Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2024

### **Supporting Information**

# Tuning peroxidase activity of artificial P450 peroxygenase by

## engineering redox-sensitive residues

Fengjie Jiang, <sup>a,b</sup> Zihan Wang, <sup>a,b</sup> and Zhiqi Cong <sup>\*a,b,c,d</sup>

<sup>a</sup> CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China

<sup>b</sup> University of Chinese Academy of Sciences, Beijing, 100049, China

<sup>c</sup> Shandong Energy Institute, Qingdao 266101, China.

<sup>d</sup> Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.

\* To whom correspondence should be addressed. E-mail: congzq@qibebt.ac.cn



**Figure S1** Relative peroxidase activity for guaiacol oxidation by the F87A/ monotryptophan mutations of redox-sensitive residues in the presence of Im-C6-Phe. Reaction conditions: P450BM3 variants (0.01-0.5  $\mu$ M), H<sub>2</sub>O<sub>2</sub> (20 mM), Im-C6-Phe (0.5 mM), guaiacol (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S2** Relative peroxidase activity for guaiacol oxidation by the F87A/ monocysteine mutations of redox-sensitive residues in the presence of Im-C6-Phe. Reaction conditions: P450BM3 variants (0.01-0.5  $\mu$ M), H<sub>2</sub>O<sub>2</sub> (20 mM), Im-C6-Phe (0.5 mM), guaiacol (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S3** Relative peroxidase activity for guaiacol oxidation by the F87A/ monomethionine mutations of redox-sensitive residues in the presence of Im-C6-Phe. Reaction conditions: P450BM3 variants (0.01-0.5  $\mu$ M), H<sub>2</sub>O<sub>2</sub> (20 mM), Im-C6-Phe (0.5 mM), guaiacol (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S4** Relative peroxidase activity for guaiacol oxidation by the F87A/ monophenylalanine mutations of redox-sensitive residues in the presence of Im-C6-Phe. (A) F mutates to I (B) F mutates to H. Reaction conditions: P450BM3 variants (0.01-0.5  $\mu$ M), H<sub>2</sub>O<sub>2</sub> (20 mM), Im-C6-Phe (0.5 mM), guaiacol (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S5** Relative peroxidase activity for guaiacol oxidation by the site-directed saturation mutagenesis of M212 in the presence of Im-C6-Phe. Reaction conditions: P450BM3 variants (0.01-0.5  $\mu$ M), H<sub>2</sub>O<sub>2</sub> (20 mM), Im-C6-Phe (0.5 mM), guaiacol (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S6** Engineering P450BM3 for one-electron oxidation of guaiacol in the presence of Im-C6-Phe. (A) lysine mutation of other identified sites (B) a series of double mutants based on F87A by combinatorial mutation. Reaction conditions: P450BM3 variants (0.01-0.5  $\mu$ M), H<sub>2</sub>O<sub>2</sub> (20 mM), Im-C6-Phe (0.5 mM), guaiacol (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S7** Engineering P450BM3 for one-electron oxidation of guaiacol in the presence of Im-C6-Phe. F87A/M212K/F77I incorporates other beneficial single mutants (F81H, F173H, M177H, and M112H). Reaction conditions: P450BM3 variants (0.01-0.5  $\mu$ M), H<sub>2</sub>O<sub>2</sub> (20 mM), Im-C6-Phe (0.5 mM), guaiacol (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S8** Engineering P450BM3 for one-electron oxidation of guaiacol in the presence of Im-C6-Phe. F87A/M212K/F77I incorporates other beneficial single mutants (Y160I, Y198I, M237I, and Y256I). Reaction conditions: P450BM3 variants (0.01-0.5  $\mu$ M), H<sub>2</sub>O<sub>2</sub> (20 mM), Im-C6-Phe (0.5 mM), guaiacol (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S9** One-electron oxidation of DMP by selected P450 variants in the presence of Im-C6-Phe. Reaction conditions: P450BM3 variants (10-20 nM), H<sub>2</sub>O<sub>2</sub> (20 mM), Im-C6-Phe (0.5 mM), substrates DMP (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S10** One-electron oxidation of OPD by selected P450 variants in the presence of Im-C6-Phe. Reaction conditions: P450BM3 variants (10-20 nM), H<sub>2</sub>O<sub>2</sub> (20 mM), Im-C6-Phe (0.5 mM), substrates OPD (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S11** One-electron oxidation of PPD by selected P450 variants in the presence of Im-C6-Phe. Reaction conditions: P450BM3 variants (5-10 nM),  $H_2O_2$  (20 mM), Im-C6-Phe (0.5 mM), substrates PPD (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S12** Relative peroxidase activity for guaiacol oxidation by the single-site mutations of redox-sensitive residues in the absence of DFSM. Reaction conditions: P450BM3 variants (0.01- $0.5 \mu$ M), H<sub>2</sub>O<sub>2</sub> (20 mM), guaiacol (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S13** Relative peroxidase activity for guaiacol oxidation by the site-directed saturation mutagenesis of M212 in the absence of Im-C6-Phe. Reaction conditions: P450BM3 variants (0.01- $0.5 \mu$ M), H<sub>2</sub>O<sub>2</sub> (20 mM), guaiacol (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S14** Relative peroxidase activity for guaiacol oxidation by the lysine mutation of identified redox-sensitive residues in the absence of DFSM. Reaction conditions: P450BM3 variants (0.01- $0.5 \mu$ M), H<sub>2</sub>O<sub>2</sub> (20 mM), guaiacol (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S15** Engineering P450BM3 for one-electron oxidation of guaiacol in the absence of Im-C6-Phe. F87A/M212K/F77I incorporates other beneficial single mutants. Reaction conditions: P450BM3 variants (0.01-0.5  $\mu$ M), H<sub>2</sub>O<sub>2</sub> (20 mM), guaiacol (4 mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.



**Figure S16** One-electron oxidation of DMP, OPD, and PPD by selected P450 variants in the absence of DFSM. Reaction conditions: P450BM3 variants (5-20 nM), H2O2 (20 mM), substrates DMP (4mM), OPD (4mM), PPD (4mM) in 0.05 M pH 7.0 phosphate buffer at 25 °C.

























Figure S17 SDS-PAGE of P450BM3 mutants. Lane M: molecular mass standards; (A) Lane 1-14: F87A/W90I、F87A/W90H、F87A/W130I、F87A/W130H、F87A/W325I、F87A/W325H、 F87A/W367I、F87A/W367H、F87A/C62I、F87A/C62H、F87A/C156I、F87A/C156H、 F87A/M5I、F87A/M5H; (B) Lane 1-14:F87A/M30I、F87A/M30H、F87A/M112I、 F87A/M112H、F87A/M118I、F87A/M118H、F87A/M119I、F87A/M119H、F87A/M145I、 F87A/M145H、F87A/M177I、F87A/M177H、F87A/M185I、F87A/M185H; (C) Lane 1-9:F87A/M212I、F87A/M212H、F87A/M316I、F87A/M316H、F87A/M354I、 F87A/M354H、F87A/M416I、F87A/M416H、F87A/M417I; (D) Lane 1-9:F87A/M417H、 F87A/F40I、F87A/F40H、F87A/F42I、F87A/F42H、F87A/F67I、F87A/F67H、F87A/F77I、 F87A/F77H; (E) Lane 1-8:F87A/F81I、F87A/F81H、F87A/F107I、F87A/F107H、 F87A/F158I、F87A/F158H、F87A/F162I、F87A/F162H; (F) Lane 1-9:F87A/F165I、 F87A/F165H、F87A/F173I、F87A/F173H、F87A/F205I、F87A/F205H、F87A/F261I、 F87A/F261H、F87A/F275I; (G) Lane 1-7:F87A/F275H、F87A/F279I、F87A/F279H、 F87A/F331I、F87A/F331H、F87A/F374I、F87A/F374H; (H) Lane 1-9: F87A/F379I、 F87A/F379H、F87A/F390I、F87A/F390H、F87A/F393I、F87A/F393H、F87A/F421I、 F87A/F421H、F87A/F423I; (I) Lane 1-9: F87A/F423H、F87A/M212A、F87A/ M212Y、 F87A/M212P、F87A/M212V、F87A/M212Q、F87A/M212F、F87A/M212N、F87A/M212K; (J) Lane 1-10: F87A/M212C、F87A/M212D、F87A/ M212R、F87A/ M212S、 F87A/M212W、F87A/M212E、F87A/M212G、F87A/M212L、F87A/M212T; (K) Lane 1-9: F87A/F81K、F87A/M112K、F87A/F173K、F87A/F77K、F87A/M177K、F87A/Y160K、 F87A/Y198K、F87A/Y256K、F87A/M237K; (L) Lane 1-14: F87A/M212K/F81H、 F87A/M212K/M112H、F87A/M212K/F173H、F87A/ M212K/M177H、F87A/M212K/F77I、 F87A/M212H/M112H、F87A/M212H/F81H、F87A/M212H/F173H、 F87A/M212H/M177H 、F87A/M212H/F77I、F87A/F81H/M112H、F87A/F81H/F173H、 F87A/F81H/M177H、F87A/F81H/F77I; (M) Lane 1-13: F87A/M112H/F173H、 F87A/M112H/M177H、F87A/M112H/F77I、F87A/F173H/M177H、F87A/F173H/F77I、 F87A/M177H/F77I、F87A/M212K/F77I/F81H、F87A/M212K/F77I/M112H、 F87A/M212K/F77I/F173H 、F87A/M212K/F77I/M177H、F87A/M212K/M112H/F173H、 F87A/M212K/M112H/M177H、F87A/M212K/F77I/Y160I; (N) Lane 1-3: F87A/M212K/F77I/Y198I、F87A/M212K/F77I/Y256I、F87A/M212K/F77I/ M237I.

| primer  | sequence                        |
|---------|---------------------------------|
| W90I-F  | 5'-AGCATCACGCATGAAAAAAACTGG-3'  |
| W90H-F  | 5'-AGCATCACGCATGAAAAAAACTGG-3'  |
| W90-R   | 5'-TGTCGCTAACCCGTCTCCTGC-3'     |
| W130I-F | 5'-ATCGAGCGTCTAAATGCAGATGA-3'   |
| W130H-F | 5'-CATGAGCGTCTAAATGCAGATGA-3'   |
| W130-R  | 5'-CTTTTGAACAAGCTGCACGGC-3'     |
| W325I-F | 5'-ATTCCAACTGCTCCTGCGTT-3'      |
| W325H-F | 5'-CATCCAACTGCTCCTGCGTT-3'      |
| W325-R  | 5'-TAAGCGCAGCGCTTCGTTTAAG-3'    |
| W367I-F | 5'-ATTGGAGACGATGTGGAAGAGT-3'    |
| W367H-F | 5'-CATGGAGACGATGTGGAAGAGT-3'    |
| W367-R  | 5'-AATTGGTTTATCACGGTGAAGCTG-3'  |
| C62I-F  | 5'-GCAATCGATGAATCACGCTTTG-3'    |
| C62H-F  | 5'-GCACATGATGAATCACGCTTTG-3'    |
| C62-R   | 5'-TTCTTTAATCAGACGCTGGCTTG-3'   |
| C156I-F | 5'-ATCGGCTTTAACTACCGCTTT-3'     |
| C156H-F | 5'-CATGGCTTTAACTACCGCTTT-3'     |
| C156-R  | 5'-CAGACCAATT GTATCAAGCGT-3'    |
| M5I-F   | 5'-ATTCCTCAGCCAAAAACGTTTGG-3'   |
| M5H -F  | 5'-CATCCTCAGCCAAAAACGTTTGG-3'   |
| M5-R    | 5'-TTCTTTGATTGTCATGTTCTCTGCC-3' |

#### Table S1 Primers used in reverse PCR method

| M145I-F | 5'-GACATTACACGTTTAACGCTTG-3'   |
|---------|--------------------------------|
| M145H-F | 5'-GACCATACACGTTTAACGCTTG-3'   |
| M145-R  | 5'-TTCCGGTACTTCAATATGCTC-3'    |
| M185I-F | 5'-ATTAACAAGCTGCAGCGAGC-3'     |
| M185H-F | 5'-CATAACAAGCTGCAGCGAGC-3'     |
| M185-R  | 5'-TGCTTCATCCAGTGCACG-3'       |
| M30I-F  | 5'-GATTAAGATTGCGGATGAGTTAGG-3' |
| M30H-F  | 5'-GCATAAGATTGCGGATGAGTTAGG-3' |
| M30-R   | 5'-AAAGCTTGAACCGGTTTACT-3'     |
| M112I-F | 5'-GGCAATTAAAGGCTATCATGCG-3'   |
| M112H-F | 5'-GGCACATAAAGGCTATCATGCG-3'   |
| M112K-F | 5'-GGCAAAGAAAGGCTATCATGCG-3'   |
| M112-R  | 5'-TGCTGACTGAAGCTTGG-3'        |
| M177I-F | 5'-ATTGTCCGTGCACTGGATG-3'      |
| M177H-F | 5'-CATGTCCGTGCACTGGATG-3'      |
| M177K-F | 5'-AAAGTCCGTGCACTGGATG-3'      |
| M177-R  | 5'-ACTTGTGATAAATGGATGAGGC-3'   |
| M212I-F | 5'-GTGATTAACGACCTAGTAGA-3'     |
| M212I-F | 5'-GTGCATAACGACCTAGTAGA-3'     |
| M212-R  | 5'-CTTGATATCTTCTTGAAACTGGC-3'  |
| M212A-F | 5'-GTGGCGAACGACCTAGTAGA-3'     |
| M212R-F | 5'-GTGCGTAACGACCTAGTAGA-3'     |
| M212N-F | 5'-GTGAATAACGACCTAGTAGA-3'     |

| M212D-F | 5'-GTGGCTAACGACCTAGTAGA-3'     |
|---------|--------------------------------|
| M212C-F | 5'-GTGTGCAACGACCTAGTAGA-3'     |
| M212E-F | 5'-GTGGAAAACGACCTAGTAGA-3'     |
| M212Q-F | 5'-GTGCAGAACGACCTAGTAGA-3'     |
| M212G-F | 5'-GTGGGCAACGACCTAGTAGA-3'     |
| M212L-F | 5'-GTGCTGAACGACCTAGTAGA-3'     |
| M212K-F | 5'-GTGAAAAACGACCTAGTAGA-3'     |
| M212F-F | 5'-GTGTTTAACGACCTAGTAGA-3'     |
| M212S-F | 5'-GTGAGCAACGACCTAGTAGA-3'     |
| M212T-F | 5'-GTGACCAACGACCTAGTAGA-3'     |
| M212W-F | 5'-GTGTGGAACGACCTAGTAGA-3'     |
| M212Y-F | 5'-GTGTATAACGACCTAGTAGA-3'     |
| M212V-F | 5'-GTGGTGAACGACCTAGTAGA-3'     |
| M212P-F | 5'-GTGCCGAACGACCTAGTAGA-3'     |
| M118I-F | 5'-GCGATTATGGTCGATATCGCCG-3'   |
| M118H-F | 5'-GCGCATATGGTCGATATCGCCG-3'   |
| M118-R  | 5'-ATGATAGCCTTTCATTGCCTGC-3'   |
| M119I-F | 5'-GCGATGATTGTCGATATCGCCG-3'   |
| M119H-F | 5'-GCGATGCATGTCGATATCGCCG-3'   |
| M119-R  | 5'-ATGATAGCCTTTCATTGCCTGC-3'   |
| M316I-F | 5'-ATTGTCTTAAACGAAGCGC-3'      |
| M316H-F | 5'-CATGTCTTAAACGAAGCGC-3'      |
| M316-R  | 5'-GCCGACATATTTAAGCTGTTTGAC-3' |

| M354I-F | 5'-ATTGTTCTGATTCCTCAGCTTCACC-3' |
|---------|---------------------------------|
| M354H-F | 5'-CATGTTCTGATTCCTCAGCTTCACC-3' |
| M354-R  | 5'-TAGTTCGTCGCCTTTTTC-3'        |
| M416I-F | 5'-ACGCTGGTACTTGGTATTATGCTA-3'  |
| M416H-F | 5'-ACGCTGGTACTTGGTCATATGCTA-3'  |
| M416-R  | 5'-TGCTTCATGAAGAGCGAACTGC-3'    |
| M417I-F | 5'-GGTATGATTCTAAAACAC-3'        |
| M417H-F | 5'-GGTATGCATCTAAAACAC-3'        |
| M417-R  | 5'-AAGTACCAGCGTTGCTT-3'         |
| F40I-F  | 5'-ATCATTAAATTCGAGGCGCC-3'      |
| F40H-F  | 5'-ATCCATAAATTCGAGGCGCC-3'      |
| F40-R   | 5'-TTCTCCTAATTCATCCGC-3'        |
| F42I-F  | 5'-AAAATTGAGGCGCCTGGTCGTG-3'    |
| F42H-F  | 5'-AAACATGAGGCGCCTGGTCGTG-3'    |
| F42-R   | 5'-GAAGATTTCTCCTAATTCATCCGC-3'  |
| F67I-F  | 5'-GAGTCACGCATTGATAAGAAC-3'     |
| F67H-F  | 5'-GAGTCACGCCATGATAAGAAC-3'     |
| F67-R   | 5'-ATCGCATGCTTCTTTAATTAGACGC-3' |
| F77I-F  | 5'-ATTGTACGTGATTTTGCAGGAGACG-3' |
| F77H-F  | 5'-CATGTACGTGATTTTGCAGGAGACG-3' |
| F77K-F  | 5'-AAAGTACGTGATTTTGCAGGAGACG-3' |
| F77-R   | 5'-TTTAAGCGCTTGACTTAAG-3'       |
| F81I-F  | 5'-GATATTGCAGGAGACGGGTTA-3'     |

| F81H-F  | 5'-GATCATGCAGGAGACGGGTTA-3'     |
|---------|---------------------------------|
| F81K-F  | 5'-GATAAAGCAGGAGACGGGTTA-3'     |
| F81-R   | 5'-ACGTACGAATTTAAGCGC-3'        |
| F107I-F | 5'-ATTAGTCAGCAGGCAATG-3'        |
| F107H-F | 5'-CATAGTCAGCAGGCAATG-3'        |
| F107-R  | 5'-GCTTGGAAGTAAGATATTATGCGC-3'  |
| F158I-F | 5'-GGCATTAACTATCGCTTTAACAGC-3'  |
| F158H-F | 5'-GGCCATAACTATCGCTTTAACAGC-3'  |
| F158-R  | 5'-GCAAAGACCAATTGTATCAAGCG-3'   |
| F162I-F | 5'-CGCATTAACAGCTTTTACCG-3'      |
| F162H-F | 5'-CGCCATAACAGCTTTTACCG-3'      |
| F162-R  | 5'-ATAGTTAAAGCCGCAAAGACC-3'     |
| F165I-F | 5'-AGCATTTACCGAGATCAGCC-3'      |
| F165H-F | 5'-AGCCATTACCGAGATCAGCC-3'      |
| F165-R  | 5'-GTTAAAGCGATAGTTAAAGCCGC-3'   |
| F173I-F | 5'-CCAATTATTACAAGTATGGTCCG-3'   |
| F173H-F | 5'-CCACATATTACAAGTATGGTCCG-3'   |
| F173K-F | 5'-CCAAAAATTACAAGTATGGTCCG-3'   |
| F173-R  | 5'-TGGATGAGGCTGATCTCGGTA-3'     |
| F205I-F | 5'-CGCCAGATTCAAGAAGATATC-3'     |
| F205H-F | 5'-CGCCAGCATCAAGAAGATATC-3'     |
| F205-R  | 5'-CTTGTTTTCATCATAAGCTGGG-3'    |
| F261I-F | 5'-ATTACAATTTTAATTGCGGGACACG-3' |

| F261H-F | 5'-ATTACACATTTAATTGCGGGACACG-3'  |
|---------|----------------------------------|
| F261-R  | 5'-AATTTGATAGCGAATGCTCTCG-3'     |
| F279I-F | 5'-ATTCTGGTGAAAAATCCAC-3'        |
| F279H-F | 5'-CATCTGGTGAAAAATCCAC-3'        |
| F279-R  | 5'-ATACAGCGCGAATGAT-3'           |
| F331I-F | 5'-GCGATTTCCCTATATGCA-3'         |
| F331H-F | 5'-GCGCATTCCCTATATGCA-3'         |
| F331-R  | 5'-AGGAGCAGTTGGCCATAAG-3'        |
| F374I-F | 5'-GAAGAGATTCGTCCAGAGC-3'        |
| F374H-F | 5'-GAAGAGCATCGTCCAGAGC-3'        |
| F374-R  | 5'-CACATCGTCTCCCCAAAT-3'         |
| F379I-F | 5'-CGTATTGAAAATCCAAGTGCG-3'      |
| F379H-F | 5'-CGTCATGAAAATCCAAGTGCG-3'      |
| F379-R  | 5'-CTCTGGACGGAACTCTTC-3'         |
| F390I-F | 5'-GCGATTAAACCGTTTGGA-3'         |
| F390H-F | 5'-GCGCATAAACCGTTTGGA-3'         |
| F390-R  | 5'-ATGCTGCGGAATCGCACTT-3'        |
| F393I-F | 5'-ATTGGAAACGGTCAGCG-3'          |
| F393H-F | 5'-CATGGAAACGGTCAGCG-3'          |
| F393-R  | 5'-CGGTTTAAACGCATGCTGC-3'        |
| F421I-F | 5'-CACATTGACTTCGAAG-3'           |
| F421H-F | 5'-CACCATGACTTTGAAG-3'           |
| F421-R  | 5'-TTTTAGCATCATACCAAGTACCAGCG-3' |

| F423I-F | 5'-GACATTGAAGATCATACAAACTACGAGC-3' |
|---------|------------------------------------|
| F423H-F | 5'-GACCATGAAGATCATACAAACTACGAGC-3' |
| F423-R  | 5'-GAAGTGTTTTAGCATCATACC-3'        |

#### Table 2 Primers used in In-Fusion Cloning

| primer  | sequence                                          |
|---------|---------------------------------------------------|
| M112H-F | 5'-GCAGGCACATAAAGGCTATCATGCGATGATGG-3'            |
| M112H-R | 5'-AGCCTTTATGTGCCTGCTGACTGAAGCTTGGA-3'            |
| Y160I-F | 5'-CGGCTTTAACATTCGCTTTAACAGCTTTTACCGAGA-3'        |
| Y160I-R | 5'-AGCGAATGTTAAAGCCGCAAAGACCAATTGTA-3'            |
| M177H-F | 5'- ACAAGTCATGTCCGTGCACTGGATGAAGCAA-3'            |
| M177H-R | 5'-CACGGACATGACTTGTAATAAATGGATGAGGCTGAT-3'        |
| M212K-F | 5'-CAAGGTGAAAAACGACCTAGTAGATAAAATTATTGCAGA-3'     |
| M212K-R | 5'-GGTCGTTTTTCACCTTGATATCTTCTTGAAACTGGC -3'       |
| F77I-F  | 5'- GCGCTTAAAATTGTACGTGATTTTGCAGGAGACG -3'        |
| F77I-R  | 5'- CGTACAATTTTAAGCGCTTGACTTAAGTTTTTATC -3'       |
| F81H-F  | 5'- ACGTGATCATGCAGGAGACGGGTTATTTACAAG -3'         |
| F81H-R  | 5'- ACGTGATCATGCAGGAGACGGGTTATTTACAAG -3'         |
| F173H-F | 5'- CAGCCTCATCCACATATTACAAGTATGGTCCGTGCACTG -3'   |
| F173H-R | 5'- ATATGTGGATGAGGCTGATCTCGGTAAAAGCT -3'          |
| Y256I-F | 5'- CGAGAACATTCGCATTCAAATTATTACATTCTTAATTGCGGG-3' |
| Y256K-F | 5'- CGAGAACATTCGCAAACAAATTATTACATTCTTAATTGCGGG-3' |
| Y256-R  | 5'- GAATGCGAATGTTCTCGTCATCAAGCGGCTCA-3'           |
| M237K-F | 5'-ACGCATAAACTAAACGGAAAAGATCCAGAAACG -3'          |
| M237K-R | 5'- CCGTTTAGTTTATGCGTTAATAAATCATCGCTTTG -3'       |
| Y160K-F | 5'-CGGCTTTAACAAACGCTTTAACAGCTTTTACCGAGA -3'       |
| Y160K-R | 5'- AGCGTTTGTTAAAGCCGCAAAGACCAATTGTA -3'          |
| Y198K-F | 5'-GACCCAGCTAAAGATGAAAACAAGCGCCAGTTTC -3'         |
| Y198K-R | 5'- TCATCTTTAGCTGGGTCGTCTGGATTTGCTCG -3'          |