et al.* SiO2 assisted Cu0–Cu+–NH2 composite interfaces for efficient CO2 electroreduction to C2+ products. *Journal of Materials Chemistry A* **12**, 1218-1232, doi:10.1039/D3TA05652J (2024).
- 501 Wang, D. *et al.* Boosting CO2 Electroreduction to Multicarbon Products via Tuning of the Copper Surface Charge. *ACS Sustainable Chemistry & Engineering* **10**, 11451-11458, doi:10.1021/acssuschemeng.2c03963 (2022).
- 502 Li, J. *et al.* Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. *Nature Communications* **12**, 2808, doi:10.1038/s41467-021-23023-0 (2021).
- 503 Xiong, W.-F. *et al.* Steering CO2 Electroreduction Selectivity U-Turn to Ethylene by Cu–Si Bonded Interface. *Journal of the American Chemical Society* **146**, 289-297, doi:10.1021/jacs.3c08867 (2024).
- 504 Yang, R. *et al.* Amorphous urchin-like copper@nanosilica hybrid for efficient CO2 electroreduction to C2+ products. *Journal of Energy Chemistry* **61**, 290-296, doi:<u>https://doi.org/10.1016/j.jechem.2020.12.032</u> (2021).
- 505 Zhao, T. *et al.* Functionalizing Cu nanoparticles with fluoric polymer to enhance C2+ product selectivity in membraned CO2 reduction. *Applied Catalysis B: Environmental* **340**, 123281, doi:<u>https://doi.org/10.1016/j.apcatb.2023.123281</u> (2024).
- 506 Tan, X. *et al.* Stabilizing Copper by a Reconstruction-Resistant Atomic Cu–O–Si Interface for Electrochemical CO2 Reduction. *Journal of the American Chemical Society* **145**, 8656-8664, doi:10.1021/jacs.3c01638 (2023).
- 507 Cheng, L. *et al.* Enhancing CO2 Electroreduction Performance through Si-Doped CuO: Stabilization of Cu+/Cu0 Sites and Improved C2 Product Selectivity. *ACS Catal* **14**, 10324-10333, doi:10.1021/acscatal.4c01961 (2024).
- 508 Tan, D., Wulan, B., Cao, X. & Zhang, J. Strong interactions of metal-support for efficient reduction of carbon dioxide into ethylene. *Nano Energy* **89**, 106460, doi:<u>https://doi.org/10.1016/j.nanoen.2021.106460</u> (2021).
- 509 Sha, Y. *et al.* Surface Reconstruction of La2CuO4 during the Electrochemical Reduction of Carbon Dioxide to Ethylene and Its Benefits for Enhanced Performance. *ACS Applied Materials & Interfaces* **16**, 31036-31044, doi:10.1021/acsami.4c00747 (2024).
- 510 Wang, J. *et al.* Grain-Boundary-Engineered La2CuO4 Perovskite Nanobamboos for Efficient CO2 Reduction Reaction. *Nano Letters* **21**, 980-987, doi:10.1021/acs.nanolett.0c04004 (2021).
- 511 Sun, Y. *et al.* Boosting CO2 Electroreduction to C2H4 via Unconventional Hybridization: High-Order Ce4+ 4f and O 2p Interaction in Ce-Cu2O for Stabilizing Cu+. *ACS Nano* **17**, 13974-13984, doi:10.1021/acsnano.3c03952 (2023).
- 512 Wu, D. *et al.* Cuprous ions embedded in ceria lattice for selective and stable electrochemical reduction of carbon dioxide to ethylene. *Journal of Materials Chemistry A* **6**, 9373-9377, doi:10.1039/C8TA01677A (2018).
- 513 Hong, S. *et al.* Tuning the C1/C2 Selectivity of Electrochemical CO2 Reduction on Cu–CeO2 Nanorods by Oxidation State Control. *Advanced Materials* **35**, 2208996, doi:<u>https://doi.org/10.1002/adma.202208996</u> (2023).
- 514 Varandili, S. B. *et al.* Synthesis of Cu/CeO2-x Nanocrystalline Heterodimers with Interfacial Active Sites To Promote CO2 Electroreduction. *ACS Catal* **9**, 5035-5046, doi:10.1021/acscatal.9b00010 (2019).
- 515 Yan, X. *et al.* Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO. *Chemical Science* **12**, 6638-6645, doi:10.1039/D1SC01117K (2021).

- 516 Chu, S. *et al.* Stabilization of Cu+ by tuning a CuO–CeO2 interface for selective electrochemical CO2 reduction to ethylene. *Green Chem* **22**, 6540-6546, doi:10.1039/D0GC02279A (2020).
- 517 Zhang, Y. *et al.* Highly dispersed Cu nanoparticles on ceria for enhanced ethylene selectivity during electrochemical reduction of CO2. *New Journal of Chemistry* **46**, 17244-17250, doi:10.1039/D2NJ03295C (2022).
- 518 Singh, R. P. *et al.* Electrochemical insights into layered La2CuO4 perovskite: Active ionic copper for selective CO2 electroreduction at low overpotential. *Electrochimica Acta* **326**, 134952, doi:<u>https://doi.org/10.1016/j.electacta.2019.134952</u> (2019).
- 519 Feng, J. *et al.* Improving CO2-to-C2+ Product Electroreduction Efficiency via Atomic Lanthanide Dopant-Induced Tensile-Strained CuOx Catalysts. *J Am Chem Soc* **145**, 9857-9866, doi:10.1021/jacs.3c02428 (2023).
- 520 He, Z.-H. *et al.* Electrocatalytic CO2 reduction to ethylene over CuOx boosting CO2 adsorption by lanthanide neodymium. *Catal Sci Technol*, doi:10.1039/D3CY00893B (2023).
- 521 Liu, J. *et al.* Switching between C2+ Products and CH4 in CO2 Electrolysis by Tuning the Composition and Structure of Rare-Earth/Copper Catalysts. *J Am Chem Soc* **145**, 23037-23047, doi:10.1021/jacs.3c05562 (2023).
- Zhao, Z., Li, X., Wang, J., Lv, X. & Wu, H. B. CeO2-modified Cu electrode for efficient CO2 electroreduction to multi-carbon products. *J CO2 Util* 54, 101741, doi:<u>https://doi.org/10.1016/j.jcou.2021.101741</u> (2021).
- 523 Hu, S. *et al.* Ampere-Level Current Density CO2 Reduction with High C2+ Selectivity on La(OH)3-Modified Cu Catalysts. *Small* **n/a**, 2308226, doi:<u>https://doi.org/10.1002/smll.202308226</u>.
- 524 Yang, T. *et al.* Interfacial Synergy between the Cu Atomic Layer and CeO2 Promotes CO Electrocoupling to Acetate. *ACS Nano* **17**, 8521-8529, doi:10.1021/acsnano.3c00817 (2023).
- 525 Yang, S., Sun, F., Cao, R. & Cao, M. Surface modification of copper oxide nanosheets with CeO2 for enhanced CO2 reduction to C2H4. *Journal of Materials Chemistry A*, doi:10.1039/D4TA07887J (2025).
- 526 Chang, F. *et al.* Synergistic modulation of valence state and oxygen vacancy induced by surface reconstruction of the CeO2/CuO catalyst toward enhanced electrochemical CO2 reduction. *Carbon Energy* **n/a**, e588, doi:<u>https://doi.org/10.1002/cey2.588</u>.
- 527 Shan, J. *et al.* Effective CO2 electroreduction toward C2H4 boosted by Ce-doped Cu nanoparticles. *Chemical Engineering Journal* **433**, 133769, doi:<u>https://doi.org/10.1016/j.cej.2021.133769</u> (2022).
- 528 Chu, M. *et al.* Enhanced CO2 electroreduction to ethylene via strong metal-support interaction. *Green Energy & Environment* **7**, 792-798, doi:<u>https://doi.org/10.1016/j.gee.2020.12.001</u> (2022).
- 529 Wang, S. *et al.* Efficiently Electroreducing CO2 to Ethylene on Heterostructured CeO2/CuO. *Industrial & Engineering Chemistry Research* **61**, 16445-16452, doi:10.1021/acs.iecr.2c02726 (2022).
- 530 Lee, C. W. *et al.* Metal–Oxide Interfaces for Selective Electrochemical C–C Coupling Reactions. *ACS Energy Letters* **4**, 2241-2248, doi:10.1021/acsenergylett.9b01721 (2019).
- 531 Cai, H.-D. *et al.* Tuning the Interactions in CuO Nanosheet-Decorated CeO2 Nanorods for Controlling the Electrochemical Reduction of CO2 to Methane or Ethylene. *ACS Applied Nano Materials* **5**, 7259-7267, doi:10.1021/acsanm.2c01164 (2022).
- 532 Wang, H. *et al.* Strain in Copper/Ceria Heterostructure Promotes Electrosynthesis of Multicarbon Products. *ACS Nano* **17**, 346-354, doi:10.1021/acsnano.2c08453 (2023).
- 533 Bandal, H. A., Dabaro, M. D. & Kim, H. Boosting selectivity for multi-carbon products in electrochemical CO2 reduction via enhanced hydroxide adsorption in ultrafine CuOx/CeOx nanoparticles. *Journal of Environmental Chemical Engineering* **12**, 114445, doi:<u>https://doi.org/10.1016/j.jece.2024.114445</u> (2024).

- 534 Fang, M. *et al.* Boosting CO2 Electroreduction to Multi-carbon Products via Oxygen-rich Vacancies and Ce4+–O2––Cu+ Structure in Cu/CeO2 for Stabilizing Cu+. *ChemCatChem* **n/a**, e202301266, doi:<u>https://doi.org/10.1002/cctc.202301266</u> (2023).
- 535 Yang, T., Zhang, Y., Huang, Z., Yang, J. & Kuang, M. Customized CO2 electroreduction to methane or ethylene by manipulating *H and *CO adsorption on Cu/CeOx catalysts. *Journal of Materials Chemistry A* **12**, 20115-20120, doi:10.1039/D4TA01808G (2024).
- Senlin Chu, X. L., Alex W. Robertson, Zhenyu Sun. Electrocatalytic CO2 Reduction to Ethylene over CeO2-Supported Cu Nanoparticles: Effect of Exposed Facets of CeO2. *Acta Phys. -Chim. Sin.* 37, 2009023-, doi:10.3866/pku.Whxb202009023 (2021).
- 537 Yin, J. *et al.* Customizable CO2 Electroreduction to C1 or C2+ Products through Cuy/CeO2 Interface Engineering. *ACS Catal* **12**, 1004-1011, doi:10.1021/acscatal.1c04714 (2022).
- 538 Yang, Z. *et al.* Manipulating dual effects of morphology and oxygen vacancies through the incorporation of CuO onto CeO2 nanospheres for electrochemical CO2 reduction. *Chemical Engineering Journal* **495**, 153506, doi:<u>https://doi.org/10.1016/j.cej.2024.153506</u> (2024).
- 539 Zhang, Z. *et al.* Highly dispersed Cu-Cu2O-CeOx interfaces on reduced graphene oxide for CO2 electroreduction to C2+ products. *Journal of Colloid and Interface Science* **661**, 966-976, doi:<u>https://doi.org/10.1016/j.jcis.2024.01.173</u> (2024).
- 540 Tian, Y. *et al.* Membrane-free Electrocatalysis of CO2 to C2 on CuO/CeO2 Nanocomposites. *Frontiers in Chemistry* **10**, doi:10.3389/fchem.2022.915759 (2022).
- 541 Xue, L. *et al.* Boosting hydrocarbon conversion via Cu-doping induced oxygen vacancies on CeO2 in CO2 electroreduction. *Journal of Energy Chemistry* **100**, 66-76, doi:<u>https://doi.org/10.1016/j.jechem.2024.08.025</u> (2025).
- 542 Wang, Y. *et al.* Cerium Dioxide-Induced Abundant Cu+/Cu0 Sites for Electrocatalytic Reduction of Carbon Dioxide to C2+ Products. *ChemSusChem* **n/a**, e202402097, doi:<u>https://doi.org/10.1002/cssc.202402097</u>.
- 543 Deng, Q. *et al.* Revealing the construction of CuOCe interfacial sites via increased support utilization for enhanced CO2 electroreduction and Li-CO2 batteries. *Journal of Colloid and Interface Science* **651**, 883-893, doi:<u>https://doi.org/10.1016/j.jcis.2023.08.054</u> (2023).
- 544 Feng, J. *et al.* CO2 electrolysis to multi-carbon products in strong acid at ampere-current levels on La-Cu spheres with channels. *Nature Communications* **15**, 4821, doi:10.1038/s41467-024-49308-8 (2024).
- 545 Niu, Z.-Z. *et al.* CO2-assisted formation of grain boundaries for efficient CO–CO coupling on a derived Cu catalyst. *National Science Open* **2**, 20220044, doi:<u>https://doi.org/10.1360/nso/20220044</u> (2023).
- 546 Zhu, J. *et al.* Cation-Deficiency-Dependent CO2 Electroreduction over Copper-Based Ruddlesden–Popper Perovskite Oxides. *Angewandte Chemie International Edition* **61**, e202111670, doi:<u>https://doi.org/10.1002/anie.202111670</u> (2022).
- 547 Wang, X. *et al.* Enhancing *CO coverage on Sm-Cu2O via 4f-3d orbital hybridization for highly efficient electrochemical CO2 reduction to C2H4. *Journal of Energy Chemistry* **99**, 409-416, doi:<u>https://doi.org/10.1016/j.jechem.2024.07.053</u> (2024).
- 548 Weng, Z. *et al.* Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. *Nat Commun* **9**, 415, doi:10.1038/s41467-018-02819-7 (2018).
- 549 Liu, C. *et al.* In Situ Reconstruction of Cu–N Coordinated MOFs to Generate Dispersive Cu/Cu2O Nanoclusters for Selective Electroreduction of CO2 to C2H4. *ACS Catal* **12**, 15230-15240, doi:10.1021/acscatal.2c04275 (2022).
- 550 Ahmadi, M., Mistry, H. & Roldan Cuenya, B. Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions. *J Phys Chem Lett* **7**, 3519-3533, doi:10.1021/acs.jpclett.6b01198 (2016).

- 551 He, Q. *et al.* Highly Selective CO2 Electroreduction to C2H4 Using a Dual-Sites Cu(II) Porphyrin Framework Coupled with Cu2O Nanoparticles via a Synergetic-Tandem Strategy. *Angewandte Chemie International Edition* **63**, e202407090, doi:<u>https://doi.org/10.1002/anie.202407090</u> (2024).
- 552 Zhang, H. *et al.* Insight into the island-sea effect of Cu–N–C for enhanced CO2 eletroreduction selectively towards C2H4. *Applied Catalysis B: Environmental* **343**, 123566, doi:<u>https://doi.org/10.1016/j.apcatb.2023.123566</u> (2024).
- 553 Huang, D.-S. *et al.* A Stable and Low-Cost Metal-Azolate Framework with Cyclic Tricopper Active Sites for Highly Selective CO2 Electroreduction to C2+ Products. *ACS Catal* **12**, 8444-8450, doi:10.1021/acscatal.2c01681 (2022).
- 554 Heng, J.-M., Zhu, H.-L., Zhao, Z.-H., Liao, P.-Q. & Chen, X.-M. Fabrication of Ultrahigh-Loading Dual Copper Sites in Nitrogen-Doped Porous Carbons Boosting Electroreduction of CO2 to C2H4 Under Neutral Conditions. *Advanced Materials* **n/a**, 2415101, doi:<u>https://doi.org/10.1002/adma.202415101</u>.
- 555 Kim, D. *et al.* Acid-Stable Cu Cluster Precatalysts Enable High Energy and Carbon Efficiency in CO2 Electroreduction. *Journal of the American Chemical Society* **146**, 27701-27712, doi:10.1021/jacs.4c09230 (2024).
- 556 Wen, C. F. *et al.* Highly Ethylene-Selective Electrocatalytic CO2 Reduction Enabled by Isolated Cu–S Motifs in Metal–Organic Framework Based Precatalysts. *Angew Chem Int Ed* **61**, e202111700, doi:<u>https://doi.org/10.1002/anie.202111700</u> (2022).
- 557 Huo, Y., Peng, X., Liu, X., Li, H. & Luo, J. High Selectivity Toward C2H4 Production over Cu Particles Supported by Butterfly-Wing-Derived Carbon Frameworks. *ACS Applied Materials & Interfaces* **10**, 12618-12625, doi:10.1021/acsami.7b19423 (2018).
- 558 Jiang, Y. *et al.* Structural Reconstruction of Cu2O Superparticles toward Electrocatalytic CO2 Reduction with High C2+ Products Selectivity. *Advanced Science* **9**, 2105292, doi:<u>https://doi.org/10.1002/advs.202105292</u> (2022).
- 559 Sun, H. *et al.* Promoting ethylene production over a wide potential window on Cu crystallites induced and stabilized via current shock and charge delocalization. *Nature Communications* **12**, 6823, doi:10.1038/s41467-021-27169-9 (2021).
- 560 Zhu, L.-J. *et al.* Copper–Supramolecular Pair Catalyst Promoting C2+ Product Formation in Electrochemical CO2 Reduction. *ACS Catal* **13**, 5114-5121, doi:10.1021/acscatal.3c00494 (2023).
- 561 Zhang, Y. *et al.* A tandem effect of atomically isolated copper–nitrogen sites and copper clusters enhances CO2 electroreduction to ethylene. *Nanoscale* **15**, 1092-1098, doi:10.1039/D2NR06009D (2023).
- 562 Mao, M.-J. *et al.* Imidazolium-Functionalized Cationic Covalent Triazine Frameworks Stabilized Copper Nanoparticles for Enhanced CO2 Electroreduction. *ChemCatChem* **12**, 3530-3536, doi:<u>https://doi.org/10.1002/cctc.202000387</u> (2020).
- 563 Du, J., Cheng, B., Jiang, L. & Han, Z. Copper phenanthroline for selective electrochemical CO2 reduction on carbon paper. *Chem Commun* **59**, 4778-4781, doi:10.1039/D2CC06943A (2023).
- 564 Lin, W. *et al.* A Cu2O-derived Polymeric Carbon Nitride Heterostructured Catalyst for the Electrochemical Reduction of Carbon Dioxide to Ethylene. *ChemSusChem* **14**, 3190-3197, doi:<u>https://doi.org/10.1002/cssc.202100659</u> (2021).
- Li, Z. *et al.* Interface-Enhanced Catalytic Selectivity on the C2 Products of CO2 Electroreduction. *ACS Catal* **11**, 2473-2482, doi:10.1021/acscatal.0c03846 (2021).
- 566 Cui, Y. *et al.* NxC-Induced Switching of Methane and Ethylene Products' Selectivity from CO2 Electroreduction over Cu Catalyst. *ACS Catal* **13**, 11625-11633, doi:10.1021/acscatal.3c02451 (2023).

- 567 Yan, Q. *et al*. Advanced progress in constructing carbon-coated metal materials for electrocatalytic CO2 reduction. *J Alloys Compd* **1003**, 175705, doi:<u>https://doi.org/10.1016/j.jallcom.2024.175705</u> (2024).
- 568 Yan, Y. *et al.* Interface regulation promoting carbon monoxide gas diffusion electrolysis towards C2+ products. *Chemical Communications* **58**, 3645-3648, doi:10.1039/D2CC00343K (2022).
- 569 Wen, C. F. *et al.* A copper coordination polymer precatalyst with asymmetric building units for selective CO2-to-C2H4 electrolysis. *Journal of Materials Chemistry A* **11**, 12121-12129, doi:10.1039/D3TA01607B (2023).
- 570 Chen, S. *et al.* Selective CO2 Reduction to Ethylene Mediated by Adaptive Small-molecule Engineering of Copper-based Electrocatalysts. *Angewandte Chemie International Edition* **n/a**, e202315621, doi:<u>https://doi.org/10.1002/anie.202315621</u> (2023).
- 571 Kim, S., Shin, D., Park, J., Jung, J.-Y. & Song, H. Grain Boundary-Rich Copper Nanocatalysts Generated from Metal-Organic Framework Nanoparticles for CO2-to-C2+ Electroconversion. *Advanced Science* **10**, 2207187, doi:<u>https://doi.org/10.1002/advs.202207187</u> (2023).
- 572 Lee, J.-C. *et al.* Thermodynamically driven self-formation of copper-embedded nitrogen-doped carbon nanofiber catalysts for a cascade electroreduction of carbon dioxide to ethylene. *Journal of Materials Chemistry A* **8**, 11632-11641, doi:10.1039/D0TA03322G (2020).
- 573 Sun, M. *et al.* Controllable preparation of Cu2O/Cu-CuTCPP MOF heterojunction for enhanced electrocatalytic CO2 reduction to C2H4. *Applied Surface Science* **659**, 159937, doi:<u>https://doi.org/10.1016/j.apsusc.2024.159937</u> (2024).
- 574 Wang, C. *et al.* The regulation of hydrogen bond network promotes highly selective electroreduction of CO2 to C2H4. *Applied Catalysis B: Environment and Energy* **366**, 125006, doi:<u>https://doi.org/10.1016/j.apcatb.2024.125006</u> (2025).
- 575 Cao, Y. *et al.* Stimulating the C–C coupling ability of ultrafine copper nanoclusters via nitrogen coordination for electrocatalytic CO2 reduction. *Applied Catalysis B: Environment and Energy* **361**, 124704, doi:<u>https://doi.org/10.1016/j.apcatb.2024.124704</u> (2025).
- 576 Baturina, O. *et al.* Effect of nanostructured carbon support on copper electrocatalytic activity toward CO2 electroreduction to hydrocarbon fuels. *Catal Today* **288**, 2-10, doi:<u>http://dx.doi.org/10.1016/j.cattod.2016.11.001</u> (2017).
- 577 Zhang, L., Li, X., Chen, L., Zhai, C. & Tao, H. Honeycomb-like CuO@C for electroreduction of carbon dioxide to ethylene. *Journal of Colloid and Interface Science* **640**, 783-790, doi:<u>https://doi.org/10.1016/j.jcis.2023.02.145</u> (2023).
- 578 Zhou, Y. *et al.* Amino Modified Carbon Dots with Electron Sink Effect Increase Interface Charge Transfer Rate of Cu-Based Electrocatalyst to Enhance the CO2 Conversion Selectivity to C2H4. *Advanced Functional Materials* **32**, 2113335, doi:<u>https://doi.org/10.1002/adfm.202113335</u> (2022).
- 579 Wang, R. *et al.* Partial Coordination-Perturbed Bi-Copper Sites for Selective Electroreduction of CO2 to Hydrocarbons. *Angewandte Chemie International Edition* **60**, 19829-19835, doi:<u>https://doi.org/10.1002/anie.202105343</u> (2021).
- 580 Xie, H. *et al.* Achieving highly selective electrochemical CO2 reduction to C2H4 on Cu nanosheets. *Journal of Energy Chemistry* **79**, 312-320, doi:<u>https://doi.org/10.1016/j.jechem.2022.11.058</u> (2023).
- 581 Xu, W. *et al.* Facilitating electroreduction CO2-to-C2H4 over doped CuO nanospheres assisted by nitrogen species and oxygen vacancies. *Fuel Processing Technology* **250**, 107890, doi:<u>https://doi.org/10.1016/j.fuproc.2023.107890</u> (2023).
- 582 Huang, X. *et al.* Copper-tetracyanoquinodimethane-derived copper electrocatalysts for highly selective carbon dioxide reduction to ethylene. *Nano Research* **15**, 7910-7916, doi:10.1007/s12274-022-4446-8 (2022).

- 583 Wen, C. F. *et al.* Anionic Metal–Organic Framework Derived Cu Catalyst for Selective CO2 Electroreduction to Hydrocarbons. *Small* n/a, 2405051, doi:<u>https://doi.org/10.1002/smll.202405051</u>.
- Lu, Y.-F. *et al.* Predesign of Catalytically Active Sites via Stable Coordination Cluster Model
 System for Electroreduction of CO2 to Ethylene. *Angewandte Chemie International Edition* 60, 26210-26217, doi:<u>https://doi.org/10.1002/anie.202111265</u> (2021).
- 585 Heng, J.-M. *et al.* A Conductive Dinuclear Cuprous Complex Mimicking the Active Edge Site of the Copper(100)/(111) Plane for Selective Electroreduction of CO2 to C2H4 at Industrial Current Density. *Research* **2022**, 0008, doi:doi:10.34133/research.0008 (2022).
- 586 Wang, J. *et al.* Simultaneous Defect and Size Control of Metal–Organic Framework Nanostructures for Highly Efficient Carbon Dioxide Electroreduction to Multicarbon Products. *ACS Materials Letters* **5**, 2121-2130, doi:10.1021/acsmaterialslett.3c00567 (2023).
- 587 Altaf, N. *et al.* Cu-CuOx/rGO catalyst derived from hybrid LDH/GO with enhanced C2H4 selectivity by CO2 electrochemical reduction. *Journal of CO2 Utilization* **40**, 101205, doi:<u>https://doi.org/10.1016/j.jcou.2020.101205</u> (2020).
- 588 Dong, X. *et al.* Electrochemical CO2 reduction to C2+ products with ampere-level current on carbon-modified copper catalysts. *Acta Physico-Chimica Sinica* **41**, 100024, doi:<u>https://doi.org/10.3866/PKU.WHXB202404012</u> (2025).
- 589 Liang, Y. *et al.* Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling. *Nature Communications* **14**, 474, doi:10.1038/s41467-023-35993-4 (2023).
- 590 Zhang, F. *et al.* Tuning d-Band Structure of Cull in Coordinated Polymer via d–π Conjugation for Improving CO2 Electroreduction Selectivity toward C2 Products. *ChemSusChem* **15**, e202201267, doi:<u>https://doi.org/10.1002/cssc.202201267</u> (2022).
- 591 Zheng, K. *et al.* Isomeric Cu(I) Azolate Frameworks Showing Contrasting Electrocatalytic CO2 Reduction Selectivities and Stabilities. *Small* **n/a**, 2408510, doi:https://doi.org/10.1002/smll.202408510.
- 592 Lee, S. Y. *et al.* Controlling the C2+ product selectivity of electrochemical CO2 reduction on an electrosprayed Cu catalyst. *Journal of Materials Chemistry A* **8**, 6210-6218, doi:10.1039/C9TA13173F (2020).
- 593 Liu, X. *et al.* Electrochemical CO2 reduction to C2+ products with Cu-oleylamine based nanoparticles synthesized by simple thermal treatment. *Fuel* **348**, 128498, doi:<u>https://doi.org/10.1016/j.fuel.2023.128498</u> (2023).
- 594 Zhuo, L.-L. *et al.* Flexible Cuprous Triazolate Frameworks as Highly Stable and Efficient Electrocatalysts for CO2 Reduction with Tunable C2H4/CH4 Selectivity. *Angewandte Chemie International Edition* **61**, e202204967, doi:<u>https://doi.org/10.1002/anie.202204967</u> (2022).
- 595 Zheng, K. *et al.* Bending two-dimensional Cu(i)-based coordination networks to inverse electrocatalytic HER/CO2RR selectivity. *Journal of Materials Chemistry A* **12**, 16396-16402, doi:10.1039/D4TA01982B (2024).
- 596 Zhang, X. Y. *et al.* Selective methane electrosynthesis enabled by a hydrophobic carbon coated copper core–shell architecture. *Energy & Environmental Science* **15**, 234-243, doi:10.1039/D1EE01493E (2022).
- 597 Yao, K. *et al.* Metal–organic framework derived copper catalysts for CO2 to ethylene conversion. *Journal of Materials Chemistry A* **8**, 11117-11123, doi:10.1039/D0TA02395G (2020).
- 598 Chen, S. *et al.* Copper Atom Pairs Stabilize *OCCO Dipole Toward Highly Selective CO2 Electroreduction to C2H4. *Angewandte Chemie International Edition* **n/a**, e202411591, doi:<u>https://doi.org/10.1002/anie.202411591</u>.

- 599 Zhang, Y., Li, Y., Tan, Q., Hong, S. & Sun, Z. Facile synthesis of two-dimensional copper terephthalate for efficient electrocatalytic CO2 reduction to ethylene. *Journal of Experimental Nanoscience* **16**, 246-254, doi:10.1080/17458080.2021.1957844 (2021).
- 600 Qiu, X.-F., Zhu, H.-L., Huang, J.-R., Liao, P.-Q. & Chen, X.-M. Highly Selective CO2 Electroreduction to C2H4 Using a Metal–Organic Framework with Dual Active Sites. *Journal of the American Chemical Society* **143**, 7242-7246, doi:10.1021/jacs.1c01466 (2021).
- 601 Wang, L. *et al.* Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene. *Chinese Journal of Catalysis* **43**, 1049-1057, doi:<u>https://doi.org/10.1016/S1872-2067(21)63947-5</u> (2022).
- 602 Yin, B. *et al.* Regulating Spin Density using TEMPOL Molecules for Enhanced CO2-to-Ethylene Conversion by HKUST-1 Framework Derived Electrocatalysts. *Angewandte Chemie International Edition* **63**, e202405873, doi:<u>https://doi.org/10.1002/anie.202405873</u> (2024).
- 603 Zhang, N. & Zhang, Y. Enhanced CO2 Electroreduction to ethylene on Cu nanocube coated with nitrogen-doped carbon shell in-situ electro-derived from metal-organic framework. *Chemical Engineering Journal* **499**, 156694, doi:<u>https://doi.org/10.1016/j.cej.2024.156694</u> (2024).
- 604 Chang, Y.-B., Zhang, C., Lu, X.-L., Zhang, W. & Lu, T.-B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. *Nano Research* **15**, 195-201, doi:10.1007/s12274-021-3456-2 (2022).
- 605 Chanda, V. *et al.* A CuOx/Cu/C electrocatalyst-based gas diffusion electrode for the electroreduction of CO2 with high selectivity to C2H4. *Electrochemical Science Advances* **3**, e2100200, doi:https://doi.org/10.1002/elsa.202100200 (2023).
- 606 Yan, T., Wang, P. & Sun, W.-Y. Single-Site Metal–Organic Framework and Copper Foil Tandem Catalyst for Highly Selective CO2 Electroreduction to C2H4. *Small* **19**, 2206070, doi:<u>https://doi.org/10.1002/smll.202206070</u> (2023).
- 607 Zhou, W. *et al.* Two-dimensional Cu-phenylalanine nanoflakes for efficient and robust CO2 electroreduction to C2+ products. *Chemical Communications*, doi:10.1039/D4CC05749J (2025).
- 608 Tang, H. *et al.* Rationally designed hierarchical carbon supported CuO nano-sheets for highly efficient electroreduction of CO2 to multi-carbon products. *Journal of CO2 Utilization* 67, 102320, doi:<u>https://doi.org/10.1016/j.jcou.2022.102320</u> (2023).
- Yang, P.-P. *et al.* Highly Enhanced Chloride Adsorption Mediates Efficient Neutral CO2
 Electroreduction over a Dual-Phase Copper Catalyst. *Journal of the American Chemical Society* 145, 8714-8725, doi:10.1021/jacs.3c02130 (2023).
- 610 Tandava, V. S. R. K., Spadaro, M. C., Arbiol, J., Murcia-López, S. & Morante, J. R. Hydrothermal Fabrication of Carbon-Supported Oxide-Derived Copper Heterostructures: A Robust Catalyst System for Enhanced Electro-Reduction of CO2 to C2H4. *ChemSusChem* **16**, e202300344, doi:<u>https://doi.org/10.1002/cssc.202300344</u> (2023).
- 611 Wang, P. *et al.* Molecular Assembled Electrocatalyst for Highly Selective CO2 Fixation to C2+ Products. *ACS Nano* **16**, 17021-17032, doi:10.1021/acsnano.2c07138 (2022).
- 612 Nam, D.-H. *et al.* Metal–Organic Frameworks Mediate Cu Coordination for Selective CO2 Electroreduction. *Journal of the American Chemical Society* **140**, 11378-11386, doi:10.1021/jacs.8b06407 (2018).
- 613 Yang, F. *et al.* Highly efficient electroconversion of carbon dioxide into hydrocarbons by cathodized copper–organic frameworks. *Chemical Science* **10**, 7975-7981, doi:10.1039/C9SC02605C (2019).
- 614 Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. *Nature Catalysis* **1**, 748-755, doi:10.1038/s41929-018-0133-2 (2018).

- Chu, H.-L. *et al.* A Porous π–π Stacking Framework with Dicopper(I) Sites and Adjacent Proton Relays for Electroreduction of CO2 to C2+ Products. *Journal of the American Chemical Society* 144, 13319-13326, doi:10.1021/jacs.2c04670 (2022).
- 616 Li, M. *et al.* Heat-treated copper phthalocyanine on carbon toward electrochemical CO2 conversion into ethylene boosted by oxygen reduction. *Chemical Communications* **58**, 12192-12195, doi:10.1039/D2CC04066B (2022).
- 617 Balamurugan, M. *et al.* Electrocatalytic Reduction of CO2 to Ethylene by Molecular Cu-Complex Immobilized on Graphitized Mesoporous Carbon. *Small* **16**, 2000955, doi:<u>https://doi.org/10.1002/smll.202000955</u> (2020).
- 618 Xia, R., Lv, J.-J., Ma, X. & Jiao, F. Enhanced multi-carbon selectivity via CO electroreduction approach. *Journal of Catalysis* **398**, 185-191, doi:<u>https://doi.org/10.1016/j.jcat.2021.03.034</u> (2021).
- 619 Liu, N. *et al.* Heterogenized Molecular Electrocatalyst Based on a Hydroxo-Bridged Binuclear Copper(II) Phenanthroline Compound for Selective Reduction of CO2 to Ethylene. *Advanced Materials* **n/a**, 2309526, doi:<u>https://doi.org/10.1002/adma.202309526</u>.
- 620 Zhao, Z.-H. *et al.* A Cu(111)@metal–organic framework as a tandem catalyst for highly selective CO2 electroreduction to C2H4. *Chemical Communications* **57**, 12764-12767, doi:10.1039/D1CC05376K (2021).
- 621 Sun, M., Tao, Z., Xu, X., Min, S. & Kang, L. Effect of morphology and structure of CuTCPP nanomaterials on the electrocatalytic CO2 reduction to methane and ethylene. *Applied Catalysis A: General* **666**, 119406, doi:<u>https://doi.org/10.1016/j.apcata.2023.119406</u> (2023).
- 622 Rong, W. *et al.* Size-Dependent Activity and Selectivity of Atomic-Level Copper Nanoclusters during CO/CO2 Electroreduction. *Angewandte Chemie International Edition* **60**, 466-472, doi:<u>https://doi.org/10.1002/anie.202011836</u> (2021).
- 623 Li, Y., Pei, Z., Luan, D. & Lou, X. W. Superhydrophobic and Conductive Wire Membrane for Enhanced CO2 Electroreduction to Multicarbon Products. *Angewandte Chemie International Edition* **62**, e202302128, doi:<u>https://doi.org/10.1002/anie.202302128</u> (2023).
- 624 Bae, D., Lee, T., Kwon, W., Oh, S.-H. & Nam, D.-H. Porous Cu/C nanofibers promote electrochemical CO2-to-ethylene conversion via high CO2 availability. *Journal of Materials Chemistry A* **12**, 17295-17305, doi:10.1039/D4TA02358G (2024).
- 625 Lee, K.-R., Lim, J.-H., Lee, J.-K. & Chun, H.-S. Reduction of carbon dioxide in 3-dimensional gas diffusion electrodes. *Korean Journal of Chemical Engineering* **16**, 829-836, doi:10.1007/BF02698360 (1999).
- 626 Zhao, B. *et al.* C60-Stabilized Cu+ Sites Boost Electrocatalytic Reduction of CO2 to C2+ Products. *Advanced Energy Materials* **13**, 2204346, doi:<u>https://doi.org/10.1002/aenm.202204346</u> (2023).
- 627 Yan, Z. & Wu, T. Highly Selective Electrochemical CO2 Reduction to C2 Products on a g-C3N4-Supported Copper-Based Catalyst. *International Journal of Molecular Sciences* **23**, 14381 (2022).
- 628 Yang, H.-J. *et al.* Promoting Ethylene Selectivity from CO2 Electroreduction on CuO Supported onto CO2 Capture Materials. *ChemSusChem* **11**, 881-887, doi:https://doi.org/10.1002/cssc.201702338 (2018).
- 629 Kusama, S., Saito, T., Hashiba, H., Sakai, A. & Yotsuhashi, S. Crystalline Copper(II) Phthalocyanine Catalysts for Electrochemical Reduction of Carbon Dioxide in Aqueous Media. *ACS Catal* **7**, 8382-8385, doi:10.1021/acscatal.7b02220 (2017).
- 630 Du, H. *et al.* In situ formed N-containing copper nanoparticles: a high-performance catalyst toward carbon monoxide electroreduction to multicarbon products with high faradaic efficiency and current density. *Nanoscale* **14**, 7262-7268, doi:10.1039/D2NR01226J (2022).

- 631 Sun, G. *et al.* Dual-atom Cu2/N-doped carbon catalyst for electroreduction of CO2 to C2H4. *Applied Catalysis A: General* **651**, 119025, doi:<u>https://doi.org/10.1016/j.apcata.2023.119025</u> (2023).
- 632 Ma, L. *et al.* Covalent Triazine Framework Confined Copper Catalysts for Selective Electrochemical CO2 Reduction: Operando Diagnosis of Active Sites. *ACS Catal* **10**, 4534-4542, doi:10.1021/acscatal.0c00243 (2020).
- 633 Yan, Z. *et al.* The in situ growth of Cu2O with a honeycomb structure on a roughed graphite paper for the efficient electroreduction of CO2 to C2H4. *Catalysis Science & Technology* **11**, 6742-6749, doi:10.1039/D1CY01099A (2021).
- 634 Zhang, H. *et al.* Cu nanowire-catalyzed electrochemical reduction of CO or CO2. *Nanoscale* **11**, 12075-12079, doi:10.1039/C9NR03170G (2019).
- 635 Sakamoto, N. *et al.* Self-assembled Cuprous Coordination Polymer as a Catalyst for CO2 Electrochemical Reduction into C2 Products. *ACS Catal* **10**, 10412-10419, doi:10.1021/acscatal.0c01593 (2020).
- 636 Rashid, N., Bhat, M. A., Goutam, U. K. & Ingole, P. P. Electrochemical reduction of CO2 to ethylene on Cu/CuxO-GO composites in aqueous solution. *RSC Advances* **10**, 17572-17581, doi:10.1039/D0RA02754E (2020).
- 637 Han, J. *et al.* Insight into the effect of surface coverage of carbon support on selective CO2 electroreduction to C2H4 over copper-based catalyst. *Applied Surface Science* **609**, 155394, doi:<u>https://doi.org/10.1016/j.apsusc.2022.155394</u> (2023).
- 638 Wang, Y. *et al.* Effect of Charge on Carbon Support on the Catalytic Activity of Cu2O toward CO2 Reduction to C2 Products. *ACS Applied Materials & Interfaces* **15**, 23306-23315, doi:10.1021/acsami.3c03083 (2023).
- 639 Kuang, S. *et al.* Stable Surface-Anchored Cu Nanocubes for CO2 Electroreduction to Ethylene. *ACS Applied Nano Materials* **3**, 8328-8334, doi:10.1021/acsanm.0c01745 (2020).
- 640 Zhang, J. *et al.* Unveiling the Synergistic Effect between Graphitic Carbon Nitride and Cu2O toward CO2 Electroreduction to C2H4. *ChemSusChem* **14**, 929-937, doi:https://doi.org/10.1002/cssc.202002427 (2021).
- 641 Liu, C. *et al.* Highly Selective CO2 Electroreduction to C2+ Products over Cu2O-Decorated 2D Metal–Organic Frameworks with Rich Heterogeneous Interfaces. *Nano Letters* **23**, 1474-1480, doi:10.1021/acs.nanolett.2c04911 (2023).
- 642 Han, H. *et al.* Selective electrochemical CO2 conversion to multicarbon alcohols on highly efficient N-doped porous carbon-supported Cu catalysts. *Green Chemistry* **22**, 71-84, doi:10.1039/C9GC03088C (2020).
- 643 Feng, J. *et al.* Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products. *Nature Communications* **14**, 4615, doi:10.1038/s41467-023-40412-9 (2023).
- 644 Wang, W. *et al.* Interface-induced controllable synthesis of Cu2O nanocubes for electroreduction CO2 to C2H4. *Electrochimica Acta* **306**, 360-365, doi:https://doi.org/10.1016/j.electacta.2019.03.146 (2019).
- 645 Gao, T. *et al.* Phosphate-Derived Copper-Based Catalysts for Efficient CO2 Reduction to Multicarbon Products. *Energy & Fuels* **37**, 19053-19062, doi:10.1021/acs.energyfuels.3c03585 (2023).
- Zang, Y. *et al.* Selective CO2 Electroreduction to Ethanol over a Carbon-Coated CuO Catalyst.
 Angewandte Chemie International Edition 61, e202209629, doi:<u>https://doi.org/10.1002/anie.202209629</u> (2022).
- 647 Ning, H. *et al.* Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4. *Carbon* **146**, 218-223, doi:<u>https://doi.org/10.1016/j.carbon.2019.02.010</u> (2019).

- 648 Guan, A. *et al.* Boosting CO2 Electroreduction to CH4 via Tuning Neighboring Single-Copper Sites. *ACS Energy Letters* **5**, 1044-1053, doi:10.1021/acsenergylett.0c00018 (2020).
- 649 Zhi, W.-Y. *et al.* Efficient electroreduction of CO2 to C2-C3 products on Cu/Cu2O@N-doped graphene. *Journal of CO2 Utilization* **50**, 101594, doi:https://doi.org/10.1016/j.jcou.2021.101594 (2021).
- 650 Möller, T. *et al.* Electrocatalytic CO2 Reduction on CuOx Nanocubes: Tracking the Evolution of Chemical State, Geometric Structure, and Catalytic Selectivity using Operando Spectroscopy. *Angewandte Chemie International Edition* **59**, 17974-17983, doi:<u>https://doi.org/10.1002/anie.202007136</u> (2020).
- 651 Liu, Z. *et al.* Surface Energy Tuning on Cu/NC Catalysts for CO Electroreduction. *ACS Catal* **12**, 12555-12562, doi:10.1021/acscatal.2c02261 (2022).
- 652 Ning, H. *et al.* N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4. *Journal of Alloys and Compounds* **785**, 7-12, doi:<u>https://doi.org/10.1016/j.jallcom.2019.01.142</u> (2019).
- Li, Q. *et al.* Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. *Nano Energy* 24, 1-9, doi:<u>http://dx.doi.org/10.1016/j.nanoen.2016.03.024</u> (2016).
- 654 Mi, Y., Peng, X., Liu, X. & Luo, J. Selective Formation of C2 Products from Electrochemical CO2 Reduction over Cu1.8Se Nanowires. *ACS Applied Energy Materials* **1**, 5119-5123, doi:10.1021/acsaem.8b00744 (2018).
- 655 Hara, K., Sonoyama, N. & Sakata, T. Electrocatalytic Fischer–Tropsch Reactions. Formation of Hydrocarbons and Oxygen-Containing Compounds from CO on a Pt Gas Diffusion Electrode. *Bulletin of the Chemical Society of Japan* **70**, 745-754, doi:10.1246/bcsj.70.745 (1997).
- 656 Jia, S. et al. Efficient electrocatalytic reduction of carbon dioxide to ethylene on copperantimony bimetallic alloy catalyst. Chin J Catal 41, 1091-1098, doi:https://doi.org/10.1016/S1872-2067(20)63542-2 (2020).
- 657 Lai, Y. *et al.* The sensitivity of Cu for electrochemical carbon dioxide reduction to hydrocarbons as revealed by high throughput experiments. *Journal of Materials Chemistry A* **7**, 26785-26790, doi:10.1039/C9TA10111J (2019).
- 658 Chu, S. *et al.* Single atom and defect engineering of CuO for efficient electrochemical reduction of CO2 to C2H4. *SmartMat* **3**, 194-205, doi:<u>https://doi.org/10.1002/smm2.1105</u> (2022).
- 659 Cao, Y. *et al.* Single Atom Bi Decorated Copper Alloy Enables C–C Coupling for Electrocatalytic Reduction of CO2 into C2+ Products**. *Angew Chem Int Ed* **n/a**, e202303048, doi:<u>https://doi.org/10.1002/anie.202303048</u>.
- 660 Lu, X. K., Lu, B., Li, H., Lim, K. & Seitz, L. C. Stabilization of Undercoordinated Cu Sites in Strontium Copper Oxides for Enhanced Formation of C2+ Products in Electrochemical CO2 Reduction. *ACS Catal* **12**, 6663-6671, doi:10.1021/acscatal.2c01019 (2022).
- Li, S. *et al.* Operando Reconstruction of Porous Carbon Supported Copper Selenide Promotes the C2 Production from CO2RR. *Advanced Functional Materials* 34, 2311989, doi:<u>https://doi.org/10.1002/adfm.202311989</u> (2024).
- 662 Ding, L. *et al.* Over 70 % Faradaic Efficiency for CO2 Electroreduction to Ethanol Enabled by Potassium Dopant-Tuned Interaction between Copper Sites and Intermediates. *Angew Chem Int Ed* **61**, e202209268, doi:<u>https://doi.org/10.1002/anie.202209268</u> (2022).
- 663 Xiang, D. *et al.* Theory-guided synthesis of heterostructured Cu@Cu0.4W0.6 catalyst towards superior electrochemical reduction of CO2 to C2 products. *Materials Today Physics* **33**, 101045, doi:<u>https://doi.org/10.1016/j.mtphys.2023.101045</u> (2023).
- 664 Yao, T. *et al.* Atomic Indium-Doped Copper-Based Catalysts for Electrochemical CO2 Reduction to C2+ Products. *ChemCatChem* **n/a**, e202400137, doi:<u>https://doi.org/10.1002/cctc.202400137</u>.

- 665 Gu, L. & Dutta Chowdhury, A. Altering preferential product selectivity in electrocatalytic CO2 reduction over fluorine-modified CuIn bimetallic materials. *Journal of Catalysis* **439**, 115768, doi:<u>https://doi.org/10.1016/j.jcat.2024.115768</u> (2024).
- 666 Ma, F.-Y. *et al.* In situ revealing C–C coupling behavior for CO2 electroreduction on tensile strain $Pt\delta+-Cu\delta+$ dual sites. *Rare Metals*, doi:10.1007/s12598-024-02846-y (2024).
- 667 Feng, C. *et al.* Promoting C–C coupling for CO2 reduction on Cu2O electrocatalysts with atomically dispersed Rh atoms. *Chemical Communications* **60**, 5550-5553, doi:10.1039/D4CC01254B (2024).
- 668 Chen, Y. *et al.* Tailoring the *CO and *H Coverage for Selective CO2 Electroreduction to CH4 or C2H4. *Small* **n/a**, 2308004, doi:<u>https://doi.org/10.1002/smll.202308004</u>.
- 669 Billy, J. T. & Co, A. C. Reducing the onset potential of CO2 electroreduction on CuRu bimetallic particles. *Applied Catalysis B: Environmental* **237**, 911-918, doi:<u>https://doi.org/10.1016/j.apcatb.2018.06.072</u> (2018).
- 670 Nishimura, Y. F. *et al.* Guiding the Catalytic Properties of Copper for Electrochemical CO2 Reduction by Metal Atom Decoration. *ACS Applied Materials & Interfaces* **13**, 52044-52054, doi:10.1021/acsami.1c09128 (2021).
- 671 Xiong, L. *et al.* Breaking the Linear Scaling Relationship by Compositional and Structural Crafting of Ternary Cu–Au/Ag Nanoframes for Electrocatalytic Ethylene Production. *Angewandte Chemie International Edition* **60**, 2508-2518, doi:<u>https://doi.org/10.1002/anie.202012631</u> (2021).
- 672 Kwon, S., Zhang, J., Ganganahalli, R., Verma, S. & Yeo, B. S. Enhanced Carbon Monoxide Electroreduction to >1 A cm-2 C2+ Products Using Copper Catalysts Dispersed on MgAl Layered Double Hydroxide Nanosheet House-of-Cards Scaffolds. *Angewandte Chemie International Edition* **62**, e202217252, doi:<u>https://doi.org/10.1002/anie.202217252</u> (2023).
- 673 Xie, X. *et al.* Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. *Nat Commun* **13**, 63, doi:10.1038/s41467-021-27768-6 (2022).
- 674 Chen, L., Li, M. & Zhang, J.-N. Tailoring microenvironment for efficient CO2 electroreduction through nanoconfinement strategy. *Nano Res* **17**, 7880-7899, doi:10.1007/s12274-024-6870-4 (2024).
- Haoyu Sun, D. L., Yuanyuan Min, Yingying Wang, Yanyun Ma, Yiqun Zheng, Hongwen Huang. Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. *Acta Phys. -Chim. Sin.* 40, 2307007-, doi:10.3866/pku.Whxb202307007 (2024).
- 676 Dong, G. *et al.* Boosting the CO2 electroreduction performance of La2-xAgxCuO4-δ perovskites via A-site substitution mechanism. *Applied Catalysis B: Environmental* **342**, 123444, doi:<u>https://doi.org/10.1016/j.apcatb.2023.123444</u> (2024).
- 677 Kou, T. *et al.* Amorphous CeO2–Cu Heterostructure Enhances CO2 Electroreduction to Multicarbon Alcohols. *ACS Materials Letters* **4**, 1999-2008, doi:10.1021/acsmaterialslett.2c00506 (2022).
- 678 Lavate, S. S. & Srivastava, R. Boosting ethylene yield via a synergistic 2D/0D nanostructured VCu layered double hydroxide/TiO2 catalyst in electrochemical CO2 reduction. *Energy Advances*, doi:10.1039/D4YA00417E (2024).
- 679 Pirzada, B. M., AlMarzooqi, F. & Qurashi, A. Ultrasonic treatment-assisted reductive deposition of Cu and Pd nanoparticles on ultrathin 2D Bi2S3 nanosheets for selective electrochemical reduction of CO2 into C2 compounds. *Ultrasonics Sonochemistry* **112**, 107189, doi:<u>https://doi.org/10.1016/j.ultsonch.2024.107189</u> (2025).

- 680 Xu, Y. N. *et al.* Tuning the Microenvironment in Monolayer MgAl Layered Double Hydroxide for CO2-to-Ethylene Electrocatalysis in Neutral Media. *Angewandte Chemie* **135**, e202217296, doi:<u>https://doi.org/10.1002/ange.202217296</u> (2023).
- 681 Shao, P. *et al.* Enhancing CO2 Electroreduction to Ethylene via Copper–Silver Tandem Catalyst in Boron-Imidazolate Framework Nanosheet. *Advanced Energy Materials* **13**, 2300088, doi:<u>https://doi.org/10.1002/aenm.202300088</u> (2023).
- 682 Du, M., Zhao, X., Zhu, G., Hsu, H.-Y. & Liu, F. Elastic strain controlling the activity and selectivity of CO2 electroreduction on Cu overlayers. *Journal of Materials Chemistry A* **9**, 4933-4944, doi:10.1039/D0TA08880C (2021).
- 683 Sammells, A. F. & Cook, R. L. in *Electrochemical and Electrocatalytic Reactions of Carbon Dioxide* (ed B. P. Sullivan) 217-262 (Elsevier, 1993).
- 684 Wu, H. *et al.* Selective and energy-efficient electrosynthesis of ethylene from CO2 by tuning the valence of Cu catalysts through aryl diazonium functionalization. *Nature Energy*, doi:10.1038/s41560-024-01461-6 (2024).
- 685 Li, F. *et al.* Molecular tuning of CO2-to-ethylene conversion. *Nature* **577**, 509-513, doi:10.1038/s41586-019-1782-2 (2020).
- 686 Ozden, A. *et al.* High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer. *ACS Energy Letters* **5**, 2811-2818, doi:10.1021/acsenergylett.0c01266 (2020).
- 687 Ozden, A. *et al.* Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. *Joule* **5**, 706-719, doi:10.1016/j.joule.2021.01.007 (2021).
- 688 Song, D. *et al.* Electrochemical CO2 reduction catalyzed by organic/inorganic hybrids. *eScience* **3**, 100097, doi:<u>https://doi.org/10.1016/j.esci.2023.100097</u> (2023).
- 689 Li, M. *et al.* Stabilizing Cu Catalysts for Electrochemical CO2 Reduction Using a Carbon Overlayer. *The Journal of Physical Chemistry C*, doi:10.1021/acs.jpcc.2c08305 (2023).
- 690 Xue, L. *et al.* Dual-Role of Polyelectrolyte-Tethered Benzimidazolium Cation in Promoting CO2/Pure Water Co-Electrolysis to Ethylene. *Angewandte Chemie International Edition* **62**, e202309519, doi:<u>https://doi.org/10.1002/anie.202309519</u> (2023).
- 691 Nam, D.-H. *et al.* Molecular enhancement of heterogeneous CO2 reduction. *Nat Mater* **19**, 266-276, doi:10.1038/s41563-020-0610-2 (2020).
- 692 Bui, J. C. *et al.* Engineering Catalyst–Electrolyte Microenvironments to Optimize the Activity and Selectivity for the Electrochemical Reduction of CO2 on Cu and Ag. *Acc Chem Res* **55**, 484-494, doi:10.1021/acs.accounts.1c00650 (2022).
- 693 Christensen, O. *et al.* Can the CO2 Reduction Reaction Be Improved on Cu: Selectivity and Intrinsic Activity of Functionalized Cu Surfaces. *ACS Catal* **12**, 15737-15749, doi:10.1021/acscatal.2c04200 (2022).
- 694 Yao, Y. *et al.* A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights. *Nature Communications* **15**, 1257, doi:10.1038/s41467-024-45704-2 (2024).
- 695 Sha, Y. *et al.* Anchoring Ionic Liquid in Copper Electrocatalyst for Improving CO2 Conversion to Ethylene. *Angewandte Chemie International Edition* **61**, e202200039, doi:<u>https://doi.org/10.1002/anie.202200039</u> (2022).
- 696 Wang, Y. *et al.* Benzyl alcohol promoted electrocatalytic reduction of carbon dioxide and C2 production by Cu2O/Cu. *Chemical Engineering Journal* **485**, 149800, doi:<u>https://doi.org/10.1016/j.cej.2024.149800</u> (2024).
- 697 Deng, T. *et al.* Polymer Modification Strategy to Modulate Reaction Microenvironment for Enhanced CO2 Electroreduction to Ethylene. *Angewandte Chemie International Edition* **63**, e202313796, doi:<u>https://doi.org/10.1002/anie.202313796</u> (2024).

- 698 Li, W. *et al.* Confined Intermediates Boost C2+ Selectivity in CO2 Electroreduction. *ACS Catal* **14**, 13400-13407, doi:10.1021/acscatal.4c02823 (2024).
- 699 Wang, D. *et al.* Regulating the local microenvironment on porous Cu nanosheets for enhancing electrocatalytic CO2 reduction selectivity to ethylene. *Journal of Materials Chemistry A* **12**, 11968-11974, doi:10.1039/D4TA01198H (2024).
- 700 Liu, W. *et al.* Electron-rich Cu0-Cu2O heterogeneous interface constructed via controllable electrochemical reconstruction for a single CO2 deep-reduction product ethylene. *Applied Catalysis B: Environment and Energy* **348**, 123831, doi:https://doi.org/10.1016/j.apcatb.2024.123831 (2024).
- 701 Fan, L. *et al.* Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products. *Joule* **6**, 205-220, doi:<u>https://doi.org/10.1016/j.joule.2021.12.002</u> (2022).
- 702 Jiang, Y. *et al.* Impact of Adsorbed CO on the Conversion of CO2 to Ethylene on 4,5-Dicyanoimidazole Coordinated Cu. *ACS Catal* 14, 9870-9876, doi:10.1021/acscatal.4c02042 (2024).
- 703 Jing, H. *et al.* Highly efficient stable pyroglutamic acid-modified Cu2O/Cu catalysts with reconstruction-resistant interfaces for CO2-to-C2 conversion at high current density. *Applied Catalysis B: Environment and Energy* **365**, 124977, doi:<u>https://doi.org/10.1016/j.apcatb.2024.124977</u> (2025).
- 704 Kang, M. P. L., Ma, H., Ganganahalli, R. & Yeo, B. S. Surfactant-Enhanced Formation of Ethylene from Carbon Monoxide Electroreduction on Copper Catalysts. ACS Catal, 116-123, doi:10.1021/acscatal.3c03576 (2023).
- Pan, Y., Li, X.-Q., Duan, G.-Y., Fang, J. & Xu, B.-H. Microenvironment regulation for highperformance acidic CO2 electroreduction on Poly(ionic liquid)-modified Cu surface. *Applied Catalysis B: Environment and Energy* **361**, 124681, doi:<u>https://doi.org/10.1016/j.apcatb.2024.124681</u> (2025).
- 706 Ren, S. *et al.* Selective CO2 Electroreduction to Multi-Carbon Products on Organic-Functionalized CuO Nanoparticles by Local Micro-Environment Modulation. *Nano-Micro Letters* 16, 262, doi:10.1007/s40820-024-01480-8 (2024).
- 707 Zhou, L. *et al.* Synergistic regulation of hydrophobicity and basicity for copper hydroxide-derived copper to promote the CO2 electroreduction reaction. *Carbon Energy* **5**, e328, doi:<u>https://doi.org/10.1002/cey2.328</u> (2023).
- 708 Chen, X. *et al.* Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. *Nature Catalysis* **4**, 20-27, doi:10.1038/s41929-020-00547-0 (2021).
- 709 Cheng, B. *et al.* Selective CO2 Reduction to Ethylene Using Imidazolium-Functionalized Copper. *ACS Applied Materials & Interfaces* **14**, 27823-27832, doi:10.1021/acsami.2c03748 (2022).
- 710 Wang, Y. *et al.* Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. *Nature Catalysis*, doi:10.1038/s41929-019-0397-1 (2019).
- 711 Ozden, A. *et al.* Energy- and carbon-efficient CO2/CO electrolysis to multicarbon products via asymmetric ion migration–adsorption. *Nature Energy* **8**, 179-190, doi:10.1038/s41560-022-01188-2 (2023).
- 712 Arquer, F. P. G. d. *et al.* CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2. *Science* **367**, 661-666, doi:doi:10.1126/science.aay4217 (2020).
- 713 Jia, S. *et al.* Hierarchical Metal–Polymer Hybrids for Enhanced CO2 Electroreduction. *Angewandte Chemie International Edition* **60**, 10977-10982, doi:<u>https://doi.org/10.1002/anie.202102193</u> (2021).
- 714 Rabiee, H. *et al.* Rational Designing Microenvironment of Gas-Diffusion Electrodes via Microgel-Augmented CO2 Availability for High-Rate and Selective CO2 Electroreduction to Ethylene. *Advanced Science* **n/a**, 2402964, doi:<u>https://doi.org/10.1002/advs.202402964</u>.

- 715 Wakerley, D. *et al.* Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. *Nature materials* **18**, 1222-1227 (2019).
- 716 Wang, J. *et al.* Selective CO2 Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface. *Journal of the American Chemical Society* **143**, 2857-2865, doi:10.1021/jacs.0c12478 (2021).
- 717 Ji, Y., Yang, C., Qian, L., Zhang, L. & Zheng, G. Promoting electrocatalytic carbon monoxide reduction to ethylene on copper-polypyrrole interface. *Journal of Colloid and Interface Science* 600, 847-853, doi:<u>https://doi.org/10.1016/j.jcis.2021.05.057</u> (2021).
- 718 Nam, D.-H. *et al.* High-Rate and Selective CO2 Electrolysis to Ethylene via Metal–Organic-Framework-Augmented CO2 Availability. *Advanced Materials* **34**, 2207088, doi:<u>https://doi.org/10.1002/adma.202207088</u> (2022).
- 719 Zhao, Z.-H., Zhu, H.-L., Huang, J.-R., Liao, P.-Q. & Chen, X.-M. Polydopamine Coating of a Metal– Organic Framework with Bi-Copper Sites for Highly Selective Electroreduction of CO2 to C2+ Products. *ACS Catal* **12**, 7986-7993, doi:10.1021/acscatal.2c02002 (2022).
- 720 Wei, X. *et al.* Highly Selective Reduction of CO2 to C2+ Hydrocarbons at Copper/Polyaniline Interfaces. *ACS Catal* **10**, 4103-4111, doi:10.1021/acscatal.0c00049 (2020).
- 721 Perry, S. C. *et al.* Polymers with intrinsic microporosity (PIMs) for targeted CO2 reduction to ethylene. *Chemosphere* **248**, 125993, doi:<u>https://doi.org/10.1016/j.chemosphere.2020.125993</u> (2020).
- 722 Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon Monoxide Gas Diffusion Electrolysis that Produces Concentrated C2 Products with High Single-Pass Conversion. *Joule* **3**, 240-256, doi:<u>https://doi.org/10.1016/j.joule.2018.10.007</u> (2019).
- Jia, T. *et al.* Engineering vacancy and hydrophobicity of spherical coral-like CuO catalyst for effective electrochemical CO2 reduction to ethylene. *Surfaces and Interfaces* **38**, 102841, doi:<u>https://doi.org/10.1016/j.surfin.2023.102841</u> (2023).
- 724 Gabardo, C. M. *et al.* Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly. *Joule* **3**, 2777-2791, doi:10.1016/j.joule.2019.07.021 (2019).
- 725 Yang, B. *et al.* Accelerating CO2 Electroreduction to Multicarbon Products via Synergistic Electric–Thermal Field on Copper Nanoneedles. *Journal of the American Chemical Society* **144**, 3039-3049, doi:10.1021/jacs.1c11253 (2022).
- 726 Wang, X. *et al.* Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. *Nature Energy* **5**, 478-486, doi:10.1038/s41560-020-0607-8 (2020).
- ⁷²⁷Li, C. *et al.* Boosting Electrochemical CO2 Reduction via Surface Hydroxylation over Cu-Based Electrocatalysts. *ACS Catal* **13**, 16114-16125, doi:10.1021/acscatal.3c02454 (2023).
- Xie, K. *et al.* Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. *Nature Communications* 13, 3609, doi:10.1038/s41467-022-31295-3 (2022).
- Zhuansun, M. *et al.* Promoting CO2 Electroreduction to Multi-Carbon Products by Hydrophobicity-Induced Electro-Kinetic Retardation. *Angewandte Chemie International Edition* 62, e202309875, doi:<u>https://doi.org/10.1002/anie.202309875</u> (2023).
- 730 Zhong, S. *et al.* Efficient electrochemical transformation of CO2 to C2/C3 chemicals on benzimidazole-functionalized copper surfaces. *Chemical Communications* **54**, 11324-11327, doi:10.1039/C8CC04735A (2018).
- 731 Shi, Y. *et al.* Polyacrylate modified Cu electrode for selective electrochemical CO2 reduction towards multicarbon products. *Science Bulletin* **69**, 2395-2404, doi:<u>https://doi.org/10.1016/j.scib.2024.06.014</u> (2024).

- 732 Liang, H.-Q. *et al.* Hydrophobic Copper Interfaces Boost Electroreduction of Carbon Dioxide to Ethylene in Water. *ACS Catal* **11**, 958-966, doi:10.1021/acscatal.0c03766 (2021).
- 733 Watkins, N. B., Wu, Y., Nie, W., Peters, J. C. & Agapie, T. In Situ Deposited Polyaromatic Layer Generates Robust Copper Catalyst for Selective Electrochemical CO2 Reduction at Variable pH. *ACS Energy Letters* **8**, 189-195, doi:10.1021/acsenergylett.2c02002 (2023).
- 734 Li, J. *et al.* Effectively Increased Efficiency for Electroreduction of Carbon Monoxide Using Supported Polycrystalline Copper Powder Electrocatalysts. *ACS Catal* 9, 4709-4718, doi:10.1021/acscatal.9b00099 (2019).
- 735 Nie, W., Heim, G. P., Watkins, N. B., Agapie, T. & Peters, J. C. Organic Additive-derived Films on Cu Electrodes Promote Electrochemical CO2 Reduction to C2+ Products Under Strongly Acidic Conditions. *Angewandte Chemie* **135**, e202216102, doi:https://doi.org/10.1002/ange.202216102 (2023).
- 736 Xie, M. S. *et al.* Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. *Energy & Environmental Science* **9**, 1687-1695, doi:10.1039/C5EE03694A (2016).
- 737 Igarashi, R., Takeuchi, R., Kubo, K., Mizuta, T. & Kume, S. On-Surface Modification of Copper Cathodes by Copper (I)-Catalyzed Azide Alkyne Cycloaddition and CO2 Reduction in Organic Environments. *Frontiers in Chemistry* **7**, 860 (2019).